JPH03201112A - Attitude estimating device for space navigating vehicle - Google Patents

Attitude estimating device for space navigating vehicle

Info

Publication number
JPH03201112A
JPH03201112A JP1341896A JP34189689A JPH03201112A JP H03201112 A JPH03201112 A JP H03201112A JP 1341896 A JP1341896 A JP 1341896A JP 34189689 A JP34189689 A JP 34189689A JP H03201112 A JPH03201112 A JP H03201112A
Authority
JP
Japan
Prior art keywords
error
attitude
inertial sensor
value
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1341896A
Other languages
Japanese (ja)
Inventor
Kuniharu Yasuda
安田 国治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1341896A priority Critical patent/JPH03201112A/en
Publication of JPH03201112A publication Critical patent/JPH03201112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the error of an attitude estimating value due to the error of an inertia sensor and to reduce an attitude estimating error due to an optical sensor by automatically changing parameters to be used for the arithmetic processing of an inertia sensor error estimating part. CONSTITUTION:A timer 9 measures time required from the operation start of an attitude estimating device, compares the measured value with a previously set time, generates and supplies a trigger signal Q to a parameter changing part 8. The changing part 8 changes the parameters K1, K2 to be used by an inertia sensor error estimating part 7 by the signal Q. The estimating part 7 executes arithmetic processing by using the attitude estimating error detected by an attitude estimating error detecting part 4 and the applied parameters K1, K2 and outputs an inertia sensor error correction value. On the outer hand, inertia sensor data correction using the correction value and the angular speed detecting value of the inertia sensor 1 and the output of the attitude estimating value are executed by an inertia sensor data correcting part 6 and an integration calculating part 3. Thus, the attitude estimating error can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は人工衛星の姿勢推定装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an attitude estimation device for an artificial satellite.

[従来の技術] 第8図は従来用いられている姿勢推定装置の機能ブロッ
ク図であり9図において(1)は衛星の角速度ωを検出
する慣性センサ、(2)は衛星の姿勢角θを検出する光
学センサ、(3〉は積分計算部、(4〉は姿勢推定誤差
検出部、(5〉は慣性センサ誤差推定部。
[Prior Art] Fig. 8 is a functional block diagram of a conventionally used attitude estimation device. In Fig. 9, (1) is an inertial sensor that detects the angular velocity ω of the satellite, and (2) is an inertial sensor that detects the attitude angle θ of the satellite. An optical sensor for detection, (3> is an integral calculation section, (4> is a posture estimation error detection section, and (5> is an inertial sensor error estimation section).

(6)は慣性センサデータ補正部である。(6) is an inertial sensor data correction section.

次に動作について説明する。慣性センサ(1)による角
速度検出値ω6が全く誤差を持たないときω6を積分計
算部(3)にて積分し、これを姿勢角推定値δとして出
力すれば姿勢推定値δは姿勢角θに一致し問題ない。し
かしながら現実問題としてω6に誤差が含まれておりω
6を姿勢角変化率推定値δと見なして積分することはω
6に含まれる誤差を積分することとなり、得られたδは
真のθと74 ナル。そこで、光学センサ(2)として
、太陽センサ、地球センサあるいは恒星センサなどを用
いて姿勢角を直接的に検出し、この姿勢角検出値θ。
Next, the operation will be explained. When the angular velocity value ω6 detected by the inertial sensor (1) has no error, the integral calculation unit (3) integrates ω6 and outputs it as the estimated attitude angle δ, then the estimated attitude value δ becomes the attitude angle θ. It matches and there is no problem. However, as a practical matter, ω6 contains an error and ω
Considering 6 as the estimated attitude angle change rate δ and integrating it is ω
The error included in 6 is integrated, and the obtained δ is the true θ and 74 null. Therefore, the attitude angle is directly detected using a sun sensor, earth sensor, star sensor, etc. as the optical sensor (2), and this attitude angle detection value θ is obtained.

を真の姿勢角とみなし適宜姿勢推定誤差検出部(4〉、
慣性センサ誤差推定部(5)、慣性センサデータ補正部
〈6)を用いてω。の補正を実施する。すなわち姿勢推
定誤差検出部(4)にてθ1とδの差を検出し、差信号
θ。−δを慣性センサ誤差推定部(5)へ送り、ここで
積分定数に、を用いた積分計算及び比例定数に、を用い
た比例計算を行ないそれらの和(I[l/S+ Kl)
 (a、−e )を慣性センサ誤差補正値M。
is regarded as the true attitude angle, and the attitude estimation error detection unit (4>,
ω using the inertial sensor error estimation unit (5) and the inertial sensor data correction unit (6). Corrections will be made. That is, the attitude estimation error detection unit (4) detects the difference between θ1 and δ, and generates a difference signal θ. -δ is sent to the inertial sensor error estimator (5), where integral calculation using an integral constant and proportional calculation using a proportional constant are performed, and their sum (I[l/S+Kl)
(a, -e) is the inertial sensor error correction value M.

