JPH03200914A - Microscope for operation - Google Patents

Microscope for operation

Info

Publication number
JPH03200914A
JPH03200914A JP1344028A JP34402889A JPH03200914A JP H03200914 A JPH03200914 A JP H03200914A JP 1344028 A JP1344028 A JP 1344028A JP 34402889 A JP34402889 A JP 34402889A JP H03200914 A JPH03200914 A JP H03200914A
Authority
JP
Japan
Prior art keywords
light
optical system
eye
measurement
examined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1344028A
Other languages
Japanese (ja)
Other versions
JP2938488B2 (en
Inventor
Nobuaki Kitajima
延昭 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP1344028A priority Critical patent/JP2938488B2/en
Publication of JPH03200914A publication Critical patent/JPH03200914A/en
Priority to US07/934,907 priority patent/US5249004A/en
Application granted granted Critical
Publication of JP2938488B2 publication Critical patent/JP2938488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To reduce the size by sharing parts of the optical axes of an illumination optical system, a measurement projection optical system, and a photodetection optical system. CONSTITUTION:This microscope is equipped with the illumination optical system 50 which lights the eyeground through an objective 31, the measurement projection optical system 60 which projects measurement luminous flux upon the eyeground Er through the objective 31, and the photodetection optical system 70 which photodetects the reflected luminous flux of the measurement luminous flux through the objective 31. The optical axis 60a of the measurement light projection system 60 and the optical axis 70a of the measurement light projection system share the same optical axis partially. Further, the optical axis of the photodetection optical system 50 and the optical axis 70a of the measurement projection optical system share the same optical axis partially. Consequently, the illumination optical system 50, measurement optical system 60, and photodetection optical system 70 share the same optical axis partially. Consequently, the microscope for operation can be reduced in size.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、眼屈折力を測定することができるようにな
っている手術用顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surgical microscope capable of measuring ocular refractive power.

(従来の技術) かかる手術用顕微鏡として第6図に示すものが知られて
いる。
(Prior Art) As such a surgical microscope, one shown in FIG. 6 is known.

第6図において、lはランプで、このランプ1から射出
された光はハーフミラ−2、コンデンサレンズ3、プリ
ズム付レンズ4、対物レンズ5を介して被検@Eの前眼
部を照明する。前眼部から光は対物レンズ5、ハーフミ
ラ−14、変倍光学系6、ミラー9,101  接眼レ
ンズ11を介して観察眼7に入り観察される。なお、1
2はフィルム、13はストロボである。
In FIG. 6, l is a lamp, and light emitted from the lamp 1 passes through a half mirror 2, a condenser lens 3, a prism-equipped lens 4, and an objective lens 5 to illuminate the anterior segment of the subject @E. Light from the anterior segment of the eye enters the observation eye 7 via the objective lens 5, half mirror 14, variable magnification optical system 6, mirrors 9, 101, and eyepiece 11 and is observed. In addition, 1
2 is a film, and 13 is a strobe.

また、第6図において、20は第7図に示す3つのスリ
ット18a=18cを有する投影チャート18をレンズ
エ9を介して照明する光源である。各スリット18a〜
18cを発した光束は、リレーレンズ17、ハーフミラ
ー16、リレーレンズ15、ハーフミラ−14、対物レ
ンズ5を介して眼底Erに投影される。
Further, in FIG. 6, 20 is a light source that illuminates the projection chart 18 having three slits 18a=18c shown in FIG. 7 through the lens element 9. Each slit 18a~
The light beam emitted from the beam 18c is projected onto the fundus Er via the relay lens 17, the half mirror 16, the relay lens 15, the half mirror 14, and the objective lens 5.

眼底Erで反射した反射光は、対物レンズ5、ハーフミ
ラ−14、リレーレンズ15、ハーフミラ−16、リレ
ーレンズ21を介して投影チャート18と共役な受光チ
ャート22に投影される。投影チャート18の各スリッ
ト18a〜18cからの像光は、それぞれ第8図に示す
受光チャート22のスリット22a〜22cを通り各ス
リット22a〜22cに対応した受光素子23a〜23
cで検出される。
The reflected light reflected by the fundus Er is projected onto a light receiving chart 22 conjugate with the projection chart 18 via the objective lens 5, half mirror 14, relay lens 15, half mirror 16, and relay lens 21. The image light from each of the slits 18a to 18c of the projection chart 18 passes through the slits 22a to 22c of the light receiving chart 22 shown in FIG.
detected at c.

