JPH0320124B2 - - Google Patents

Info

Publication number
JPH0320124B2
JPH0320124B2 JP58197128A JP19712883A JPH0320124B2 JP H0320124 B2 JPH0320124 B2 JP H0320124B2 JP 58197128 A JP58197128 A JP 58197128A JP 19712883 A JP19712883 A JP 19712883A JP H0320124 B2 JPH0320124 B2 JP H0320124B2
Authority
JP
Japan
Prior art keywords
group
vinyl
polymerization
reaction
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58197128A
Other languages
Japanese (ja)
Other versions
JPS6088015A (en
Inventor
Teruo Fujimoto
Minoru Takamizawa
Akira Yamamoto
Toshinobu Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP19712883A priority Critical patent/JPS6088015A/en
Publication of JPS6088015A publication Critical patent/JPS6088015A/en
Publication of JPH0320124B2 publication Critical patent/JPH0320124B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はけい素原子含有有機高分子化合物の製
造方法に関するものである。 従来より線状構造の高分子化合物でフイルム等
を成型し、ついでこのものを強固な三次元ポリマ
ーに架橋する手法は知られており、この手法は感
光性樹脂、ゴム、塗料、接着剤などに多く応用さ
れている。たとえばケイ皮酸ビニルのようにポリ
ビニルアルコールの高分子修飾でビニル基を導入
する方法、ポリシロキサン中にビニル基を入れる
方法、反応性のモノマーもしくはポリマーを混合
する方法等がよく知られている。 しかし、1分子中にビニル基のような不飽和基
を2つ有するモノマーを通常の重合方法で重合さ
せて一方の不飽和基のみを重合し、他方の不飽和
基を残存させた形のポリマーを得る方法はあまり
知られていない。これは一方の不飽和基の重合の
際に他方の不飽和基の重合も同時におこり、最初
から三次元のポリマーになつてしまう場合が多い
ためである。 本発明者らは鋭意研究した結果、通常の重合反
応の条件で容易に重合反応を起こすエチレン性二
重結合を有する有機基とけい素原子に直結したビ
ニル基とを有するビニルシラン誘導体を選択使用
することにより、架橋反応し得るビニルシリル基
が残存した線状高分子化合物を容易に得ることが
できることを見出し、本発明を完成した。 すなわち、本発明は一般式 (式中、Vは重合可能なエチレン性二重結合を有
する有機基、R1、R2は炭素原子数1〜4のアル
キル基もしくはフエニル基、nは0〜3の数、た
だしn=0のときVはビニル基でないものとす
る)で示されるビニルシラン誘導体を、過酸化物
もしくはアゾ化合物を触媒とするラジカル重合、
グリニヤール試薬を開始剤とするアニオン重合ま
たはテトラヒドロフラン溶媒中における炭化水素
のアルカリ金属化合物を開始剤とするアニオン重
合により、そのビニルシリル基を残存させ有機基
V中のエチレン性二重結合を優先的に重合反応さ
せることを特徴とするけい素原子含有有機高分子
化合物の製造方法に関するものである。 これを説明すると、上記一般式()で示され
るビニルシラン誘導体中のR1およびR2は、メチ
ル基、エチル基、プロピル基、ブチル基およびフ
エニル基から選ばれる基であり、また式−(CH2
n−で示される基のVは重合可能なエチレン性二
重結合を有する有機基であつて、これを例示すれ
ば次のとおりである。 ビニルフエニル基 CH2=CH−C6H4−(CH2)n− (n=0〜3) メタクリル酸基 CH2=C(CH3)COO−(CH2)n− (n=1〜3) アクリル酸基 CH2=CHCOO−(CH2)n− (n=1〜3) ビニル基 CH2=CH−(CH2)n− (n=1〜3) プロペニル基 CH3CH=CH−(CH2)n− (n=1〜3) ビニルオキシ基 CH2=CHO−(CH2)n− (n=1〜3) ビニルピリジル基 CH2=CH−C5H4N−(CH2)n− (n=1〜3) 以上述べたそれぞれの分子構造からなるビニル
シラン誘導体は、通常のビニルクロロシラン、ア
ルキルクロロシラン、ヒドロクロロシラン類を原
料として、グニヤール反応、ヒドロシリル化反応
等の公知の有機合成反応により得ることができ
る。 本発明で使用されるビニルシラン誘導体はつぎ
のような特徴を有する。すなわち、その式V−
(CH2)n−中のエチレン性二重結合は通常の重
合反応(ラジカル重合、アニオン重合、カチオン
重合)条件で容易に重合するが、けい素原子に直
結しているビニル基はそのけい素原子に結合して
いる他の有機基(R1、R2)による立体障害のた
めに、通常の重合条件下ではほとんど重合反応を
起こさないという性質を有する。たとえばトリメ
チルビニルシランは通常のラジカル重合を行わせ
ることができず、プチルリチウムを使うアニオン
重合により35℃の温度で400時間反応させること
によつてやつと起こる程度であり(西独公開公報
第2259951号参照)、このアニオン重合の速度は著
しく遅い。しかし、一般式()で示されるビニ
ルシラン誘導体は通常の重合反応条件でラジカル
重合、アニオン重合またはカチオン重合させるこ
とにより、容易にビニルシリル基の残存した線状
高分子化合物となる。 なお、ビニルシラン誘導体の重合に当つて、必
要であれば、他の通常のビニルモノマー(コモノ
マー)を併用してもよい。 このようにして得られる残存ビニルシリル基を
有する線状高分子化合物は、有機溶剤に可溶性の
ものであり容易に架橋反応して溶剤に不溶性の強
じん三次元ポリマーとなるので、感光性樹脂、ゴ
ム、塗料、接着剤等広い分野に有用とされるもの
である。 この残存ビニルシリル基を有する線状高分子化
合物を架橋反応させる方法としては、)紫外
線、電子線もしくはX線による照射方法、)過
酸化物または1分子中にビニルシリル基と反応し
得る官能基を少なくとも2個有する有機化合物を
用いて行なう方法があげられる。なお、上記過酸
化物としてはベンゾイルペルオキシド、2、4−
ジクロロベンゾイルペルオキシド、ジクミルペル
オキシド、t−ブチルペルオキシベンゾエートな
どが、また少なくとも2個の官能基を有する有機
化合物としては、≡Si−Hで示される官能基を1
分子中に2個以上有するオルガノシラン化合物も
しくはオルガノポリシロキサン化合物、あるいは
≡Si−R−SH(Rは2価の炭化水素基)で示され
る官能基を1分子中に2個以上有するオルガノポ
リシロキサン化合物、および光架橋剤である2、
6−ジ(4アジドベンジリデン)−シクロヘキサ
ノンなどがそれぞれ例示される。 つぎに具体的実施例をあげる。 実施例 1 500mlフラスコ中にマグネシウム12g、テトラ