とじて出力する。慣性センサデータ補正部(6)では上
記a′6を慣性センサ(1)の検出値ω6に加えること
によりω6の補正を行う。ここでに、及びK。
Bind and output. The inertial sensor data correction section (6) corrects ω6 by adding the above a'6 to the detected value ω6 of the inertial sensor (1). Here, and K.

は固定である。第9図に姿勢角がゼロで慣性センサがバ
イアス誤差0.57hrをもつ場合の姿勢推定シミュレ
ーション結果を示す。この図において、ケースlではに
、−5X10−”、に、=3XlO−’、ケース2では
K I = 2X to−’、 K f−6X 10−
’である。ケース!では慣性センサ誤差推定値1Gの収
束が早いために姿勢角推定値δもゼロから大きく逸脱し
ない一方、ケース2では「。の収束が遅いためδがゼロ
から大きく逸脱している。したがって慣性センサ誤差の
姿勢角推定への伝播の点ではこれが少ないケース1の方
がケース2に比べて好ましい。一方光学七ンサにも姿勢
角検出の誤差がありこれが姿勢角推定値に伝播する。第
1O図に示すような光学センサの姿勢角検出誤差が存在
した場合の姿勢推定シミュレーション結果を第11図に
示す。このシミュレーションにおいて、慣性センサの誤
差はゼロであり、ケースl及びケース2はJ二記の場合
と同じパラメータ設定となっている。第11図かられか
るとおり、ケースlはケース2に比べて姿勢角検出誤差
の伝播が大きくなっており好ましくないすなわち、慣性
センサ誤差と姿勢角検出誤差では姿勢角推定値への伝播
の形態が異なる。それ故従来は両方の特性を勘案して定
数Kt、に*を設定していた。
is fixed. FIG. 9 shows the attitude estimation simulation results when the attitude angle is zero and the inertial sensor has a bias error of 0.57 hr. In this figure, in case l, -5
'is. Case! In Case 2, the attitude angle estimate δ does not deviate significantly from zero because the inertial sensor error estimate 1G converges quickly, whereas in case 2, δ deviates significantly from zero because the convergence of . is slow. Therefore, the inertial sensor error In terms of propagation to the attitude angle estimation, Case 1, which has less error, is preferable to Case 2. On the other hand, the optical sensor also has an error in attitude angle detection, and this propagates to the attitude angle estimation value. Figure 11 shows the attitude estimation simulation results when there is an attitude angle detection error of the optical sensor as shown in Fig. 11. In this simulation, the error of the inertial sensor is zero, and Case 1 and Case 2 are the case of J2. As can be seen from Fig. 11, case l is unfavorable because the propagation of the attitude angle detection error is larger than in case 2. In other words, the inertial sensor error and the attitude angle detection error are The form of propagation to the estimated angle value is different.Therefore, in the past, the constant Kt was set to * in consideration of both characteristics.

[発明が解決しようとする課題] 従来の姿勢推定装置は以上のように構成されているため
、慣性センサ誤差及び光学センサによる姿勢角検出誤差
の姿勢推定値への伝播特性が固定されており、軌道上に
おいて、上記誤差の大きさ及び時間プロツマイルがあら
かじめ予測されたものと異なった場合9期待する姿勢推
定精度が得られないという問題点があった。
[Problems to be Solved by the Invention] Since the conventional posture estimation device is configured as described above, the propagation characteristics of the inertial sensor error and the posture angle detection error by the optical sensor to the posture estimated value are fixed. There is a problem in that when the magnitude of the error and the time protomile differ from those predicted in advance on the orbit, the expected attitude estimation accuracy cannot be obtained.

この発明は上記のような課題を解消するためになされた
もので、各種のセンサ誤差の姿勢角推定値への伝播を小
さくできる姿勢推定装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a posture estimation device that can reduce the propagation of various sensor errors to the posture angle estimated value.