ここで、ハーフミラ−14を眼屈折力計24とともに光
軸○に沿って移動させ、受光素子23a〜23cの各出
力から各スリットの最良ピント像位置を検出し、初期位
置からその位置までの移動量より各スリット方向に対応
した被検眼の屈折力を求め、演算により球面屈折度S1
 乱視度C1乱視軸角度Aを算出する。すなわち、ここ
では眼底に対し、投影チャート18および受光チャート
22が共役位置となったときに受光素子の出力は最大と
なることを用いて被検眼の屈折力を求めるものである。
Here, the half mirror 14 is moved along the optical axis ○ together with the eye refractometer 24, the best focused image position of each slit is detected from each output of the light receiving elements 23a to 23c, and the image is moved from the initial position to that position. The refractive power of the eye to be examined corresponding to each slit direction is determined from the amount, and the spherical refractive power S1 is calculated by calculation.
Astigmatism degree C1 and astigmatism axis angle A are calculated. That is, here, the refractive power of the eye to be examined is determined by using the fact that the output of the light receiving element is maximum when the projection chart 18 and the light receiving chart 22 are at a conjugate position with respect to the fundus.

そして、上記手術用顕微鏡によれば手術中に被検眼の屈
折力を求めることができるので、被検眼の状態をチエツ
クしながら手術を進めることができる。
Since the surgical microscope allows the refractive power of the eye to be examined to be determined during surgery, the surgery can proceed while checking the condition of the eye to be examined.

(発明が解決しようとする課題) しかしながら、上記手術用顕微鏡にあっては、レフラク
トメータを顕微鏡に単に付加した構成となっているので
、その顕微鏡は大型となり、手術操作の妨げになるとい
う問題があった。
(Problems to be Solved by the Invention) However, since the above-mentioned surgical microscope has a configuration in which a refractometer is simply added to the microscope, the microscope becomes large and has the problem of interfering with surgical operations. was there.

(発明の目的) そこで、この発明は、上記問題点に鑑みてなされたもの
で、その目的とするところは、小型化を図ることのでき
る手術用顕微鏡を提供することにある。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and its object is to provide a surgical microscope that can be miniaturized.

(課題を解決するための手段) この発明は、上記の目的を達成するため、対物レンズを
介して被検眼を照明する照明光学系と、前記対物レンズ
を介して前記被検眼を観察する観察光学系と、前記対物
レンズを介して被検眼の眼底に測定光束を投射する測定
投射光学系と、前記眼底で反射した測定光束の反射光束
を前記対物レンズを介して受光する受光光学系とを備え
、前記受光光学系は、受光光束の一部を遮光する遮光部
材と、被検眼の瞳孔と略共役位置に設置された受光素子
とを有している手術用顕微鏡であって、前記受光素子に
投影された光束の光量分布に基づいて被検眼の眼屈折力
を測定する測定部を設け、前記照明光学系と前記測定投
射光学系と前記受光光学系との光軸の一部を共通とした
ことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an illumination optical system that illuminates the eye to be examined through an objective lens, and an observation optical system that observes the eye to be examined through the objective lens. a measurement projection optical system that projects a measurement light beam onto the fundus of the eye to be examined via the objective lens, and a light receiving optical system that receives a reflected light beam of the measurement light beam reflected on the fundus of the eye via the objective lens. , the light-receiving optical system is a surgical microscope that includes a light-shielding member that blocks part of the received light beam, and a light-receiving element installed at a position substantially conjugate with the pupil of the eye to be examined, wherein the light-receiving optical system A measuring unit is provided to measure the eye refractive power of the eye to be examined based on the light intensity distribution of the projected light beam, and a part of the optical axis is shared by the illumination optical system, the measurement projection optical system, and the light receiving optical system. It is characterized by

