JPH03200968A - Positive type photosensitive resin composition - Google Patents
Positive type photosensitive resin compositionInfo
- Publication number
- JPH03200968A JPH03200968A JP34406289A JP34406289A JPH03200968A JP H03200968 A JPH03200968 A JP H03200968A JP 34406289 A JP34406289 A JP 34406289A JP 34406289 A JP34406289 A JP 34406289A JP H03200968 A JPH03200968 A JP H03200968A
- Authority
- JP
- Japan
- Prior art keywords
- photosensitive resin
- resin composition
- maleimide
- exposure
- styrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims description 50
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229920005989 resin Polymers 0.000 claims abstract description 36
- 239000011347 resin Substances 0.000 claims abstract description 36
- -1 hydroxyl ions Chemical class 0.000 claims abstract description 31
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229920002223 polystyrene Polymers 0.000 claims abstract description 11
- 229920003251 poly(α-methylstyrene) Polymers 0.000 claims description 3
- 229920001890 Novodur Polymers 0.000 claims description 2
- 238000001459 lithography Methods 0.000 abstract description 8
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 abstract description 8
- 238000004090 dissolution Methods 0.000 abstract description 7
- 239000003112 inhibitor Substances 0.000 abstract description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003513 alkali Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 239000004793 Polystyrene Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 30
- 229920002120 photoresistant polymer Polymers 0.000 description 14
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 229920003986 novolac Polymers 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000003504 photosensitizing agent Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- URQUNWYOBNUYJQ-UHFFFAOYSA-N diazonaphthoquinone Chemical compound C1=CC=C2C(=O)C(=[N]=[N])C=CC2=C1 URQUNWYOBNUYJQ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KGWYICAEPBCRBL-UHFFFAOYSA-N 1h-indene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)C=CC2=C1 KGWYICAEPBCRBL-UHFFFAOYSA-N 0.000 description 1
- HTQNYBBTZSBWKL-UHFFFAOYSA-N 2,3,4-trihydroxbenzophenone Chemical compound OC1=C(O)C(O)=CC=C1C(=O)C1=CC=CC=C1 HTQNYBBTZSBWKL-UHFFFAOYSA-N 0.000 description 1
- NDMUQNOYNAWAAL-UHFFFAOYSA-N 3-diazo-1,4-dioxonaphthalene-2-sulfonic acid Chemical group C1=CC=C2C(=O)C(=[N+]=[N-])C(S(=O)(=O)O)C(=O)C2=C1 NDMUQNOYNAWAAL-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、ポジ型感光性樹脂組成物に間する(従来の
技術)
近年、LSIの高集積化がますます進められている。こ
のようなLSIの製造においては、リソグラフィ技術の
果す役割は極めて大きい、それは、LSIの集積度がリ
ングラフィの解像度や位置合わせ精度等の技術レベルに
依存すること、LSIの製造の際にリングラフィが10
数回以上繰り返し使用されること等による。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to positive photosensitive resin compositions (prior art) In recent years, the integration of LSIs has been increasing more and more. In the manufacture of such LSIs, lithography technology plays an extremely important role.This is because the degree of integration of LSIs depends on the technology level such as the resolution and alignment accuracy of the lithography, and when manufacturing LSIs, the lithography technology plays an extremely important role. is 10
This is due to repeated use several times or more.
そこで、従来からりソグラフィ技術の改良、とりわけ、
解像度向上のための研究がなされており、露光装置につ
いでは以下に説明するような開発・実用化がなされてい
る。Therefore, improvements to the conventional lithography technology, in particular,
Research has been conducted to improve resolution, and exposure devices have been developed and put into practical use as described below.
周知のように、縮小投影露光法の実用解像度0は、R=
0.6λ/NA(但し、入は露光波長であり、NAは光
学系の開口数である。)で示されるため、NA@大きく
することにより向上する。As is well known, the practical resolution 0 of the reduction projection exposure method is R=
Since it is expressed as 0.6λ/NA (wherein is the exposure wavelength and NA is the numerical aperture of the optical system), it can be improved by increasing NA.
このため、これまでの水銀ランプの9!1(波長436
nm)を用いた露光法では高NA化により解像度を向上
させていた。For this reason, the 9!1 (wavelength 436
In the exposure method using 3 nm), the resolution was improved by increasing the NA.
しかし、露光装置の焦点深度DOFは、周知のように、
DOF=0.5λ/NA2で表わされることから、高N
A化に伴い浅くなる。従って、多層配線や種々のタイプ
の素子が集積化されたことにより表面に複雑な凹凸が構
成されたLSIでは、その表面にサブミクロンレベルの
パターンを形成することが困難になる。However, as is well known, the depth of focus DOF of an exposure device is
Since it is expressed as DOF=0.5λ/NA2, high N
It becomes shallower as it becomes A. Therefore, it is difficult to form submicron-level patterns on the surface of an LSI whose surface has complex irregularities due to multilayer wiring or the integration of various types of elements.
そこで、最近の投影露光製画においては、NAは実用的
焦点深度(例えば、レンジで2um程度)が確保出来る
程度の値に設定し、露光波長を短くすることが検討され
ている。具体的には、i線(波長365nm)、KrF
エキシマレーザ(248,5nm)、波長250nm付
近の遠紫外光を露光光とすることである。特に、後の2
者は短波長化のメリットを大きく発揮できるので0.5
um以下の微細なパターンをも解像出来る。なお、ここ
で遠紫外光とは波長が200〜300nmの光を云うも
のとする。以下同様。Therefore, in recent projection exposure drawings, consideration has been given to setting the NA to a value that can ensure a practical depth of focus (for example, about 2 um in a range) and shortening the exposure wavelength. Specifically, i-line (wavelength 365 nm), KrF
Excimer laser (248.5 nm) and far ultraviolet light with a wavelength of around 250 nm are used as exposure light. Especially the latter two
0.5, since those with shorter wavelengths can greatly benefit from shorter wavelengths.
It is also possible to resolve fine patterns smaller than um. Note that far ultraviolet light herein refers to light with a wavelength of 200 to 300 nm. Same below.