ヒドロフラン200mlを仕込み、臭化エチル0.5mlを
加えて反応をスタートさせた後、p−クロロスチ
レン69gを、窒素気流中、還流温度で3時間要し
て滴下し反応させることによりp−クロロスチレ
ンのグリニヤール試薬を合成した。つぎにビニル
メチルクロロシランの60gを20〜30℃でこのグリ
ニヤール試薬中に滴下反応させた後、加水分解
し、有機層を減圧下蒸留したところ、p−ビニル
フエニルジメチルビニルシラン (
The present invention relates to a method for producing a silicon atom-containing organic polymer compound. It has been known for a long time to form a film using a polymer compound with a linear structure, and then crosslink this material into a strong three-dimensional polymer. It is widely applied. For example, methods of introducing vinyl groups by polymer modification of polyvinyl alcohol such as vinyl cinnamate, methods of introducing vinyl groups into polysiloxane, methods of mixing reactive monomers or polymers, etc. are well known. However, by polymerizing monomers that have two unsaturated groups such as vinyl groups in one molecule using a normal polymerization method, only one unsaturated group is polymerized, and the other unsaturated group remains. Not much is known about how to obtain it. This is because when one unsaturated group is polymerized, the other unsaturated group is also polymerized at the same time, resulting in a three-dimensional polymer from the beginning. As a result of intensive research, the inventors of the present invention have selected and used a vinylsilane derivative that has an organic group having an ethylenic double bond and a vinyl group directly bonded to a silicon atom, which easily undergoes a polymerization reaction under normal polymerization reaction conditions. The present invention was completed based on the discovery that it is possible to easily obtain a linear polymer compound in which vinylsilyl groups capable of crosslinking remain. That is, the present invention is based on the general formula (In the formula, V is an organic group having a polymerizable ethylenic double bond, R 1 and R 2 are an alkyl group or phenyl group having 1 to 4 carbon atoms, n is a number from 0 to 3, where n = 0 (where V is not a vinyl group) is subjected to radical polymerization using a peroxide or an azo compound as a catalyst,
By anionic polymerization using a Grignard reagent as an initiator or anionic polymerization using an alkali metal compound of a hydrocarbon in a tetrahydrofuran solvent as an initiator, the vinyl silyl group remains and the ethylenic double bond in the organic group V is preferentially polymerized. The present invention relates to a method for producing a silicon atom-containing organic polymer compound, which is characterized by a reaction. To explain this, R 1 and R 2 in the vinylsilane derivative represented by the above general formula () are groups selected from a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group; 2 )
V in the group represented by n- is an organic group having a polymerizable ethylenic double bond, and examples thereof are as follows. Vinyl phenyl group CH2 =CH- C6H4- ( CH2 )n- (n= 0-3 ) Methacrylic acid group CH2 =C( CH3 )COO-( CH2 )n- (n=1-3 ) Acrylic acid group CH2 =CHCOO-( CH2 )n- (n=1-3) Vinyl group CH2 =CH-( CH2 )n- (n=1-3) Propenyl group CH3CH =CH- ( CH2 )n- (n=1-3) Vinyloxy group CH2 =CHO-( CH2 )n- ( n =1-3) Vinylpyridyl group CH2 =CH- C5H4N- ( CH2 )n- (n=1 to 3) Vinylsilane derivatives having the respective molecular structures described above can be produced by known organic synthesis methods such as Gunyard reaction and hydrosilylation reaction using ordinary vinylchlorosilanes, alkylchlorosilanes, and hydrochlorosilanes as raw materials. It can be obtained by reaction. The vinylsilane derivative used in the present invention has the following characteristics. That is, the formula V-