(作 用) この発明は、照明光学系と測定投射光学系と前記受光光
学系との光軸の一部を共通としたものであるから、小型
化を図ることができる。
(Function) According to the present invention, the illumination optical system, the measurement projection optical system, and the light receiving optical system share a part of the optical axis, so that miniaturization can be achieved.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は、この発明の実施例に係わる手術用顕微鏡の光
学系の配置を示した概略配置図であり、図において、3
0は対物レンズ31を介して被検眼Eの眼底Erを観察
する観察光学系、50はその眼底Erを対物レンズ31
を介して照明する照明光学系、60は対物レンズ31を
介して測定光束を眼底Erに投射する測定投射光学系、
70は眼底Erで反射した測定光束の反射光束を対物レ
ンズ31を介して受光する受光光学系である。
FIG. 1 is a schematic layout diagram showing the arrangement of the optical system of a surgical microscope according to an embodiment of the present invention.
0 is an observation optical system for observing the fundus Er of the eye E through the objective lens 31, and 50 is an observation optical system for observing the fundus Er through the objective lens 31.
60 is a measurement projection optical system that projects the measurement light flux onto the fundus Er through the objective lens 31;
Reference numeral 70 denotes a light receiving optical system that receives the reflected light beam of the measurement light beam reflected by the fundus Er through the objective lens 31.

観察光学系30は、ズームレンズ32と、結像レンズ3
3と、正立プリズム34と、菱形プリズム35と、接眼
レンズ3Bと、視野絞り37とからなる。
The observation optical system 30 includes a zoom lens 32 and an imaging lens 3.
3, an erecting prism 34, a rhombic prism 35, an eyepiece 3B, and a field diaphragm 37.

照明光学系50は、プリズム付レンズ51と、可視光透
過用フィルタ52と、照明野絞り53と、コンデンサレ
ンズ54と、光源55とからなる。
The illumination optical system 50 includes a lens 51 with a prism, a visible light transmission filter 52, an illumination field diaphragm 53, a condenser lens 54, and a light source 55.

測定投射光学系60は、プリズム付レンズ51と、ダイ
クロミラー61と、ハーフミラ−62と、基準屈折力を
有する被検眼Eの眼底Erと共役関係にあるスリット板
63と、拡散板64と、赤外光を発光する発光ダイオー
ド65とからなり、測定投射光学系60の光軸Boaは
照明光学系50の光軸50aと一部を共通としている。
The measurement projection optical system 60 includes a prism-equipped lens 51, a dichroic mirror 61, a half mirror 62, a slit plate 63 having a reference refractive power and having a conjugate relationship with the fundus Er of the eye E to be examined, a diffuser plate 64, and a red The optical axis Boa of the measurement projection optical system 60 shares a part with the optical axis 50a of the illumination optical system 50.

スリット板63は、第2図に示すように、面光源として
機能するスリット孔63aが形成されている。
As shown in FIG. 2, the slit plate 63 is formed with a slit hole 63a that functions as a surface light source.

受光光学系70は、プリズム付レンズ51と、ダイクロ
ミラー61と、スリット板63と共役関係にある遮光部
材71と、瞳孔Eaと共役にある受光素子73とからな
り、受光光学系70の光軸は測定投射光学系の光軸70
aと一部を共通としている。遮光部材71は、第3図に
示すように、スリット板63のスリット孔63aの経線
と直交するエツジ72aを有する透過孔72が設けられ
ている。
The light-receiving optical system 70 includes a lens 51 with a prism, a dichroic mirror 61, a light-shielding member 71 that is in a conjugate relationship with the slit plate 63, and a light-receiving element 73 that is conjugate with the pupil Ea. is the optical axis 70 of the measurement projection optical system
It has some parts in common with a. As shown in FIG. 3, the light shielding member 71 is provided with a transmission hole 72 having an edge 72a orthogonal to the meridian of the slit hole 63a of the slit plate 63.

80は受光素子73の光量分布から被検眼の眼屈折力を
演算する測定部である。
80 is a measurement unit that calculates the eye refractive power of the eye to be examined from the light intensity distribution of the light receiving element 73.

次に、上記実施例の手術用顕微鏡の作用について説明す
る。
Next, the operation of the surgical microscope of the above embodiment will be explained.

光源55から射出された照明光は、コンデンサレンズ5
4、照明野絞り53、可視光透過用フィルタ52、ダイ
クロミラー61、プリズム付レンズ51、対物レンズ3
1を介して被検眼Eを照明する。被検眼Eでの反射光束
は、対物レンズ31、ズームレンズ32、結像レンズ3
3、プリズム34,35、接眼レンズ36を介して観察
眼38に達し、被検眼Eの前眼部が観察されることとな
δ。
The illumination light emitted from the light source 55 passes through the condenser lens 5
4. Illumination field diaphragm 53, visible light transmission filter 52, dichroic mirror 61, lens with prism 51, objective lens 3
1 to illuminate the eye E to be examined. The reflected light flux at the eye E to be examined is transmitted through the objective lens 31, the zoom lens 32, and the imaging lens 3.
3. The light δ reaches the observation eye 38 via the prisms 34, 35 and the eyepiece 36, and the anterior segment of the subject's eye E is observed.