一方、リソグラフィ技術の解像度向上のためには感光性
樹脂組成物(以下、ホトレジスト又はレジストと称する
こともある。)の果す役割も極めて大きい。On the other hand, photosensitive resin compositions (hereinafter sometimes referred to as photoresists or resists) play an extremely important role in improving the resolution of lithography techniques.
ジアゾナフトキノン/ノボラック系のポジ型ホトレジス
トは、9線(さらにはi線)を光源とした場合高解像度
のレジストパターンが得られるものとして知られている
。しかし、これは、上述したKrFエキシマレーザや遠
紫外光を光源とする場合は、以下に説明するような理由
から、使用出来ない。Diazonaphthoquinone/novolak-based positive photoresists are known to provide a high-resolution resist pattern when a 9-line (or even i-line) light source is used. However, this cannot be used when the above-mentioned KrF excimer laser or far ultraviolet light is used as a light source for the reasons explained below.
ジアゾナフトキノン/ノボラック系のポジ型ホトレジス
トは、一般に、例えばノボラック樹脂(下記の式、以下
、物質■と略称することもある。)と、トリヒドロキシ
ベンゾフェノンのナフトキノンスルホシ酸エステル(下
記■式、以下、物質■と略称することもある。)とで構
成されている。但し、0式中のnは重合度を示す(以下
の種々の構造式中のnも同様、)、また、■式中のDN
Qとは物質■のジアゾナフトキノンスルホン酸部分であ
り下記■式で示されるもの(以下、物質■の部分構造■
と略称することもある。)である、また、物質■は、感
光剤であり然も物質■のアルカリ水溶液に対する溶解を
抑止する性質を有する溶解抑止剤でもある。Diazonaphthoquinone/novolak-based positive photoresists are generally made of, for example, a novolac resin (the following formula, hereinafter sometimes abbreviated as substance ■) and a naphthoquinone sulfosic acid ester of trihydroxybenzophenone (the following formula ■, hereinafter sometimes referred to as substance ■). , sometimes abbreviated as substance■). However, n in formula 0 indicates the degree of polymerization (same as n in various structural formulas below), and DN in formula
Q is the diazonaphthoquinone sulfonic acid moiety of substance ■ and is represented by the following formula ■ (hereinafter, partial structure of substance ■
It is sometimes abbreviated as. ), and substance (1) is not only a photosensitizer but also a dissolution inhibitor having the property of inhibiting the dissolution of substance (2) in an alkaline aqueous solution.
体(下記■の物質)に変化し物質■のアルカリ溶解抑止
性を失う、従って、ホトレジストの露光部分は現像液に
溶解するので、ポジ型パターンが得られる。The substance (2) loses its ability to inhibit alkali dissolution.Therefore, the exposed portion of the photoresist dissolves in the developer, resulting in a positive pattern.
このような系のホトレジストを9線或いはi線により露
光すると、露光部分では物質■の部分構造■はアルカリ
可溶性のインデンカルボン酸誘導■
また、このホトレジストの波長436nm及び365n
mの各光を吸収する性質は、物質■の部分構造■のジア
ゾカルボニルに基づくものであった。従って、露光によ
り物質■の部分構造■が物質■に変化すると物質■は波
長436nm及び365nmの各光に吸収を持たなくな
る。即ち、光退色が生じる。このため、露光光(ここで
は9線やi線)はホトレジスト層の下部まで達するので
、露光部分は下部まで現像液により溶解され、よって、
矩形形状の断面を有するレジストバターンが得られる。When a photoresist of this type is exposed to 9-ray or i-ray, the partial structure (2) of the substance (2) in the exposed area changes to an alkali-soluble indenecarboxylic acid-induced (436nm and 365nm) wavelength.
The property of m to absorb each light was based on the diazocarbonyl of the partial structure (2) of the substance (2). Therefore, when the partial structure (2) of substance (2) changes to substance (2) due to exposure to light, substance (2) ceases to absorb light at wavelengths of 436 nm and 365 nm. That is, photobleaching occurs. For this reason, the exposure light (in this case, the 9-line or i-line) reaches the bottom of the photoresist layer, so the exposed area is dissolved by the developer to the bottom, so that
A resist pattern having a rectangular cross section is obtained.
しかし、このホトレジストでは、これを遠紫外光で露光
すると物質■から部分構造■を除いた部分には変化がお
こらず従って光退色はほとんど起こらない。このため、
露光光(KrFエキシマレーザや遠紫外光)はホトレジ
スト層の上部分のみに吸収され下部分には極めて不充分
な光量しかとどかない。この結果、得られるレジストパ
ターンは、大きなテーパー角を有したものとなってしま
い、また、膜減りの大きなものとなってしまう。However, in this photoresist, when it is exposed to deep ultraviolet light, no change occurs in the part of the substance (1) except for the partial structure (2), so photobleaching hardly occurs. For this reason,
Exposure light (KrF excimer laser or deep ultraviolet light) is absorbed only in the upper part of the photoresist layer, and only an extremely insufficient amount of light reaches the lower part. As a result, the resulting resist pattern has a large taper angle and a large amount of film loss.
これを解決するためには、ホトレジストの持つ遠紫外光
に対する吸収を小ざくすることが必要である。具体的に
は、遠紫外光に対し光退色性を示すことが重要である。In order to solve this problem, it is necessary to reduce the absorption of far ultraviolet light by the photoresist. Specifically, it is important that the material exhibits photobleaching property against far ultraviolet light.
そのためには、ホトレジストを構成しているベース樹脂
及び感光剤の化学構造を工夫する必要があった。そして
、その−例として例えば文献(エスピーアイイー(SP
IE:The 5ociety of Photo−O
pticalInstrumentationEnqi
neers) Vol、771.pp、2〜10 (1
987) )に開示されているホトレジストがあった。To achieve this, it was necessary to devise the chemical structure of the base resin and photosensitizer that make up the photoresist. As an example, for example, the literature (SPI
IE:The 5ociety of Photo-O
pticalInstrumentationEnqi
neers) Vol, 771. pp, 2-10 (1
There was a photoresist disclosed in 987)).