The ethylenic double bond in (CH 2 )n- is easily polymerized under normal polymerization reaction conditions (radical polymerization, anionic polymerization, cationic polymerization), but the vinyl group directly bonded to the silicon atom Due to steric hindrance caused by other organic groups (R 1 , R 2 ) bonded to the atoms, it has the property that almost no polymerization reaction occurs under normal polymerization conditions. For example, trimethylvinylsilane cannot be subjected to normal radical polymerization, and can only be easily polymerized by anionic polymerization using butyllithium and reacting at a temperature of 35°C for 400 hours (see West German Publication No. 2259951). ), the rate of this anionic polymerization is extremely slow. However, the vinylsilane derivative represented by the general formula () easily becomes a linear polymeric compound with residual vinylsilyl groups by radical polymerization, anionic polymerization or cationic polymerization under normal polymerization reaction conditions. In the polymerization of the vinyl silane derivative, other common vinyl monomers (comonomers) may be used in combination, if necessary. The linear polymer compound having residual vinylsilyl groups obtained in this way is soluble in organic solvents and easily crosslinks to become a tough three-dimensional polymer that is insoluble in solvents, so it can be used in photosensitive resins, rubbers, etc. It is said to be useful in a wide range of fields such as paints, adhesives, etc. Methods for crosslinking linear polymer compounds having residual vinyl silyl groups include a) irradiation with ultraviolet rays, electron beams, or A method using an organic compound having two molecules is mentioned. In addition, the above-mentioned peroxides include benzoyl peroxide, 2,4-
Examples of organic compounds having at least two functional groups include dichlorobenzoyl peroxide, dicumyl peroxide, t-butyl peroxybenzoate, etc.
Organosilane compounds or organopolysiloxane compounds having two or more functional groups in the molecule, or organopolysiloxanes having two or more functional groups represented by ≡Si-R-SH (R is a divalent hydrocarbon group) in one molecule. compound, and 2, which is a photocrosslinking agent.
Examples include 6-di(4azidobenzylidene)-cyclohexanone. Next, specific examples will be given. Example 1 12 g of magnesium and 200 ml of tetrahydrofuran were placed in a 500 ml flask, 0.5 ml of ethyl bromide was added to start the reaction, and 69 g of p-chlorostyrene was added dropwise over 3 hours at reflux temperature in a nitrogen stream. A Grignard reagent of p-chlorostyrene was synthesized by reaction. Next, 60 g of vinylmethylchlorosilane was added dropwise to the Grignard reagent at 20 to 30°C, followed by hydrolysis, and the organic layer was distilled under reduced pressure.