眼屈折力を測定する際には、発光ダイオード65から赤
外光を発光させる。発光ダイオード65から射出された
赤外光は、拡散板64、スリット板63のスリット孔6
3a1  ハーフミラ−62、ダイクロミラー61、プ
リズム付レンズ51、対物レンズ31を介して被検眼E
の眼底Erに投射される。すなわち、スリット孔63a
によってスリット像が眼底Erに投影されることとなる
When measuring the eye refractive power, the light emitting diode 65 emits infrared light. The infrared light emitted from the light emitting diode 65 is transmitted through the diffusion plate 64 and the slit hole 6 of the slit plate 63.
3a1 Eye to be examined E via half mirror 62, dichroic mirror 61, lens with prism 51, objective lens 31
is projected onto the fundus Er. That is, the slit hole 63a
As a result, a slit image is projected onto the fundus Er.

そして、そのスリット像を形成する赤外光は眼底Erで
反射して対物レンズ31、プリズム付レンズ51、ダイ
クロミラー61、ハーフミラ−62、遮光部材71を介
して受光素子73に到達する。
The infrared light forming the slit image is reflected by the fundus Er and reaches the light receiving element 73 via the objective lens 31, prism-equipped lens 51, dichroic mirror 61, half mirror 62, and light shielding member 71.

ここで、被検眼Eの眼屈折力と受光素子73の光量分布
との関係を第4図(A)〜(C)に基づいて説明する。
Here, the relationship between the eye refractive power of the eye E to be examined and the light amount distribution of the light receiving element 73 will be explained based on FIGS. 4(A) to 4(C).

第4図(A)〜(C)は、スリット孔63aによる面光
源63bのうち中心部の点光源63cから投影される光
束と、眼底Erの中心部からの反射光束を模式的に示し
たものである。また便宜的にハーフミラ−62を対物レ
ンズ31の前に配置しである。
4(A) to (C) schematically show the light flux projected from the center point light source 63c of the surface light source 63b formed by the slit hole 63a and the reflected light flux from the center of the fundus Er. It is. Further, for convenience, a half mirror 62 is arranged in front of the objective lens 31.

第4図(A)は、被検眼Eの屈折力が基準屈折力である
状態を示すものであり、点光源63cの点光源像は眼底
Er上にピントの合った状態で結像されるとともに遮光
部材71上にピントの合った状態で結像される。この場
合の点光源像の光束は遮光部材71にケラれないので、
受光素子73上に形成される瞳孔像の光量分布は、第4
図(A)のPaIに示すようになる。
FIG. 4(A) shows a state in which the refractive power of the eye E to be examined is the reference refractive power, and the point light source image of the point light source 63c is focused on the fundus Er. An image is formed on the light shielding member 71 in a focused state. In this case, since the light flux of the point light source image is not eclipsed by the light shielding member 71,
The light amount distribution of the pupil image formed on the light receiving element 73 is
It becomes as shown by PaI in Figure (A).

また、図示しないが、眼底Erの上側からの光束は遮光
部材71によりすべて欠られ、その光束による受光素子
73上の光束分布はPa3のようになり、下側からの光
束は遮光部材71により欠られないので、その光束によ
る受光素子73上の光束分布はPagのようになる。そ
の結果、受光素子73上の総光量分布はPaのように均
一なものとなる。
Although not shown, the light flux from the upper side of the fundus Er is completely blocked by the light blocking member 71, and the light flux distribution on the light receiving element 73 due to the light flux becomes as shown in Pa3, and the light flux from the bottom side is blocked by the light blocking member 71. Therefore, the luminous flux distribution on the light receiving element 73 due to the luminous flux becomes Pag. As a result, the total light amount distribution on the light receiving element 73 becomes uniform like Pa.