この文献においては、ホトレジスト中に含ませる溶解抑
止剤(感光剤)として従来の物質■に変えて新規な種々
のジアゾケトンを検討している。In this document, various new diazoketones are investigated in place of the conventional substance (1) as a dissolution inhibitor (photosensitizer) to be included in a photoresist.
これらのジアゾケトンの特徴は芳香環を持たないか又は
持っていても芳香環を他の不飽和基と共役していること
、及び、光転位を起して2−カルボキシラクタム構造(
下記■式参照)を1威する構造を有していることであっ
た。このようなジアゾケトンとして、具体的には、下記
■、■又は■式で示されるようなジアゾビベリジンシオ
ンが用いられていた。The characteristics of these diazoketones are that they either do not have an aromatic ring, or even if they do have an aromatic ring, they are conjugated with other unsaturated groups, and that they undergo photorearrangement to form a 2-carboxylactam structure (
It has a structure that makes the following formula (see formula (2) below) more than 1. As such diazoketones, specifically, diazobiberidine ions represented by the following formulas (1), (2), or (2) have been used.
h
ジアゾビベリジンシオンの光反応は、上記物質■の例で
説明すると下式のようなものである。h The photoreaction of diazobiveridine sion is explained using the example of the above substance (①) as shown in the following formula.
■ ■ つまり、物質■はアルカリ可溶性の物質■に変化する。■ ■ In other words, the substance (■) changes into the alkali-soluble substance (■).
従って、物質■が有するベース樹脂のアルカリ溶液溶解
抑止性が失われ、これによりレジストのパターニングが
行なえる。Therefore, the ability of substance (1) to inhibit dissolution of the base resin in an alkaline solution is lost, thereby making it possible to pattern the resist.
上述の文献によれば、ノボラック樹脂と、上記物質■と
を含むホトレジスト!KrFエキシマレーザで露光して
レジストパターンを形成している。得られたポジ型パタ
ーンは、該文献のSEM写真から判断すると、1.Ou
mのラインパターンについてはレジストパタンの側壁の
テーパー角(側壁と基板面との成す角)が少なくとも7
0度以上となっているもので、ざらに、その上面が平坦
であることから膜減りも極めて少ないものであることが
分る。従って、上記文献のホトレジストは、遠紫外線用
のレジストとしては、ノボラック/ジアゾナフトキノン
系のレジストより、優れている。According to the above-mentioned literature, a photoresist containing a novolac resin and the above-mentioned substance (■)! A resist pattern is formed by exposure with a KrF excimer laser. Judging from the SEM photograph of the document, the obtained positive pattern is 1. Ou
m line pattern, the taper angle of the side wall of the resist pattern (the angle formed between the side wall and the substrate surface) is at least 7.
It can be seen that since the upper surface is roughly flat, the film loss is extremely small. Therefore, the photoresist of the above-mentioned document is superior to a novolak/diazonaphthoquinone resist as a resist for deep ultraviolet rays.
(発明が解決しようとする課題)
しかしながら、上述の文献に開示された従来の感光性樹
脂組成物では、得られるパターンは完全な矩形ではなく
テーパーを有するものとなってしまう、従って、この感
光性樹脂組成物を用いサブミクロンレベルのパターンを
形成する場合は、入射光強度のコントラスト低下もあい
まってテーパーは一層大きくなり、得られるパターンの
形状は矩形ではなく三角形に近くなる。(Problems to be Solved by the Invention) However, with the conventional photosensitive resin compositions disclosed in the above-mentioned documents, the resulting pattern is not a perfect rectangle but has a taper. When a submicron-level pattern is formed using a resin composition, the taper becomes even larger due to a decrease in the contrast of the intensity of incident light, and the shape of the resulting pattern becomes closer to a triangle than a rectangle.
このため、このような形状のレジストパターンをマスク
として被加工物例えば基板をドライエツチングする場合
、レジスト及び被加工物材料のエツチング選択比にもよ
るが寸法変換差(レジストパターン寸法とエツチング後
のパターン寸法との差)が生じてしまう。Therefore, when dry etching a workpiece, such as a substrate, using a resist pattern with such a shape as a mask, the dimensional conversion difference (resist pattern dimension and pattern after etching) depends on the etching selectivity of the resist and workpiece materials. (difference with the size) will occur.
微細加工において許容される寸法変換差をレジストパタ
ーン寸法の10%と考えた場合、0.5gmレベルの加
工においてはレジストパターンの寸法後退はわずか0.
05um以内に抑えなければならずこのためにはレジス
トパターンの側壁が基板面に対し垂直なレジストパター
ンが必要になるが、この点従来の感光性樹脂組成物は技
術的に満足のゆくものではなかった。If we consider that the allowable dimensional conversion difference in microfabrication is 10% of the resist pattern dimension, the dimensional regression of the resist pattern is only 0.5 gm level machining.
The resist pattern must be kept within 0.05 um, and for this purpose, a resist pattern with side walls perpendicular to the substrate surface is required, but in this respect, conventional photosensitive resin compositions are not technically satisfactory. Ta.
ここで、パターン形状を悪化させる主な原因は、
■・・・感光性樹脂組成物の光退色性か充分ではないた
め露光後も露光光の吸収があること、■・・・パターン
形成に必要な露光量では感光性樹脂組成物中の感光剤の
分解は完結しないのでこれによっても露光光の吸収があ
ること、
と考えられる。Here, the main causes of deterioration of pattern shape are: 1. The photobleaching property of the photosensitive resin composition is not sufficient, so the exposure light is still absorbed even after exposure, and 2. Necessary for pattern formation. Since the decomposition of the photosensitizer in the photosensitive resin composition is not completed at such an exposure amount, it is thought that this also causes absorption of the exposure light.