【式】)75g を得た。 つぎに、20gのp−ビニルフエニルジメチルシ
ランと0.5%のアゾビスイソブチロニトリルを含
有するトルエン150mlに溶解し、80℃で40時間重
合した。この粘稠な液をメタノール1中に注ぎ
沈殿分離した後、洗浄乾燥したところ、14gの白
色のポリマーが得られた。このポリマーをトルエ
ンに再度溶解しキヤステイング法にて圧さ10μm
のフイルムをつくり、このものについて赤外吸収
スペクトルで分析したところ、ビニルシリル基を
含有していることが確認された。 つぎに、このポリ−p−ビニルフエニルジメチ
ルビニルシラン10gと2、4−ジクロルベンゾイ
ルパーオキサイド0.05gをトルエン150mlにとか
し、常温にて圧さ10μmのフイルムをキヤステイ
ング法でつくつた後、150℃で30分間架橋反応さ
せたところ、このフイルムは非常に強じんな三次
元ポリマーとなり、もはやトルエンに全く不溶な
フイルムとなつた。 実施例 2 臭化ビニルのグリニヤール試薬とクロロメチル
ジメチルクロロシランを常法に従いグリニヤール
反応して得た、クロロメチルジメチルビニルシラ
ン62gを500mlフラスコ中に仕込み、これにメタ
クリル酸ナトリウム59g、ジメチルホルムアミド
100mlおよびピリジン2mlを加え、80℃で3時間
かくはんしながら加熱反応させた。その後、反応
液を冷却し、500mlの水中に注ぎ、分離した有機
層を減圧下蒸留したところ、メタクリル酸メチレ
ンジメチルビニルシラン
[Formula]) 75g was obtained. Next, it was dissolved in 150 ml of toluene containing 20 g of p-vinylphenyldimethylsilane and 0.5% azobisisobutyronitrile, and polymerized at 80° C. for 40 hours. This viscous liquid was poured into methanol 1 to separate the precipitate, and then washed and dried to obtain 14 g of a white polymer. This polymer was redissolved in toluene and reduced to a pressure of 10 μm using the casting method.
When a film was prepared and analyzed by infrared absorption spectrum, it was confirmed that it contained vinylsilyl groups. Next, 10 g of this poly-p-vinylphenyldimethylvinylsilane and 0.05 g of 2,4-dichlorobenzoyl peroxide were dissolved in 150 ml of toluene, and a film with a pressure of 10 μm was made by the casting method at room temperature. When crosslinked at ℃ for 30 minutes, this film became a very strong three-dimensional polymer and was no longer completely insoluble in toluene. Example 2 62 g of chloromethyldimethylvinylsilane obtained by Grignard reaction of vinyl bromide Grignard reagent and chloromethyldimethylchlorosilane in a conventional manner was charged into a 500 ml flask, and 59 g of sodium methacrylate and dimethylformamide were added to the flask.
100 ml and 2 ml of pyridine were added, and the mixture was heated and reacted at 80°C for 3 hours with stirring. After that, the reaction solution was cooled and poured into 500ml of water, and the separated organic layer was distilled under reduced pressure.

【式】 74gを得た。 つぎに、このメタクリル酸メチレンビニルジメ
チルシラン20gを無水のトルエン300ml中に窒素
気流下で溶解した後、3.3mole-1のフエニルマグ
ネシウムブロミド(C6H5MgBr)のジエチルエ
ーテル溶液3.6mlを加え、窒素気流下5℃で撹拌
しながら6時間重合させた。この粘稠な液をメタ
ノール1中に注ぎ込み、ポリマーを沈殿分離
し、洗浄乾燥したところ、13gの白色ポリマーを
得た。このポリマーをもう一度トルエンに溶解
し、キヤステイング法にて、厚さ5μmのフイル
ムを作製した。このフイルムを赤外線スペクトル
で分析したところ、3080cm-1に大きな吸収があり
ビニルシリル基が残存していることを確認した。
ついで、このフイルムを減圧状態にして超高圧水
銀灯(365nm、110W/m2)を使用して3分間照
射したところ、このフイルムは非常に強じんなフ
イルムになり、トルエンに不溶となつた。また、
赤外吸収スペクトルで分析したところ、3080cm-1
の吸収は消えていてビニル基が架橋し、3次元ポ
リマーになつたことが確認された。 実施例 3 ブロムベンゼンのグリニヤ試薬と、3−クロロ
プロピルメチルビニルクロロシランを常法に従い
グリニヤ反応して得た3−クロロプロピルメチル
フエニルビニルシラン 30gとアクリル酸ナトリウム25gを500mlフラス
コ中に仕込み、これにジメチルホルムアミド50ml
およびピリジン2mlを加え、80℃で3時間加熱反
応させた。その後、反応液は冷却し、300mlの水
を加え、分離した有機層を減圧下蒸留したとこ
ろ、アクリル酸プロピレンメチルフエニルビニル
シラン 21gを得た。 つぎに、1オートクレーブ中に 水 100g ヒドロキシプロピルメチル セルロース 3g オレイルアルコール 0.1g ゼラチン 0.1g アクリル酸プロピレンメチル フエニルビニルシラン 4g 塩化ビニル 8g 過酸化ベンゾイル 0.05g を仕込み、60℃、10時間、窒素下にて懸濁共重合
させた。反応後、過、洗浄、乾燥したところ、
塩化ビニル−アクリル酸プロピレンメチルフエニ
ルビニルシランの共重合体11gを得た。このポリ
マーを赤外吸収スペクトルにて分析したところ、
3080cm-1に吸収があり、ビニル基が残存している
ことが確認された。ついで、この共重合体10gを
テトラヒドロフラン100mlに溶解した後、両末端
にヒドロ基を有するジメチルシロキサン(平均重
合度10)2gと塩化白金酸の2%ブタノール溶液
0.3mlを加えた後キヤステイング法にて厚さ200μ
mのフイルムをつくつた後、120℃で15分間架橋
反応を行つた。このフイルムは強じんで柔軟性を
有するフイルムとなつた。なお、このフイルムは
もはやテトラヒドロフランに不溶で3次元ポリマ
ーになつていることを確認した。 実施例4〜5 実施例1と全く同様にして合成したp−ビニル
フエニルジメチルビニルシランを高真空下で
(C6H53CLi−LiBrの混合系の精製剤を用いて精
製したもの6gを用いて高真空下でリビングアニ
オン重合法を用いて、開始剤として1.2×10-4
ルのn−BuLi、クミルセシウム(Cum−Cs)を
用いて−78℃の反応温度で、溶媒として精製した
テトラヒドロフラン100mlを用いて、2時間重合
を行つた。重合終了後、内容物をメタノール中に
注ぎ、得られたポリマーを沈殿分離し、洗浄、乾
燥したところ、白色のポリマーを得た。得られた
ポリマーについてガラス転移点(Tg)、GPCおよ
び膜浸透圧法と光散乱法による数平均分子量
(Mn)と重量平均分子量(Mw)を測定した。 結果を表−1に、GPC曲線を第1図に示す。
[Formula] 74g was obtained. Next, 20 g of this methylene vinyl dimethyl methacrylate silane was dissolved in 300 ml of anhydrous toluene under a nitrogen stream, and then 3.6 ml of a diethyl ether solution of 3.3 mole -1 phenylmagnesium bromide (C 6 H 5 MgBr) was added. The mixture was polymerized for 6 hours with stirring at 5° C. under a nitrogen stream. This viscous liquid was poured into methanol 1 and the polymer was precipitated and separated, washed and dried to obtain 13 g of a white polymer. This polymer was once again dissolved in toluene, and a film with a thickness of 5 μm was produced by a casting method. When this film was analyzed using an infrared spectrum, it was found that there was a large absorption at 3080 cm -1 , confirming that vinylsilyl groups remained.
When this film was then irradiated for 3 minutes under reduced pressure using an ultra-high pressure mercury lamp (365 nm, 110 W/m 2 ), it became a very strong film and was insoluble in toluene. Also,
When analyzed by infrared absorption spectrum, it was 3080cm -1
It was confirmed that the absorption of 20% disappeared, and the vinyl groups were crosslinked to form a three-dimensional polymer. Example 3 3-chloropropylmethylphenylvinylsilane obtained by Grignard reaction of bromobenzene Grignard reagent and 3-chloropropylmethylvinylchlorosilane according to a conventional method Place 30g and 25g of sodium acrylate in a 500ml flask, and add 50ml of dimethylformamide to this.
and 2 ml of pyridine were added, and the mixture was heated and reacted at 80°C for 3 hours. After that, the reaction solution was cooled, 300ml of water was added, and the separated organic layer was distilled under reduced pressure. Obtained 21g. Next, 100 g of water, 3 g of hydroxypropyl methylcellulose, 0.1 g of oleyl alcohol, 0.1 g of gelatin, 4 g of propylene methylphenyl vinyl acrylate, 8 g of vinyl chloride, and 0.05 g of benzoyl peroxide were placed in one autoclave, and suspended at 60°C for 10 hours under nitrogen. A cloudy copolymerization was carried out. After the reaction, after filtering, washing and drying,
11 g of a vinyl chloride-propylene acrylate methyl phenyl vinyl silane copolymer was obtained. When this polymer was analyzed by infrared absorption spectrum,
There was an absorption at 3080 cm -1 , confirming that vinyl groups remained. Next, after dissolving 10 g of this copolymer in 100 ml of tetrahydrofuran, 2 g of dimethylsiloxane (average degree of polymerization 10) having hydro groups at both ends and a 2% butanol solution of chloroplatinic acid were added.
After adding 0.3ml, use the casting method to create a thickness of 200μ.
After making the film, a crosslinking reaction was carried out at 120°C for 15 minutes. This film was strong and flexible. It was confirmed that this film was no longer soluble in tetrahydrofuran and had become a three-dimensional polymer. Examples 4 to 5 6 g of p-vinylphenyldimethylvinylsilane synthesized in exactly the same manner as in Example 1 was purified under high vacuum using a (C 6 H 5 ) 3 CLi-LiBr mixed purification agent. It was purified using a living anionic polymerization method under high vacuum using 1.2 × 10 -4 mol of n-BuLi as an initiator and a reaction temperature of -78 °C using cumyl cesium (Cum-Cs) as a solvent. Polymerization was carried out for 2 hours using 100 ml of tetrahydrofuran. After the polymerization was completed, the contents were poured into methanol, and the resulting polymer was separated by precipitation, washed, and dried to obtain a white polymer. The glass transition point (Tg), number average molecular weight (Mn), and weight average molecular weight (Mw) of the obtained polymer were measured by GPC, membrane osmotic pressure method, and light scattering method. The results are shown in Table 1, and the GPC curve is shown in Figure 1.

【表】 得られた重合物は何れもIRスペクトル分析結
果は≡Si−CH=CH2を含有しており、トルエン
溶液として厚さ10μmのフイルムをキヤステング
法で作り、高圧水銀灯(110W/m2、365nm)に
1分間照射したところ、トルエン不溶の強じんな
フイルムが得られた。
[Table] The results of IR spectrum analysis of all of the obtained polymers showed that they contained ≡Si-CH=CH 2 . A film with a thickness of 10 μm was made as a toluene solution by the casting method, and it was heated using a high-pressure mercury lamp (110 W/m 2 ). , 365 nm) for 1 minute, a strong film insoluble in toluene was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、n−BuLiおよびCum−Csを開始剤
として、THF中、−78℃で重合したポリ(4−ビ
ニルフエニルジメチルビニルシラン)のGPCの
溶出曲線を示したものである。
FIG. 1 shows the GPC elution curve of poly(4-vinylphenyldimethylvinylsilane) polymerized at -78°C in THF using n-BuLi and Cum-Cs as initiators.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Vは重合可能なエチレン性二重結合を有
する有機基、R1、R2は炭素原子数1〜4のアル
キル基もしくはフエニル基、nは0〜3の数、た
だしn=0のときVはビニル基でないものとす
る)で示されるビニルシラン誘導体を、過酸化物
もしくはアゾ化合物を触媒とするラジカル重合、
グリニヤール試薬を開始剤とするアニオン重合ま
たはテトラヒドロフラン溶媒中における炭化水素
のアルカリ金属化合物を開始剤とするアニオン重
合により、そのビニルシリル基を残存させ有機基
V中のエチレン性二重結合を優先的に重合反応さ
せることを特徴とするけい素原子含有有機高分子
化合物の製造方法。
[Claims] 1. General formula (In the formula, V is an organic group having a polymerizable ethylenic double bond, R 1 and R 2 are an alkyl group or phenyl group having 1 to 4 carbon atoms, n is a number from 0 to 3, where n = 0 (where V is not a vinyl group) is subjected to radical polymerization using a peroxide or an azo compound as a catalyst,
By anionic polymerization using a Grignard reagent as an initiator or anionic polymerization using an alkali metal compound of a hydrocarbon in a tetrahydrofuran solvent as an initiator, the vinyl silyl group remains and the ethylenic double bond in the organic group V is preferentially polymerized. 1. A method for producing a silicon atom-containing organic polymer compound, which comprises causing a reaction.
JP19712883A 1983-10-21 1983-10-21 Production of silicon-containing organic high-molecular compound Granted JPS6088015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19712883A JPS6088015A (en) 1983-10-21 1983-10-21 Production of silicon-containing organic high-molecular compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19712883A JPS6088015A (en) 1983-10-21 1983-10-21 Production of silicon-containing organic high-molecular compound

Publications (2)

Publication Number Publication Date
JPS6088015A JPS6088015A (en) 1985-05-17
JPH0320124B2 true JPH0320124B2 (en) 1991-03-18

Family

ID=16369205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19712883A Granted JPS6088015A (en) 1983-10-21 1983-10-21 Production of silicon-containing organic high-molecular compound

Country Status (1)

Country Link
JP (1) JPS6088015A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127537A (en) * 1984-07-18 1986-02-07 Shin Etsu Chem Co Ltd Resist agent
JP4688311B2 (en) * 2001-02-22 2011-05-25 東レ・ダウコーニング株式会社 Method for producing (meth) acrylic functional group-containing organosilicon compound
JP5135820B2 (en) * 2007-02-20 2013-02-06 Jsr株式会社 Alkali-soluble polymer, radiation-sensitive composition for forming colored layer, color filter, and liquid crystal display device
WO2023210562A1 (en) * 2022-04-28 2023-11-02 Agc株式会社 Curable polymer, curable composition, prepreg, multilayer body, metal-clad laminate and wiring board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192163A (en) * 1982-05-04 1983-11-09 Mitsubishi Electric Corp Figure processor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192163A (en) * 1982-05-04 1983-11-09 Mitsubishi Electric Corp Figure processor

Also Published As

Publication number Publication date
JPS6088015A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
US5986014A (en) Processes for preparing (meth)acrylic polymers having functional groups at the chain ends
EP1072602B1 (en) Carbosiloxane dendrimer and copolymers made therewith
JPS58167606A (en) Preparation of graft copolymer by radical copolymerization
KR100581772B1 (en) Branched siloxane/silalkylene copolymer, silicone-containing organic polymer, and process for producing the same
EP0134678A2 (en) Polymers with graft alpha-alkylarylate functionality
EP0424000B1 (en) Novel silicone polymers, copolymers and block copolymers and a method for their preparation
JPH0320124B2 (en)
JP4044177B2 (en) Method for producing (meth) acrylic polymer having a crosslinkable silyl group at the terminal
EP0351859B1 (en) Preparation process of block copolymers and resulting block copolymers
JPH11158236A (en) Silicone graft-type vinyl polymer and its manufacture
JPS61252230A (en) Azo group-containing polysiloxaneamide
JPS60123518A (en) Production of silicone based graft copolymer
JP2649512B2 (en) Resin for antifouling paints composed of silicon-containing copolymer
JP2509274B2 (en) Photocrosslinkable fluorine-containing styrene polymer
JP2658152B2 (en) Polysiloxane group-containing polymer
US5162396A (en) Silicone polymers, copolymers and block copolymers and a method for their preparation
US5319045A (en) Copolymer and composition containing the copolymer
JPH0374683B2 (en)
JP4231054B2 (en) Method for producing (meth) acrylic polymer having functional group at terminal
JPH04134090A (en) Phosphazene derivative and its polymer
JP3593169B2 (en) Silicon-containing stilbene derivatives
JP3408549B2 (en) Graft-modified ladder silicone and composition thereof
JP3121646B2 (en) Organic electronic materials
JP2976517B2 (en) Copolymer and method for producing the same
JPH06293803A (en) Photocurable composition