一方、第4図(B)は、被検眼Eの屈折力が基準より負
の状態を示すものであり、遮光部材71の前方にボケた
点光源像が形成され、その点光源像の一部の光束が遮光
部材71により欠られ、受光素子73上に形成される瞳
孔像の光量分布は、第4図(B)のPb+に示すように
なる。
On the other hand, FIG. 4(B) shows a state in which the refractive power of the eye E to be examined is more negative than the reference, and a blurred point light source image is formed in front of the light shielding member 71, and a part of the point light source image is The light flux is omitted by the light shielding member 71, and the light amount distribution of the pupil image formed on the light receiving element 73 becomes as shown by Pb+ in FIG. 4(B).

また、図示しないが、眼底Erの上側からの光束による
受光素子73上の光束分布はPb3のようになり、下側
からの光束による受光素子73上の光束分布はPb2の
ようになる。
Although not shown, the luminous flux distribution on the light receiving element 73 due to the luminous flux from above the fundus Er is as shown in Pb3, and the luminous flux distribution on the light receiving element 73 due to the luminous flux from below is as shown in Pb2.

つまり、光束の存在する幅χが、眼底Er上の点光源の
位置によりリニアーに変化する。このため、受光素子7
3上の総光量分布はそれらを積分したものであるから、
Pbに示すように傾斜したものとなる。
In other words, the width χ where the light beam exists varies linearly depending on the position of the point light source on the fundus Er. For this reason, the light receiving element 7
Since the total light intensity distribution on 3 is the integral of these,
It becomes inclined as shown in Pb.

第4図(C)は、被検眼Eの屈折力が基準より正の状態
を示すものであり、遮光部材71の後方にボケた点光源
像が形成され、その点光源像の一部の光束が遮光部材7
1により欠られ、受光素子73上に形成される瞳孔像の
光量分布は、第4図(C)のPctに示すようになる。
FIG. 4(C) shows a state in which the refractive power of the eye E to be examined is more positive than the reference, and a blurred point light source image is formed behind the light shielding member 71, and a part of the light flux of the point light source image is is the light shielding member 7
1, the light amount distribution of the pupil image formed on the light receiving element 73 is as shown by Pct in FIG. 4(C).

また、図示しないが、眼底Erの下側からの光束による
受光素子73上の光束分布はPe3のようになり、上側
からの光束による受光素子73上の光束分布はPb2の
ようになる。そして、上記と同様に、受光素子73上の
総光量分布はPcに示すように傾斜したものとなる。
Although not shown, the luminous flux distribution on the light receiving element 73 due to the luminous flux from the lower side of the fundus Er is as shown in Pe3, and the luminous flux distribution on the light receiving element 73 due to the luminous flux from the upper side is as shown in Pb2. Similarly to the above, the total light amount distribution on the light receiving element 73 is inclined as shown by Pc.

このように、被検眼Eの屈折力により遮光部材71によ
り欠られる光束が変わり、受光素子73上に形成される
瞳孔像の光量分布が異なり、かつ、屈折力が基準屈折力
よりずれるにしたがって光量分布の傾きが大きくなるも
のである。
In this way, the light flux omitted by the light blocking member 71 changes depending on the refractive power of the eye E to be examined, and the light amount distribution of the pupil image formed on the light receiving element 73 differs, and as the refractive power deviates from the reference refractive power, the light amount changes. The slope of the distribution becomes large.

そして、その光量分布の傾きを基にして測定部80が眼
屈折力を演算する。
Then, the measurement unit 80 calculates the eye refractive power based on the slope of the light amount distribution.

なお、眼屈折力によって受光素子73の光量分布の傾き
が変化する原理は、先に出願した特願平1〜24491
号に詳細に説明しである。
The principle that the slope of the light intensity distribution of the light receiving element 73 changes depending on the eye refractive power is explained in the previously filed patent application No. 1-24491.
It is explained in detail in the issue.

上記実施例では、照明光学系50と測定投射光学系60
と受光光学系70との光軸の一部を共通とじたものであ
るから手術用顕微鏡の小型化を図ることができる。この
小型化を図ることにより、対物レンズ31から被検眼E
までの距離である作動距離を長くとることができ、手術
が行い易くなる。さらに、接眼レンズ36から被検wi
Eまでの距離である操作距離を短ぐすることができ、楽
な姿勢で被検眼Eを観察することができることとなる。
In the above embodiment, the illumination optical system 50 and the measurement projection optical system 60
Since a part of the optical axis of the optical system 70 and the light receiving optical system 70 are shared, it is possible to downsize the surgical microscope. By achieving this miniaturization, from the objective lens 31 to the eye to be examined E.
The operating distance, which is the distance between the In addition, the subject wi from the eyepiece 36
The operating distance, which is the distance to E, can be shortened, and the eye E to be examined can be observed in a comfortable posture.