上記■の現象は、ベース樹脂(従来例で云えばノボラッ
ク樹脂)中の芳香環による露光光の吸収により主に生じ
る。このため、■については、ベース樹脂自体を遠紫外
光に対し透明なもので構成することで解決する方法も考
えられる。実際メタクリル酸系ポリマー例えばポリ(メ
タクリル酸メチル)いわゆるPMMj!In用いること
により完全に矩形なレジストパターンが形成出来る。し
かし、メタクリル酸系ポリマーは耐ドライエツチング性
が低いため現在の微細加工プロセスでは使用出来ない、
従って、この対策は、現在のところ、本質的な解決策に
はならない。The above phenomenon (2) mainly occurs due to absorption of exposure light by aromatic rings in the base resin (novolak resin in the conventional example). Therefore, one possible solution to the problem (2) is to make the base resin itself transparent to far ultraviolet light. In fact, methacrylic acid-based polymers such as poly(methyl methacrylate) so-called PMMj! By using In, a completely rectangular resist pattern can be formed. However, methacrylic acid-based polymers cannot be used in current microfabrication processes due to their low dry etching resistance.
Therefore, this countermeasure is not an essential solution at present.
この発明はこのような点に鑑みなされたものであり、従
って、この発明の目的は、遠紫外光を用いたりソグラフ
ィにおいで矩形形状のパターンが得られるポジ型感光性
樹脂組成物を提供することにある。The present invention has been made in view of the above points, and therefore, an object of the present invention is to provide a positive photosensitive resin composition capable of obtaining a rectangular pattern using deep ultraviolet light or lithography. It is in.
(課題を解決するための手段)
この目的の達成を図るため、この出願に係る発明者は種
々の検討を重ねた。その結果、上記■の対策として、感
光性樹脂組成物に、露光によってベース樹脂の芳香環部
分が遠紫外光に吸収がなくなるように変化する物性を与
えるのが良いと考えた。(Means for Solving the Problem) In order to achieve this objective, the inventor of this application has conducted various studies. As a result, as a countermeasure for the above problem (2), it was thought that it would be good to give the photosensitive resin composition a physical property that changes so that upon exposure, the aromatic ring portion of the base resin ceases to absorb deep ultraviolet light.
また、上記■の対策として、光退色性を有する感光剤を
用いることが良いと考えた。In addition, as a countermeasure for the above-mentioned problem (2), we thought that it would be better to use a photosensitizer that has photobleaching properties.
また、いずれの対策においても感光性樹脂組成物そのも
のの露光光の吸収が小ざい方が露光後の該吸収も小ざ〈
出来るので好ましいと考えた。In addition, in any of the measures, the smaller the absorption of exposure light by the photosensitive resin composition itself, the smaller the absorption after exposure.
I thought it was preferable because it was possible.
そして、このような構成について検討した結果、下式に
示されるように、ベンゼン(下式中の物質0)に対する
マレイミド(下式中の物質■)の光付加を感光性樹脂組
成物に応用することを計画した。As a result of studying such a configuration, we applied the photoaddition of maleimide (substance ■ in the following formula) to benzene (substance 0 in the following formula) to a photosensitive resin composition, as shown in the following formula. I planned something.
この光反応によれば、物質[相]及び物質■中において
夫々共役されていた不飽和結合は物質@中では全て孤立
する。ざらに、物質@における不飽和結合の吸収は波長
220nm以下のところにあるので物質@は遠紫外光に
対しては実質的1こ透明fこなる。このため、この発明
の目的の達成が可能と考えられる。According to this photoreaction, the unsaturated bonds that were conjugated in the substance [phase] and the substance (1), respectively, become isolated in the substance (@). Roughly speaking, since the absorption of unsaturated bonds in a substance is at a wavelength of 220 nm or less, the substance is substantially transparent to far ultraviolet light. Therefore, it is considered possible to achieve the object of the present invention.
従って、この発明のポジ型感光性樹脂組成物は、スチレ
ン系樹脂と、マレイミドとを含むことを特徴とする。Therefore, the positive photosensitive resin composition of the present invention is characterized by containing a styrene resin and maleimide.
なお、この発明の実施に当たり、スチレン系樹脂として
、下記0式で示されるポリ(スチレン)及び下記[相]
式で示されるポリ(α−メチルスチレン)の一方又は双
方を用いるのが好適である。In carrying out this invention, poly(styrene) represented by the following formula 0 and the following [phase] are used as the styrene resin.
It is preferable to use one or both of poly(α-methylstyrene) represented by the formula.
また、スチレン系樹脂の分子量が2.000より小さい
とこれを用いて形成した感光性樹脂組成物の皮膜がやわ
らかすぎ露光用マスクとの密着において支障になったり
現像速度が速すぎて現像時間の制御が困難である等の弊
害が生じ、100゜000より大きすぎるとレジスト液
の濾過が困難になったり塗膜にストリエーション(放射
状のしわ)が生じる等の弊害が生しるので、スチレン系
樹脂は分子量が2,000〜100.000のものを用
いるのが良い。In addition, if the molecular weight of the styrene resin is less than 2.000, the film of the photosensitive resin composition formed using the styrene resin will be too soft, causing problems in adhesion to the exposure mask, or the development speed will be too fast, resulting in a short development time. Styrene-based It is preferable to use a resin having a molecular weight of 2,000 to 100,000.
また、マレイミドの量がスチレン系樹脂100重量部に
対し10重量部より少ないと感光性樹脂組成物の露光部
がアルカリ現像液に溶解しない等の弊害が生し、40重
量部以上であると感光性樹脂組成物の未露光部の膜減り
が10%以上となりさらに感光性樹脂組成物の皮膜から
マレイミドが析出してしまう等の弊害が生じるので、感
光性樹脂組成物中のマレイミドの量は、スチレン系樹脂
100重量部に対し10重量部以上40重量部未満の範
囲内とするのが良い。In addition, if the amount of maleimide is less than 10 parts by weight per 100 parts by weight of the styrene resin, problems such as the exposed areas of the photosensitive resin composition not being dissolved in an alkaline developer will occur, while if it is more than 40 parts by weight, the photosensitive resin composition will not be dissolved in the alkaline developer. The amount of maleimide in the photosensitive resin composition is determined by the amount of maleimide in the photosensitive resin composition. The content is preferably 10 parts by weight or more and less than 40 parts by weight per 100 parts by weight of the styrene resin.