[課題を解決するための手段] この発明に係る姿勢推定装置は、従来固定されていた慣
性センサ誤差推定部の演算処理に用いるパラメータを自
動的に変更できるようにしたものである。
[Means for Solving the Problems] A posture estimating device according to the present invention is capable of automatically changing parameters used in arithmetic processing of an inertial sensor error estimating section, which was conventionally fixed.

[作用] この発明における姿勢推定装置は、慣性センサ誤差推定
部の演算処理に用いるパラメータを自動的に変更するこ
とにより、慣性センサ誤差及び光学センサ誤差の伝播量
を変え姿勢推定誤差を低減する。
[Operation] The posture estimation device according to the present invention reduces the posture estimation error by changing the propagation amount of the inertial sensor error and the optical sensor error by automatically changing the parameters used in the calculation process of the inertial sensor error estimating section.

[実施例1 以下、この発明の一実施例を図について説明する。第1
図において、(1)は慣性センサ、(2)は光学センサ
、(3)は積分計算部、(4〉は姿勢推定誤差検出部、
(6)は慣性センサデータ補正部、(7)は外部から与
えられたパラメータを用いる慣性センサ誤差推定部、(
8)はパラメータ変更部、(9)はタイマであるなお、
慣性センサ(1)、光学センサ(2)、積分計算部(3
)、姿勢推定誤差検出部(4)、慣性センサデータ補正
部(6〉は従来のものと同じである。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1st
In the figure, (1) is an inertial sensor, (2) is an optical sensor, (3) is an integral calculation unit, (4> is an attitude estimation error detection unit,
(6) is an inertial sensor data correction section, (7) is an inertial sensor error estimation section that uses externally given parameters, (
8) is a parameter change unit, and (9) is a timer.
Inertial sensor (1), optical sensor (2), integral calculation section (3
), the attitude estimation error detection section (4), and the inertial sensor data correction section (6>) are the same as those of the conventional one.

−に記の実施例において、タイマ(9)は本発明に係る
姿勢推定装置が動作を開始してからの時間tを計測しあ
らかじめ設定した時間Tとtを比較し。
- In the embodiment described in (9), the timer (9) measures the time t after the posture estimation device according to the present invention starts operating, and compares t with a preset time T.

第2図に示すフローチャートに従ってフラグ信号を発生
させこれをトリガ信号Qとしてパラメータ変更部(8)
へ渡す。パラメータ変更部(8)では慣性センサ誤差推
定部(7)で用いるパラメータに1及びに、をこのトリ
ガ信号Qにより第3図のフローに従って変更する。すな
わち、th<Tより小さかった場合にはK l+ K 
、としてそれぞれあらかじめ設定したに、、、に□を与
え、tがT以上であればK。
A parameter changing unit (8) generates a flag signal according to the flowchart shown in FIG. 2 and uses this as a trigger signal Q.
pass it on to The parameter changing section (8) changes the parameters 1 and 1 used by the inertial sensor error estimating section (7) using the trigger signal Q according to the flow shown in FIG. That is, if th<T, then K l+ K
, give □ to , , , which are set in advance, respectively, and if t is greater than or equal to T, then K.

K、としてあらかじめ設定したに1□に□を与える慣性
センサ誤差推定部(7)は姿勢推定誤差検出部(4)に
て検出されたθ、−δと与えられたパラメータK 、、
 K、を用いて従来と同様の演算処理を行い慣性センサ
誤差補正値d。を出力する。また、このd′6と慣性セ
ンサの角速度検出値ω6を用いた慣性センサデータ補正
及び姿勢推定値の出力は従来同様慣性センサデータ補正
部(6)及び積分計算部(3)を用いて実施される。
The inertial sensor error estimator (7) gives □ to 1□ which is set in advance as K, and the inertial sensor error estimator (7) calculates the parameters K given as θ, -δ detected by the attitude estimation error detector (4).
The inertial sensor error correction value d is obtained by performing arithmetic processing similar to the conventional method using K. Output. In addition, the inertial sensor data correction using this d'6 and the detected angular velocity value ω6 of the inertial sensor and the output of the estimated attitude value are performed using the inertial sensor data correction section (6) and the integral calculation section (3) as in the conventional case. Ru.

シミュレーション例トして。Please give a simulation example.

第3図にT=3000sec、 K++=5XIO−”
、に、、=3X10−”、 K +t−2X 10−’
、 K□= 6X 10−’とし、姿勢角ゼロで慣性セ
ンサバイアス誤差0.5°/hrと第to図に示す光学
センサ誤差が同時に作用した場合の姿勢推定値を示す。
In Figure 3, T=3000sec, K++=5XIO-”
, to, ,=3X10-", K +t-2X 10-'
, K□=6X10-', and the attitude estimation value is shown when the attitude angle is zero and the inertial sensor bias error of 0.5°/hr and the optical sensor error shown in Fig. to act simultaneously.