また、受光素子73に投影された光束の光量分布の傾き
に基づいて被検眼Eの眼屈折力を測定するホトレフラク
ションメータを適用したもであるから、アライメント精
度はラフなものでい。
Further, since a photorefraction meter is applied to measure the eye refractive power of the eye E to be examined based on the slope of the light intensity distribution of the light beam projected onto the light receiving element 73, the alignment accuracy is rough.

第5図は他の実施例を示したもので、これは、証明光学
系50の光源と測定投射光学系の光源とを共用させたも
のである。
FIG. 5 shows another embodiment in which the light source of the verification optical system 50 and the light source of the measurement projection optical system are shared.

第5図において、91はハーフミラ−で、このハーフミ
ラ−91は、眼底Erの観察時には破線位置に移動させ
、眼屈折力の測定時には実線で示す光路内に挿入させる
ものである。92はスリット板で、このスリット板92
は上記と同様に眼底Erの観察時には破線位置に移動さ
せ、眼屈折力の測定時には実線で示す光路内に挿入させ
る。
In FIG. 5, 91 is a half mirror, and this half mirror 91 is moved to the position shown by the broken line when observing the fundus Er, and inserted into the optical path shown by the solid line when measuring the eye refractive power. 92 is a slit plate; this slit plate 92
Similarly to the above, when observing the fundus Er, it is moved to the position shown by the broken line, and when measuring the eye refractive power, it is inserted into the optical path shown by the solid line.

(発明の効果) 以上説明したように、この発明によれば、照明光学系と
測定投射光学系と受光光学系との光軸の一部を共通とし
たものであるから、顕微鏡の小型化を図ることができ、
作動距離を充分にとることができるとともに操作距離を
短くすることができる。また、ホトレフラクションメー
タを適用したもであるから、アライメント精度はラフな
ものでよく、アライメントは簡単なものとなる。
(Effects of the Invention) As explained above, according to the present invention, the illumination optical system, the measurement projection optical system, and the light receiving optical system share a part of the optical axis, which makes it possible to downsize the microscope. It is possible to aim for
A sufficient working distance can be secured and the operating distance can be shortened. Furthermore, since a photorefraction meter is applied, the alignment accuracy can be rough and the alignment is simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係わる手術用顕微鏡の光学系の配置
を概略的に示した概略配置図、第2図はスリット板の構
成を示した平面図、第3図は遮光部材の構成を示した平
面図、第4図(A)〜第4図(C)は眼屈折力とスリッ
ト像との関係および受光素子の光量分布状態を示した説
明図、 第5図は他の実施例の説明図、 第6図は従来の手術用顕微鏡の光学系の配置を示した説
明図、 第7図は投影チャートの構成を示した説明図、第8図は
受光チャートの構成を示した説明図である。 30・・・観察光学系 31・・・対物レンズ 50・・・照明光学系 55・・・光源 60・・・測定投射光学系 70・・・受光光学系 71・・・遮光部材 73・・・受光素子 80・・・測定部 50a、 60a、 70a−光軸 E・・・被検眼 Er・・・眼底 Ea・・・瞳孔 弔 1 図 筈 2 Σ 第 6 カ 1 /″′デ 5う 図
Fig. 1 is a schematic layout diagram schematically showing the arrangement of the optical system of a surgical microscope according to the present invention, Fig. 2 is a plan view showing the structure of the slit plate, and Fig. 3 shows the structure of the light shielding member. 4(A) to 4(C) are explanatory diagrams showing the relationship between the eye refractive power and the slit image and the light amount distribution state of the light receiving element, and FIG. 5 is an explanation of another embodiment. Figure 6 is an explanatory diagram showing the arrangement of the optical system of a conventional surgical microscope, Figure 7 is an explanatory diagram showing the configuration of a projection chart, and Figure 8 is an explanatory diagram showing the configuration of a light reception chart. be. 30... Observation optical system 31... Objective lens 50... Illumination optical system 55... Light source 60... Measurement projection optical system 70... Light receiving optical system 71... Light blocking member 73... Light-receiving element 80...Measuring units 50a, 60a, 70a-Optical axis E...Eye to be examined Er...Fundus Ea...Pupillary 1 Figure 2 Σ 6th 1/''' 5