(作用)
このような構成によれば、この発明のポジ型感光性樹脂
組成物に遠紫外光が照射されると、下式に示すように、
マレイミド■がスチレン系樹脂例えばポリ(スチレン)
■に付加し付加体■が得られる。(Function) According to such a configuration, when the positive photosensitive resin composition of the present invention is irradiated with far ultraviolet light, as shown in the following formula,
Maleimide■ is a styrenic resin such as poly(styrene)
Addition to ■ gives adduct ■.
■ ■ ■ざらに、
この付加体■のイミド水素は、アルカリ現像液例えば5
%水酸化テトラメチルアンモニウム(TMAH)に接す
るとアルカリ現像液中の水酸イオンにより引き抜かれる
(下式参照)。このため、露光部はアルカリ現像液に可
溶になる。■ ■ ■ Rarani,
The imide hydrogen of this adduct (①) is prepared using an alkaline developer such as 5
% tetramethylammonium hydroxide (TMAH), it is extracted by hydroxide ions in an alkaline developer (see the formula below). Therefore, the exposed area becomes soluble in the alkaline developer.
+
\−−〜/
一方、この発明の感光性樹脂組成物の未露光部ではマレ
イミドがスチレン系樹脂の溶解抑止剤として作用するの
で、未露光部が現像液に溶解することがない。+\--~/ On the other hand, in the unexposed areas of the photosensitive resin composition of the present invention, maleimide acts as a dissolution inhibitor for the styrene resin, so the unexposed areas do not dissolve in the developer.
この結果、露光部及び未露光部の現像液に対する溶解性
に差が生じるのでバタ一二、ングが可能になる。As a result, there is a difference in the solubility of the exposed and unexposed areas in the developing solution, making it possible to process the exposed area and the unexposed area.
また、この発明のポジ型感光性樹脂組成物のKrFエキ
シマレーザによって露光した部分のKrFエキシマレー
ザ光の波長付近の光(当該光も含む以下同様)の透過率
は、後述する実験結果からも明らかなように、このポジ
型感光性樹脂組成物に含まれるベース樹脂そもそちのK
rFエキシマレーザ光の波長付近での光の透過率よりも
高まるので、露光部においては露光光は下部まで充分な
光量で達するようになる。Furthermore, the transmittance of light near the wavelength of KrF excimer laser light (including this light, hereinafter the same) of the portion of the positive photosensitive resin composition of the present invention exposed by KrF excimer laser light is clear from the experimental results described below. As shown, the K of the base resin contained in this positive photosensitive resin composition is
Since the transmittance is higher than the transmittance of light near the wavelength of rF excimer laser light, a sufficient amount of exposure light reaches the lower part of the exposure section.
(実施例)
以下、この発明のポジ型感光性樹脂組成物の実施例につ
き説明する。なお、以下の説明で述べる使用薬品名、ま
た、分子量、混合量、温度、膜厚及び時間等の数値的条
件は、この発明の範囲内の好ましい例示lこすぎないこ
とは理解されたい。(Examples) Examples of the positive photosensitive resin composition of the present invention will be described below. It should be understood that the names of the chemicals used and the numerical conditions such as molecular weight, mixing amount, temperature, film thickness, and time described in the following description are only preferred examples within the scope of the present invention.
東11艷ユ
重量平均分子j1M−が50,000であり、Mwと数
平均分子量MNとの比M w / M *が1゜02で
ある単分散ポリ(スチレン)(東ソー製のもの)109
と、マレイミド29と!100rr+j7のシクロヘキ
サノンに溶解した後、この溶液を直径0.2umの孔を
有するメジブレンフィルタで濾過して、実施例1のポジ
型感光性樹脂組成物の塗布溶液を調製する。Monodisperse poly(styrene) (manufactured by Tosoh) 109 whose weight average molecular weight j1M- is 50,000 and the ratio Mw/M* of Mw to number average molecular weight MN is 1°02
And maleimide 29! After dissolving in 100rr+j7 of cyclohexanone, this solution is filtered through a Medibrene filter having pores of 0.2 um in diameter to prepare a coating solution of the positive photosensitive resin composition of Example 1.
次に、ヘキサメチルジシラザンによる疎水化処理を行な
ったシリコンウェハ上に、実施例1の感光性樹脂組成物
をスピンコーターを用いlumの膜厚で塗布する。Next, the photosensitive resin composition of Example 1 is applied to a film thickness of lum using a spin coater onto a silicon wafer that has been subjected to hydrophobization treatment with hexamethyldisilazane.
次に、ホットプレートを用いこのシリコンウェハ!10
0℃の温度で1分間ベークする。Next, use a hot plate to make this silicon wafer! 10
Bake for 1 minute at a temperature of 0°C.
次に、ベーク済みシリコンウェハの感光性樹脂組成物側
の面(こ、種々の寸法のラインアンドスペースパターン
(クロムパターン)を有する石英マスクを密着させ、そ
の後、この試料をKrF工主シマレーザにより露光する
。なお、この露光は、ラムダフィシツク(Lambda
Physik)社製のKrFエキシマレーザ装置t(
1パルスにっき2m J / c m ’の露光が行な
え、50Hzの周期でパルスを発生する装H)を用いド
ーズ18400mJ/Cm2L+た条件で行なう。Next, a quartz mask having a line-and-space pattern (chrome pattern) of various dimensions is closely attached to the surface of the photosensitive resin composition side of the baked silicon wafer, and then this sample is exposed to light using a KrF simmer laser. Note that this exposure is performed using Lambda physics.
KrF excimer laser device manufactured by Physik)
The exposure was carried out at a dose of 18400 mJ/cm2L+ using an apparatus (H) which can perform exposure of 2 mJ/cm' per pulse and generates pulses at a cycle of 50 Hz.
KrFレーザによる露光が終了した試料1&5%TMA
H水溶液中に300秒闇浸漬させ現像を行ない、その後
、純水によりリンスを行なう。Sample 1 & 5% TMA after exposure with KrF laser
Development is performed by immersing the film in a H aqueous solution in the dark for 300 seconds, and then rinsing with pure water.
得られたパターンを走査型電子顕微鏡(SEM)により
観察したところ、0.5umのラインアンドスペースパ
ターンで然もその断面が完全に近い矩形形状即ちパター
ン側壁がシリコウェハ面に対し実質的に90度のパター
ンが得られでいることが分った。When the obtained pattern was observed using a scanning electron microscope (SEM), it was found that although it was a 0.5 um line-and-space pattern, its cross section was nearly perfectly rectangular, that is, the pattern sidewall was substantially at an angle of 90 degrees to the silicon wafer surface. It turns out that a pattern can be obtained.
また、上記バターニング実験とは別に、実施例1の感光
性樹脂組成物の紫外−可視部の吸収スペクトルを以下に
説明するように測定する。Moreover, apart from the above-mentioned buttering experiment, the absorption spectrum of the photosensitive resin composition of Example 1 in the ultraviolet-visible region was measured as described below.
石英基板上に実施例1の感光性樹脂組成物の膜厚がlu
mの皮lIIを形成する0次に、この皮膜の紫外−可視
部の吸収スペクトルを分光光度計により測定する0次に
、この皮膜に対し上記KrFレーザ装置を用いドーズ量
を400 m J / c m 2とした条件で露光を
行ない、その後、再び紫外−可視部の吸収スペクトルを
測定する。The film thickness of the photosensitive resin composition of Example 1 on the quartz substrate was lu
Next, the absorption spectrum of this film in the ultraviolet-visible region is measured using a spectrophotometer.Then, the above-mentioned KrF laser device is used for this film at a dose of 400 mJ/c. Exposure is performed under conditions of m 2 , and then the absorption spectrum in the ultraviolet-visible region is measured again.
この測定によれば、KrFレーザ光の波長付近における
光に対する上記皮膜のKrFレーザによる露光前の透過
率は61%であり、また、KrFレーザによる露光後の
透過率は95%であり、KrFレーザによる露光によっ
て透過率は向上することが分った。また、膜厚は実施例
の感光性樹脂組成物と同じlumとしたポリ(スチレン
)のみの皮膜のKrFレーザ光の波長付近の光の透過率
を測定したところ、90%であった。According to this measurement, the transmittance of the above film to light near the wavelength of KrF laser light before exposure to the KrF laser was 61%, and the transmittance after exposure to the KrF laser was 95%. It was found that exposure to light improves transmittance. Further, when the transmittance of a film made only of poly(styrene) with the same lum as the photosensitive resin composition of the example was measured for light near the wavelength of KrF laser light, the film thickness was 90%.
これら透過率測定結果からも明らかなように、この発明
のポジ型感光性樹脂組成物は、KrFエキシマレーザ光
の波長付近の光に対し吸収がそもそも小さい上に、さら
に、露光後の同吸収がベース樹脂のみでの同吸収より小
さくなる特性を有することが分った。従って、露光部は
下部まで所定の露光量で霧光されるので、所定部分を現
像液により正確に溶解出来る。このため、矩形形状のレ
ジストパターンが得られる。As is clear from these transmittance measurement results, the positive photosensitive resin composition of the present invention not only has low absorption of light in the vicinity of the wavelength of KrF excimer laser light, but also has low absorption after exposure. It was found that the absorbance was smaller than that of the base resin alone. Therefore, since the exposed portion is fogged with a predetermined exposure amount down to the lower part, the predetermined portion can be accurately dissolved by the developer. Therefore, a rectangular resist pattern is obtained.
東11艶2
マレイミドを19としたこと以外は実施例1と全く同様
にして実施例2の感光性樹脂組成物の塗布溶液を調製す
る。East 11 Gloss 2 A coating solution of the photosensitive resin composition of Example 2 is prepared in exactly the same manner as in Example 1 except that 19 is changed to maleimide.
次に、実施例1と同様な手順で、シリコンウェハ上に実
施例2の感光性樹脂組成物の膜厚1umの皮膜を形成す
る。Next, in the same manner as in Example 1, a 1 um thick film of the photosensitive resin composition of Example 2 is formed on a silicon wafer.
次に、実施例1と同様にベーキングを行なった後、ドー
ズ量を650 m J / c m 2としたこと以外
は実施例1と同様な条件でKrFレーザによる露光を行
なう。Next, after baking is performed in the same manner as in Example 1, exposure with a KrF laser is performed under the same conditions as in Example 1 except that the dose amount is 650 mJ/cm 2 .
次に、5%TMAH水溶液により450秒問現像し、ざ
らに純水でリンスを行なう。Next, the film was developed with a 5% TMAH aqueous solution for 450 seconds, and rinsed with pure water.
得られたパターン!SEMにより観察したところ、0.
5umのラインアンドスペースパターンが解像されてい
ることが分った。ざらにその断面形状は、実施例1と同
様完全に近い矩形形状であることが分った。The resulting pattern! When observed by SEM, 0.
It was found that a 5 um line and space pattern was resolved. It was found that the cross-sectional shape was roughly a completely rectangular shape similar to Example 1.
太遊m二互
マレイミドの量を59.309また409とし、これら
量に対応させKrFレーザによる露光量及び5%TMA
H水溶液による現像時間をそれぞれ第1表に示すように
変えたこと以外は実施例1と同様な手順で実施例3〜実
施例5の感光性樹脂組成物の調゛製及びこれを用いての
バターニング実験を行なう。The amount of Tayu m two-dimensional maleimide was set as 59.309 and 409, and the exposure amount by KrF laser and 5% TMA were adjusted to correspond to these amounts.
The photosensitive resin compositions of Examples 3 to 5 were prepared and used in the same manner as in Example 1, except that the development time with the H aqueous solution was changed as shown in Table 1. Perform a buttering experiment.
なお、第1表には第1及び第2実施例の感光性樹脂組成
物のマレイミドの含有量、露光量等も共に示しである。Table 1 also shows the maleimide content, exposure amount, etc. of the photosensitive resin compositions of the first and second examples.
さらに、各実施例の感光性樹脂組成物の、現像前後での
膜減りの具合を、100X現像前後の膜厚/現像前の膜
厚から求まる値(%)により示しである。Further, the degree of film thinning of the photosensitive resin composition of each example before and after development is shown as a value (%) determined from film thickness before and after 100X development/film thickness before development.
第1表からも明らかなように、マレイミドの量がスチレ
ン系樹脂100重量部に対し5重量部以下であると感光
性樹脂組成物の露光部がアルカリ現像液に溶解しない等
の弊害が生じ、40重量部以上であると感光性樹脂組成
物の未露光部の膜減りが10%以上となりざらに感光性
樹脂組成物の皮膜からマレイミドが析出してしまう等の
弊害が生しるので、感光性樹脂組成物中のマレイミドの
量は、スチレン系樹脂100重量部に対し5重量より多
く40重量部未湯の範囲好ましくは10重量部以上40
重量部未湯の範囲内とするのが良いことが分る。As is clear from Table 1, if the amount of maleimide is less than 5 parts by weight per 100 parts by weight of the styrene resin, problems such as the exposed areas of the photosensitive resin composition not being dissolved in the alkaline developer occur. If the amount is 40 parts by weight or more, the film loss in the unexposed areas of the photosensitive resin composition will be 10% or more, which will cause problems such as precipitation of maleimide from the film of the photosensitive resin composition. The amount of maleimide in the styrene resin composition is in the range of more than 5 parts by weight and 40 parts by weight, preferably 10 parts by weight or more and 40 parts by weight, based on 100 parts by weight of the styrene resin.
It is found that it is best to keep the amount by weight within the range of 10% by weight.
上述においては、この発明のポジ型感光性樹脂組成物の
実施例につき説明したが、この発明はこれら実施例にの
み限定されるものではなく以下に説明するような種々の
変更を加えることが出来る。In the above, examples of the positive photosensitive resin composition of the present invention have been described, but the present invention is not limited only to these examples, and various changes as described below can be made. .
上述の実施例ではスチレン系樹脂としてMwがso、o
oo及びM * / M Nが1.02のポリ(スチレ
ン)を用いていたが、用い得るポリ(スチレン)はこの
ような分子量のものに限られるものではない、ポリ(ス
チレン)のMwが2.000より小さいとこれを用いて
形成した感光性樹脂組成物の皮膜がやわらかすぎ露光用
マスクとの密着において支障になったり現像速度が速す
ぎて現像時間の制御が困難である等の弊害が生じ、10
o、oooより大きすぎるとレジスト液の濾過が困難で
あったり塗膜にストリエーションが生じる等の弊害が生
じるが、分子量が2.000〜10o、oooのもので
あれば実施例と同様な効果が期待出来る。この分子量の
好適な範囲についてはポリ(スチレン)以外のスチレン
系樹脂を用いる場合も同様に考えることが出来る。In the above examples, the Mw of the styrene resin is so, o.
oo and M*/M Poly(styrene) with N of 1.02 was used, but poly(styrene) that can be used is not limited to those with such a molecular weight. Poly(styrene) with Mw of 2 If it is smaller than .000, the film of the photosensitive resin composition formed using the photosensitive resin composition will be too soft, which will cause problems in adhesion to the exposure mask, or the development speed will be too fast, making it difficult to control the development time. arise, 10
If the molecular weight is too large than o or ooo, problems such as difficulty in filtering the resist solution or formation of striations on the coating will occur, but if the molecular weight is 2.000 to 10o or ooo, the same effect as in the example will be obtained. can be expected. This suitable range of molecular weight can be similarly considered when using styrene resins other than poly(styrene).
また、スチレン系樹脂としでは、ポリ(スチレン)に限
られるものではなく、他のもの例えばポリ(α−−メチ
ルスチレン)等のようなスチレン系樹脂を用いても良い
、また、設計によっては、2種以上のスチレン系樹脂を
混合し用いても良い。Furthermore, the styrene resin is not limited to poly(styrene), and other styrene resins such as poly(α-methylstyrene) may also be used, and depending on the design, A mixture of two or more styrene resins may be used.
また、この発明のポジ型感光性樹脂組成物には、スチレ
ン系樹脂及びマレイミド以外に、当ポジ型感光性樹脂組
成物の特性を向上させるための他の物質を含ませ得るこ
とは明らかである。Furthermore, it is clear that the positive photosensitive resin composition of the present invention may contain other substances in addition to the styrene resin and maleimide in order to improve the properties of the positive photosensitive resin composition. .
また、上述の実施例では、ポジ型感光性樹脂絹成物の塗
布溶液の調製用溶媒としてシクロヘキサノンを用いてい
た。しかし、これの代わりに、メチルイソブチルケトン
、メチルエチルケトン等のようなケトン系溶媒(但し、
シクロヘキサノンもケトン系溶媒である。)、ジメチル
ホルムアミド、ジメチルアセトアミド等のようなアミド
系溶媒、テトラヒドロフラン等のようなエーテル系溶媒
を用いても実施例と同様な効果を得ることが出来る。Further, in the above-mentioned examples, cyclohexanone was used as a solvent for preparing a coating solution of a positive photosensitive resin silk composition. However, instead of this, ketone solvents such as methyl isobutyl ketone, methyl ethyl ketone, etc.
Cyclohexanone is also a ketone solvent. ), dimethylformamide, dimethylacetamide, etc., and ether solvents such as tetrahydrofuran can also be used to obtain the same effects as in the examples.
(発明の効果)
上述した説明からも明らかなように、この発明のポジ型
感光牲樹脂組成物によれば、スチレン系、樹脂及びマレ
イミドを含む構成となっているので、遠紫外光による露
光においてマレイミドのスチレン系樹脂の芳香環への光
付加による感光原理により露光後の光吸収がベース樹脂
そのものの光吸収より小ざくなるという従来にない優れ
た光退色性が得られる。このため、遠紫外光を用いたリ
ングラフィにおいてPMMAと同様な矩形形状のレジス
トパターンを得ることが出来る。(Effects of the Invention) As is clear from the above description, the positive photosensitive resin composition of the present invention has a structure containing a styrene system, a resin, and maleimide, so it is difficult to resist exposure to deep ultraviolet light. Due to the photosensitive principle of photo-addition of maleimide to the aromatic ring of the styrene resin, the light absorption after exposure is smaller than the light absorption of the base resin itself, providing unprecedented photobleaching properties. Therefore, a rectangular resist pattern similar to that of PMMA can be obtained in phosphorography using deep ultraviolet light.
Claims (4)
徴とするポジ型感光性樹脂組成物。(1) A positive photosensitive resin composition comprising a styrene resin and maleimide.
(α−メチルスチレン)のいずれか一方又は双方とした
請求項1に記載のポジ型感光性樹脂組成物。(2) The positive photosensitive resin composition according to claim 1, wherein the styrenic resin is one or both of poly(styrene) and poly(α-methylstyrene).
0,000のものとした請求項1又は2に記載のポジ型
感光性樹脂組成物。(3) The styrene resin has a molecular weight of 2,000 to 10
3. The positive photosensitive resin composition according to claim 1, wherein the positive photosensitive resin composition has a molecular weight of 0,000.
0重量部に対して10重量部以上40重量部未満の範囲
とした請求項1に記載のポジ型感光性樹脂組成物。(4) The content of maleimide is 10% of the styrene resin.
The positive photosensitive resin composition according to claim 1, wherein the amount is in the range of 10 parts by weight or more and less than 40 parts by weight relative to 0 parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34406289A JPH03200968A (en) | 1989-12-28 | 1989-12-28 | Positive type photosensitive resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34406289A JPH03200968A (en) | 1989-12-28 | 1989-12-28 | Positive type photosensitive resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03200968A true JPH03200968A (en) | 1991-09-02 |
Family
ID=18366362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34406289A Pending JPH03200968A (en) | 1989-12-28 | 1989-12-28 | Positive type photosensitive resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03200968A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1130863A (en) * | 1997-07-09 | 1999-02-02 | Nec Corp | Resist material and resist pattern forming method using the same |
WO2007069798A1 (en) * | 2005-12-16 | 2007-06-21 | Samyangems Co., Ltd. | Positive photoresist composition |
US7691560B2 (en) | 2006-03-23 | 2010-04-06 | Fujifilm Corporation | Resist composition and pattern forming method using the same |
EP2477073A1 (en) | 2002-02-13 | 2012-07-18 | Fujifilm Corporation | Resist composition for electron beam, EUV or X-ray |
US8785104B2 (en) | 2008-03-14 | 2014-07-22 | Fujifilm Corporation | Resist composition and pattern forming method using the same |
-
1989
- 1989-12-28 JP JP34406289A patent/JPH03200968A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1130863A (en) * | 1997-07-09 | 1999-02-02 | Nec Corp | Resist material and resist pattern forming method using the same |
EP2477073A1 (en) | 2002-02-13 | 2012-07-18 | Fujifilm Corporation | Resist composition for electron beam, EUV or X-ray |
WO2007069798A1 (en) * | 2005-12-16 | 2007-06-21 | Samyangems Co., Ltd. | Positive photoresist composition |
US7514203B2 (en) | 2005-12-16 | 2009-04-07 | Samyangems Co., Ltd. | Positive photoresist composition |
US7691560B2 (en) | 2006-03-23 | 2010-04-06 | Fujifilm Corporation | Resist composition and pattern forming method using the same |
US8785104B2 (en) | 2008-03-14 | 2014-07-22 | Fujifilm Corporation | Resist composition and pattern forming method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI295412B (en) | Positive-working photoimageable bottom antireflective coating | |
TWI417682B (en) | Method for producing a miniaturised pattern and treatment liquid for resist substrate using therewith | |
JP3001607B2 (en) | Dimensionally stable structure transfer method in two-layer method | |
JP3184530B2 (en) | Photoresist with low metal ion level | |
TWI663476B (en) | Radiation-sensitive or actinic ray-sensitive resin composition and resist film using the same, mask blanks, method for forming resist pattern, method for manufacturing electronic device and electronic device | |
US4912018A (en) | High resolution photoresist based on imide containing polymers | |
JPH02161436A (en) | Photoresist composition and its usage | |
US6146793A (en) | Radiation sensitive terpolymer, photoresist compositions thereof and 193 nm bilayer systems | |
US6106995A (en) | Antireflective coating material for photoresists | |
JPH02254451A (en) | Fine pattern forming material and method | |
JPH03200968A (en) | Positive type photosensitive resin composition | |
TW201543165A (en) | Method of fabricating semiconductor device and photosensitive material | |
JP2000512394A (en) | Method for reducing metal ions in aminochromatic color-forming materials and use of same in the synthesis of bottom metal anti-reflective coating materials containing little metal for photoresists | |
KR100512544B1 (en) | Method for developing, method for forming pattern, and method for fabricating photomask or semiconductor device using the same | |
JPH02248952A (en) | Photosensitive composition | |
JPS5979249A (en) | Pattern formation | |
CN109503752A (en) | A kind of low diffusion ArF photoresist polymer photosensitizer PAG and its application | |
JP3766245B2 (en) | Pattern forming method and semiconductor device manufacturing method | |
JPH0261640A (en) | Photosensitive composition | |
JP3079195B2 (en) | Developer for positive-type radiation-sensitive resist | |
JP3592332B2 (en) | Positive photosensitive composition | |
JPH03208056A (en) | Photosensitive composition | |
JPH0259752A (en) | Photosensitive composition | |
JP2699971B2 (en) | Pattern formation method | |
WO1999042903A1 (en) | RADIATION SENSITIVE TERPOLYMER, PHOTORESIST COMPOSITIONS THEREOF AND 193 nm BILAYER SYSTEMS |