ここで姿勢角はゼロであるからこの姿勢推定値は姿勢推
定誤差と等価である。また比較のために、に、、に、と
してに、、、、に、、のみを用いた場合及びに□、に□
のみを用いたパラメータ変更のない従来の姿勢推定装置
を用いた場合のシミュレーション結果を第4図に併せて
示す。この図かられかるとおり、この発明に係る一実施
例はK 、、 K 、を変更しない従来のものにくらべ
て姿勢推定誤差が小さい。
Here, since the attitude angle is zero, this attitude estimation value is equivalent to the attitude estimation error. Also, for comparison, when using only ni, ni, ni, ni, ni, ni, ni□, ni□
FIG. 4 also shows the simulation results when using a conventional posture estimation device without parameter changes using only . As can be seen from this figure, the embodiment according to the present invention has a smaller attitude estimation error than the conventional one in which K , , K , are not changed.

なお、上記実施例ではタイマ(9)の出力するトリガ信
号Qを用いパラメータ変更部〈8)にてパラメータに、
及びに、を変更したが、第4図に示すように姿勢推定誤
差θ、−δをモニタし、収束判定部(10)にてその収
束状況を判定しその結果とタイマ(9〉の出力するトリ
ガ信号の論理和を新たなトリガ信号としてパラメータK
 、、 K 、を変更してもよい。すなわち、第5図に
示すフローチャートに示してθ、−8k絶対値の大きさ
をあらかじめ設定したスレッショルド値Aと比較し、そ
れが八より小でかつ時間Tの間この条件が満足されれば
収束したものと見なしフラグPを1とする。このフラグ
は初期設定としてゼロに設定しておく。そしてタイマ(
9)のトリガ信号QとPの論理和を新たにトリガ信号Q
′とする。パラメータ変更部(8)ではトリガ信号Q′
をQ と見なして取込み前記実施例の場合と同様のパラ
メータ変更を行う。A =0.005deg、 K +
+=5X 10−”、 K t+=3X 10−3. 
K 112X 10−’K tt−2X 10−’、 
T −500sec、 T = 2000secとし、
慣性センサ誤差0.5deg/hr、光学センサ誤差を
第1O図の0.2倍としてシミュレーションを実施し第
6図にその結果を示す。この図かられかるとおり、この
発明にかかるこの実施例においても姿勢推定誤差がパラ
メータを変更しない場合に比べて小さいなお、ここでは
説明の便宜上−つの軸まわりについての姿勢推定を例に
とったが宇宙航行体の3軸についてこの装置が適用でき
ることは言うまでもない。
In the above embodiment, the parameter changing section <8) uses the trigger signal Q output from the timer (9) to change the parameters to:
As shown in Fig. 4, the posture estimation errors θ and -δ are monitored, the convergence status is determined by the convergence determination unit (10), and the result and the timer (9) are output. Parameter K is set as the logical sum of the trigger signals as a new trigger signal.
,,K, may be changed. That is, as shown in the flowchart shown in Figure 5, the magnitude of the absolute value of θ, -8k is compared with a preset threshold value A, and if it is smaller than 8 and this condition is satisfied for time T, convergence is achieved. It is assumed that the flag P is set to 1. This flag is set to zero by default. and a timer (
9) The logical sum of the trigger signals Q and P is created as a new trigger signal Q.
'. In the parameter changing section (8), the trigger signal Q'
is taken as Q and the parameters are changed in the same way as in the previous embodiment. A=0.005deg, K+
+=5X 10-", K t+=3X 10-3.
K 112X 10-'K tt-2X 10-',
T −500sec, T = 2000sec,
A simulation was carried out with an inertial sensor error of 0.5 deg/hr and an optical sensor error of 0.2 times that of Fig. 1O, and the results are shown in Fig. 6. As can be seen from this figure, the attitude estimation error in this embodiment of the present invention is also smaller than that in the case where the parameters are not changed.Here, for convenience of explanation, attitude estimation around two axes is taken as an example. It goes without saying that this device can be applied to the three axes of a spacecraft.

[発明の効果1 以りのように、この発明によれば慣性センサ誤差推定部
のパラメータを変更するので慣性センサの誤差による姿
勢推定値の誤差を抑えるとともに光学センサによる姿勢
推定誤差も低減できるという効果がある。
[Effect of the invention 1 As described above, according to the present invention, since the parameters of the inertial sensor error estimation section are changed, it is possible to suppress the error in the attitude estimation value due to the error of the inertial sensor, and also reduce the attitude estimation error due to the optical sensor. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による姿勢推定装置を示す
機能ブロック図、第2図はこの実施例におけるタイマの
動作のフローチャート、第3図はパラメータ変更部の動
作のフローチャート、第4図はこの実施例における姿勢
推定シミュレーション例、第5図はこの発明の他の実施
例を示す機能ブロック図、第6図はその実施例における
収束判定部の処理フローチャート、第7図はその実施例
における姿勢推定シミュレーション結果を示す間第8図
は従来の姿勢推定装置の機能ブロック図。 第9図は従来の姿勢推定装置において慣性センサ誤差が
バイアス誤差として存在した場合の姿勢推定シミュレー
ション結果を示す図、第10図は光学センサ誤差の一例
を示す図、第0図は第1O図に示す光学センサ誤差が存
在した場合の従来の姿勢推定装置による姿勢推定のシミ
ュレーション結果を示す図である。 図において、(1)は慣性センサ、(2)は光学センサ
(3)は積分計算部、(4)は姿勢推定誤差検出部、(
6)は慣性センサデータ補正部、(7〉は慣性センサ誤
差推定部、(8)はパラメータ変更部、(9)はタイマ
、(10)は収束判定部。 なお1図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a functional block diagram showing a posture estimation device according to an embodiment of the present invention, FIG. 2 is a flowchart of the operation of the timer in this embodiment, FIG. 3 is a flowchart of the operation of the parameter changing section, and FIG. An example of posture estimation simulation in this embodiment, FIG. 5 is a functional block diagram showing another embodiment of the present invention, FIG. 6 is a processing flowchart of the convergence determination section in the embodiment, and FIG. 7 is a posture estimation simulation example in the embodiment. FIG. 8, which shows estimation simulation results, is a functional block diagram of a conventional posture estimation device. Figure 9 is a diagram showing the attitude estimation simulation results when an inertial sensor error exists as a bias error in a conventional orientation estimation device, Figure 10 is a diagram showing an example of an optical sensor error, and Figure 0 is similar to Figure 1O. FIG. 3 is a diagram showing a simulation result of posture estimation by a conventional posture estimation device when there is an optical sensor error shown in FIG. In the figure, (1) is an inertial sensor, (2) is an optical sensor, (3) is an integral calculation section, (4) is an attitude estimation error detection section, (
6) is an inertial sensor data correction section, (7> is an inertial sensor error estimation section, (8) is a parameter change section, (9) is a timer, and (10) is a convergence judgment section. Note that the same symbols in Figure 1 are the same. , or a significant portion.

Claims (2)

【特許請求の範囲】[Claims] (1)宇宙航行体の角速度を検出する慣性センサと、宇
宙航行体へ入射する光と宇宙航行体のなす角によってそ
の姿勢角を検出する光学センサと、光学センサによって
検出された姿勢角検出値とこの推定装置の出力である姿
勢推定値とを比較し姿勢推定誤差を検出する姿勢推定誤
差検出部と、検出された姿勢推定誤差と外部から与えら
れたパラメータを用いて演算処理を行う慣性センサ誤差
推定部と、慣性センサ誤差推定部の演算結果と上記の慣
性センサによって検出された角速度の値を用いて演算処
理を行う慣性センサデータ補正部と、慣性センサデータ
補正部の演算結果に対し積分を含む演算を行うことによ
って姿勢推定値を得る積分計算部と、この姿勢推定装置
が動き出してからの時間を計測し経過時間に対応したト
リガ信号を出力するタイマと、このトリガ信号によって
前記慣性センサ誤差推定部にて用いるパラメータを切換
えるパラメータ変更部とで構成され、慣性センサ誤差推
定部のパラメータを変えることにより慣性センサ及び光
学センサが有する誤差の姿勢推定値への伝播特性を自動
的に変更することを特徴とした宇宙航行体の姿勢推定装
置。
(1) An inertial sensor that detects the angular velocity of the spacecraft, an optical sensor that detects the attitude angle based on the angle between the light incident on the spacecraft and the spacecraft, and the attitude angle detection value detected by the optical sensor. and a posture estimation error detection unit that detects a posture estimation error by comparing the posture estimation value output from this estimation device, and an inertial sensor that performs calculation processing using the detected posture estimation error and externally given parameters. an inertial sensor data correction section that performs arithmetic processing using the calculation results of the inertial sensor error estimation section and the value of the angular velocity detected by the inertial sensor; an integral calculation section that obtains an estimated attitude value by performing calculations including It consists of a parameter changing unit that switches the parameters used in the error estimating unit, and by changing the parameters of the inertial sensor error estimating unit, it automatically changes the propagation characteristics of the error of the inertial sensor and the optical sensor to the attitude estimated value. A spacecraft attitude estimation device characterized by:
(2)姿勢推定誤差検出部にて検出された姿勢推定誤差
を用いて慣性センサ誤差推定部の演算の収束状況を判断
し、この判断結果と入力したタイマのトリガ信号出力と
の論理和をパラメータ切換のトリガ信号として出力する
収束判定部を追加し、これが出力するトリガ信号をもっ
て慣性センサ誤差推定部のパラメータを変えることによ
り慣性センサ及び光学センサが有する誤差の姿勢推定値
への伝播特性を自動的に変更することを特徴とする特許
請求の範囲第1項記載の宇宙航行体の姿勢推定装置。
(2) Use the posture estimation error detected by the posture estimation error detection section to judge the convergence status of the calculation of the inertial sensor error estimation section, and set the logical sum of this judgment result and the input trigger signal output of the timer as a parameter. By adding a convergence determination unit that outputs as a trigger signal for switching, and changing the parameters of the inertial sensor error estimation unit using the trigger signal output by this unit, the propagation characteristics of the error of the inertial sensor and optical sensor to the attitude estimation value can be automatically determined. The apparatus for estimating the attitude of a spacecraft according to claim 1, characterized in that:
JP1341896A 1989-12-28 1989-12-28 Attitude estimating device for space navigating vehicle Pending JPH03201112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341896A JPH03201112A (en) 1989-12-28 1989-12-28 Attitude estimating device for space navigating vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1341896A JPH03201112A (en) 1989-12-28 1989-12-28 Attitude estimating device for space navigating vehicle

Publications (1)

Publication Number Publication Date
JPH03201112A true JPH03201112A (en) 1991-09-03

Family

ID=18349583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341896A Pending JPH03201112A (en) 1989-12-28 1989-12-28 Attitude estimating device for space navigating vehicle

Country Status (1)

Country Link
JP (1) JPH03201112A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121897A (en) * 1984-07-10 1986-01-30 株式会社東芝 Triaxial attitude controller for artificial satellite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121897A (en) * 1984-07-10 1986-01-30 株式会社東芝 Triaxial attitude controller for artificial satellite

Similar Documents

Publication Publication Date Title
US9222801B2 (en) Apparatus and method for correcting error of gyro sensor in mobile robot
CN105806369B (en) A kind of in-orbit aberration modification method of star sensor
US9321498B2 (en) Method of estimating mounting angle error of gyroscopes by using a turning device, and corresponding turning device
JP2014228495A (en) Self-position estimation device and method
US11959748B2 (en) Functional iterative integration-based method and system for inertial navigation solution
Chiang et al. Constrained filtering method for attitude determination using GPS and gyro
CN108592917A (en) A kind of Kalman filtering Attitude estimation method based on misalignment
Seyr et al. Proprioceptive navigation, slip estimation and slip control for autonomous wheeled mobile robots
Parikh et al. Comparison of attitude estimation algorithms with IMU under external acceleration
Wöhle et al. A robust quaternion based Kalman filter using a gradient descent algorithm for orientation measurement
JPH03201112A (en) Attitude estimating device for space navigating vehicle
JP6876999B2 (en) Navigation device
JPH06317428A (en) Inertial navigation method
JP3919911B2 (en) Azimuth and orientation reference device
JP3431231B2 (en) Gyro drift correction method and its correction circuit
JP2001264106A (en) Inertial navigation system, initializing method for it, and recording medium
JPH09273936A (en) Apparatus for measuring position of moving body
JPH11211458A (en) Moving angle detecting device, moving angle detecting method and attitude angle detecting device
CN113686334B (en) Method for improving on-orbit combined filtering precision of star sensor and gyroscope
JP3746851B2 (en) Spacecraft attitude estimation device
JP2798938B2 (en) 3-axis attitude control device
JPH04143200A (en) Attitude determinating method of triaxially stabilized satellite
Steffes et al. Investigation of the attitude error vector reference frame in the INS EKF
JPH06131048A (en) Method for deciding attitude of three axis stabilizing satellite
JPH1114363A (en) Drift detecting and correcting means