Claims (2)

【特許請求の範囲】[Claims] (1)対物レンズを介して被検眼を照明する照明光学系
と、前記対物レンズを介して前記被検眼を観察する観察
光学系と、前記対物レンズを介して被検眼の眼底に測定
光束を投射する測定投射光学系と、前記眼底で反射した
測定光束の反射光束を前記対物レンズを介して受光する
受光光学系とを備え、前記受光光学系は、受光光束の一
部を遮光する遮光部材と、被検眼の瞳孔と略共役位置に
設置された受光素子とを有している手術用顕微鏡であつ
て、前記受光素子に投影された光束の光量分布に基づい
て被検眼の眼屈折力を測定する測定部を設け、前記照明
光学系と前記測定投射光学系と前記受光光学系との光軸
の一部を共通としたことを特徴とする手術用顕微鏡。
(1) An illumination optical system that illuminates the eye to be examined through an objective lens, an observation optical system that observes the eye to be examined through the objective lens, and projects a measurement light beam onto the fundus of the eye to be examined through the objective lens. and a light-receiving optical system that receives a reflected light beam of the measurement light beam reflected at the fundus of the eye through the objective lens, and the light-receiving optical system includes a light-shielding member that blocks a part of the received light beam. , a surgical microscope having a light-receiving element installed at a substantially conjugate position with the pupil of the eye to be examined, and measuring the ocular refractive power of the eye to be examined based on the light intensity distribution of the light beam projected onto the light-receiving element. A surgical microscope characterized in that the illumination optical system, the measurement projection optical system, and the light receiving optical system share a part of the optical axis.
(2)前記照明光学系の光源と前記測定光投射光学系の
光源とを共通にしたことを特徴とする第1項記載の手術
用顕微鏡。
(2) The surgical microscope according to item 1, wherein the light source of the illumination optical system and the light source of the measurement light projection optical system are common.
JP1344028A 1989-12-28 1989-12-28 Surgical microscope Expired - Fee Related JP2938488B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1344028A JP2938488B2 (en) 1989-12-28 1989-12-28 Surgical microscope
US07/934,907 US5249004A (en) 1989-12-28 1992-08-26 Microscope for an operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1344028A JP2938488B2 (en) 1989-12-28 1989-12-28 Surgical microscope

Publications (2)

Publication Number Publication Date
JPH03200914A true JPH03200914A (en) 1991-09-02
JP2938488B2 JP2938488B2 (en) 1999-08-23

Family

ID=18366098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1344028A Expired - Fee Related JP2938488B2 (en) 1989-12-28 1989-12-28 Surgical microscope

Country Status (1)

Country Link
JP (1) JP2938488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661571B1 (en) 1999-09-21 2003-12-09 Olympus Optical Co., Ltd. Surgical microscopic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661571B1 (en) 1999-09-21 2003-12-09 Olympus Optical Co., Ltd. Surgical microscopic system

Also Published As

Publication number Publication date
JP2938488B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JPS6324927A (en) Ophthalmic measuring apparatus
US5537163A (en) Ophthalmologic apparatus with automatic focusing using two reference marks and having an in-focus detecting system
US4712894A (en) Ophthalmoscopic instrument having working position detecting means
JPH02271826A (en) Stereoscopic eyeground camera
JP2939988B2 (en) Eye gaze detection device
US6164778A (en) Corneal endothelial cell photographing apparatus
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JPH03200914A (en) Microscope for operation
US5249004A (en) Microscope for an operation
JPH03185415A (en) Stereomicroscope
JPH0984761A (en) Ophthalmic device
JPH0236259B2 (en)
JPH1080397A (en) Apparatus for dentistry
JPS6117494B2 (en)
JP2707337B2 (en) Corneal shape measuring device
JPH0473038A (en) Refractometer
JP2860592B2 (en) Fundus camera
JPH02206425A (en) Glance detection apparatus
JP2951991B2 (en) Eye refractometer
JP2736651B2 (en) Fundus camera
JP2580189B2 (en) Fundus camera
JPS62179430A (en) Eyeground scanning optical apparatus
JPH02264633A (en) Sight line detector
JPH0956740A (en) Binocular stereo-microscope
JPS58157448A (en) Ophthalmic machine equipped with apparatus for detecting eye inspecting proper position

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees