JPH03199856A - Gas cycle engine - Google Patents

Gas cycle engine

Info

Publication number
JPH03199856A
JPH03199856A JP34189189A JP34189189A JPH03199856A JP H03199856 A JPH03199856 A JP H03199856A JP 34189189 A JP34189189 A JP 34189189A JP 34189189 A JP34189189 A JP 34189189A JP H03199856 A JPH03199856 A JP H03199856A
Authority
JP
Japan
Prior art keywords
coil
piston
cycle engine
gas cycle
pistons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34189189A
Other languages
Japanese (ja)
Other versions
JPH0737862B2 (en
Inventor
Yoshio Kazumoto
数本 芳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1341891A priority Critical patent/JPH0737862B2/en
Publication of JPH03199856A publication Critical patent/JPH03199856A/en
Publication of JPH0737862B2 publication Critical patent/JPH0737862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

PURPOSE:To equalize driving force moving the pistons of both first coil and second coils, and to reduce the vibrations of a gas cycle engine by connecting the first coil and the second coil in series and making the same currents flow through the first coil and the second coil. CONSTITUTION:When an AC power is connected to a first electric contact 24a and a second electric contact 24b, Lorentz force in the axial direction works to a first coil 20a and a second coil 20b by the interaction of the permanent magnetic fields of annular spaces 26a add 26b, and pistons 3a and 3b begin to be vibrated in the axial direction. Since the vibrations are equalized mutually and conducted in the opposite directions, an operating gas sealed into an operating space is compressed and expanded, and cold is generated in an expansion space 8. Since the coil 20a and the coil 20b are connected in series at that time, currents made to flow through the coil 20a and the coil 20b are equalized completely even when the resistance and inductance of both coils differ. Accordingly, force driving the first piston 3a and the second piston 3b is made the same, thus also reducing the unbalance of the phase and amplitude of the reciprocating motion of both pistons, then remarkably lowering the vibrations of a gas cycle engine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガスサイクル機関に関し、特に。[Detailed description of the invention] [Industrial application field] The present invention relates to gas cycle engines, and particularly to gas cycle engines.

スターリング冷却機のようなガス冷却機に関するもので
ある。
It relates to gas coolers such as Stirling coolers.

〔従来の技術〕[Conventional technology]

第2図は2例えば特開昭64−63761号公報に開示
された従来のスターリングサイクルガス冷却機の概略構
成を示す断面側面図である。図において、(1)はシリ
ンダであり、この内部でフリーディスプレーサ(2)が
往復運動を行う。第1ピストン(3a)の作動表面(4
0,第2ビスI・ン(3b)の作動表面(4b)及び、
フリーディスプレーサ(2)の下部作動表面(2a)の
間にある圧縮空間(5)は冷却器(6)及び連通孔(7
)を備える。
FIG. 2 is a cross-sectional side view showing a schematic configuration of a conventional Stirling cycle gas cooler disclosed in, for example, Japanese Patent Application Laid-Open No. 64-63761. In the figure, (1) is a cylinder, inside which a free displacer (2) reciprocates. The working surface (4) of the first piston (3a)
0, the working surface (4b) of the second screw I-n (3b), and
The compression space (5) between the lower working surface (2a) of the free displacer (2) is connected to a cooler (6) and a communication hole (7).
).

フリーディスプレーサ(2)の上部作動表面(2b)は
膨張空間(8)の境界をなしており、この膨張空間(8
)は圧縮空間(5)と共に作動空間を構成する。フリー
ディスプレーサ(2)内に備える蓄熱器(9)は中心孔
QO)を経てその下側の作動媒体に、また中心孔(11
)と半径方向流通ダクト(12)を経てその上側の作動
媒体に通ずる乙とができる。この機械は膨張させられた
冷作動媒体と冷却すべき物体の間の熱交換のための熱交
換器としてフリーザ(13)を備える。
The upper working surface (2b) of the free displacer (2) bounds an expansion space (8);
) constitutes the working space together with the compression space (5). The heat accumulator (9) provided in the free displacer (2) is connected to the working medium below through the center hole (QO) and the center hole (QO).
) and B, which communicate with the working medium above it via a radial flow duct (12). The machine is equipped with a freezer (13) as a heat exchanger for heat exchange between the expanded cold working medium and the object to be cooled.

第1ピストン(3a)及び第2ピストン(3b)と圧縮
シリンダ(14)の壁の間にはそれぞれ第1ピストンシ
ール(15al 、 (lea)及び第2ピストンシー
ル(15b)。
Between the first piston (3a) and the second piston (3b) and the wall of the compression cylinder (14) are first piston seals (15al, (lea) and second piston seals (15b), respectively).

(ieb) を備え、フリーディスプレーサ(2)とシ
リンダ(11の間にはシール(17)、 (18)を備
える。第1ピストン(3a)及び第2ピストン(3b)
はそれぞれ合成樹脂やアルミニウムなどの非磁性材料か
ら成る軽量の第1スリーブ(19a)及び第2スリーブ
(19b)を備え、スリーブ(19a) 、  (19
b)には導電体を巻きつけて第1可動コイル(20a)
及び第2可動コイル(20bl を形成し、第1可動:
I イル(20a) 、第2可動コイル(20b)はハ
ウジング(21)の壁を通して外部に伸びる第1リード
線(22a) 、 (23a)及び第2リード線(22
b)、 (23b)と接続している。これらのリードI
! (22a) 、 (23a) 、 (22b) 、
 (23b)はハウジング(21)の外にそれぞれ第1
電気接点(24a) 、 (25a)及び第2電気接点
(24b)、 (25b)を持つ。可動コイル(20a
) 、  (20blはピストン(3a)、  (3b
)と連結され。
(ieb), and seals (17) and (18) are provided between the free displacer (2) and the cylinder (11).A first piston (3a) and a second piston (3b)
each includes a lightweight first sleeve (19a) and a second sleeve (19b) made of a non-magnetic material such as synthetic resin or aluminum, and the sleeves (19a) and (19
b) is wound with a conductor and connected to the first moving coil (20a).
and a second movable coil (forming 20bl, the first movable coil:
The first lead wire (22a), (23a) and the second lead wire (22) extend outward through the wall of the housing (21).
b), (23b). These leads I
! (22a), (23a), (22b),
(23b) are respectively placed outside the housing (21).
It has electrical contacts (24a), (25a) and second electrical contacts (24b), (25b). Moving coil (20a
), (20bl is the piston (3a), (3b
) is concatenated with.

ピストン(3aL (3b)の軸線方向に第1間隙(2
6a)及び第2間隙(26b)内で往復連動できる構造
になっている。上記間隙(26a) 、 ’ (2Bb
)内には可動コイル(20m) 、 (20b)の移動
方向を横切る半径方向に永久磁界が存在し、第1間隙(
26a)では内径から外径方向へ、第2間隙(213b
)では外径から内径方向へ磁束が向かうように構成され
ている。これらの間隙(28a) 、 (26b)の磁
界は永久磁石(27a) 、 (27b) 。
A first gap (2
6a) and the second gap (26b). The above gap (26a), ' (2Bb
), a permanent magnetic field exists in the radial direction transverse to the moving direction of the moving coil (20m), (20b), and the first gap (
26a), a second gap (213b) is formed from the inner diameter to the outer diameter direction.
), the magnetic flux is directed from the outer diameter toward the inner diameter. The magnetic fields in these gaps (28a) and (26b) are permanent magnets (27a) and (27b).

環状ディスク(28a) 、 (28b) 、軟鉄シリ
ンダ(29a) 。
Annular discs (28a), (28b), soft iron cylinder (29a).

(29b)からなる閉磁気回路によって供給される。(29b) is supplied by a closed magnetic circuit consisting of (29b).

ビスh ン(3a) 、 (3b)はそれぞれ支持バネ
(30a) 。
The screws (3a) and (3b) are support springs (30a), respectively.

(30b)を備え、これがビスh :/ (3a) 、
 (3b)の固定中心位置を確保している。また支持バ
ネ(30a) 。
(30b), which is bis h :/ (3a),
The fixed center position of (3b) is secured. Also a support spring (30a).

(30b)の両端は横移動しないようにロックされ。Both ends of (30b) are locked to prevent lateral movement.

それぞれ突起(31a) 、 (32a)及び突起(3
1b)、 (32b)の回りに配置されている。フリー
ディスプレーサ(2)の下側には弾性部材(33)が設
けられ、フリーディスプレーサ(2)の行程を制限する
。また、第3図(、)はこの従来例によるガスサイクル
機関の磁気回路を示す説明図で、矢印は磁束の向きを示
す。
Protrusions (31a), (32a) and protrusions (3), respectively.
1b) and (32b). An elastic member (33) is provided below the free displacer (2) to limit the stroke of the free displacer (2). Moreover, FIG. 3(,) is an explanatory diagram showing the magnetic circuit of the gas cycle engine according to this conventional example, and the arrows indicate the direction of magnetic flux.

第3図(b)はピストンの作用表面の変位を示すグラフ
で、横軸はピストンの変位2M軸は時間を示す。
FIG. 3(b) is a graph showing the displacement of the working surface of the piston, where the horizontal axis shows the displacement of the piston, and the M axis shows time.

次に動作について説明する。Next, the operation will be explained.

可動コイル(20a) 、 (20b)に電気接点(2
4a) 、 (25a) 。
Electric contacts (2) are connected to the moving coils (20a) and (20b).
4a), (25a).

(3) (4) (24b) 、 (25b)及びリード線(22a) 
、  (23a) 、  (22b) 。
(3) (4) (24b), (25b) and lead wire (22a)
, (23a), (22b).

(23b)を介して交番電流を流すと可動コイル(20
a) 。
(23b) when an alternating current is passed through the moving coil (20
a).

(20b)には、それぞれ間隙(26m) 、 (26
b)中の永久磁界と電流の相互作用により、軸方向にロ
ーレンツ力が働き、その結果ピストン(3a) 、 (
3b) 、スリーブ(19a) 、 (19b)及び可
動コイル(20a) 、 (20b)からなる組立体は
左右の方向に振動を始める。
(20b) has gaps (26m) and (26m), respectively.
b) Due to the interaction of the permanent magnetic field and the current in the axial Lorentz force acts on the piston (3a), (
3b), the assembly consisting of the sleeves (19a), (19b) and the moving coils (20a), (20b) begins to vibrate in the left-right direction.

今、第1可動コイル(20a)と第2可動コイル(20
b)の特性を同一にし2間隙(26a)及び間隙(26
b)内の磁界の強さを等しくした条件で、第1可動コイ
ル(20a)と第2可動コイル(20b)に同位相、同
振幅の電流を流すと2間隙(2Ba)と間隙(26b)
における磁界の方向が逆であるため、第1可動コイル(
20a) と第2可動コイル(20b)は第3図(b)
に示すように互いに逆方向に同振幅で振動し、この結果
、ピストン(3a)及び(3b)で囲まれた圧縮空間(
−の体積が振動により周期的に変動することになる。ピ
ストン(3a) 、 (3b)の振動により圧縮空間(
5)の体積が変化すると作動空間内に封入された作動ガ
スが圧m、m張を受け、ガスの圧力が変動する。更に、
乙の圧力変動は蓄熱器(9)の両端に周期的な圧力差の
変動をもたらし、この結果圧力差と弾性部材(33)の
共振によりフリーディスプレーサ(2)がビスI・ン(
3a)、 (3b)と同じ周波数で。
Now, the first moving coil (20a) and the second moving coil (20a)
b) with the same characteristics, the two gaps (26a) and the gap (26
b) When currents with the same phase and amplitude are passed through the first moving coil (20a) and the second moving coil (20b) under the condition that the strength of the magnetic field is equal, two gaps (2Ba) and a gap (26b) are created.
Since the direction of the magnetic field at is opposite, the first moving coil (
20a) and the second moving coil (20b) are shown in Fig. 3(b).
As shown in the figure, they vibrate in opposite directions with the same amplitude, and as a result, the compression space (
The volume of - will change periodically due to vibration. The compression space (
When the volume of 5) changes, the working gas sealed in the working space is subjected to pressures m and m, and the pressure of the gas fluctuates. Furthermore,
The pressure fluctuation B causes a periodic pressure difference fluctuation between both ends of the heat storage device (9), and as a result, the free displacer (2) is caused by the pressure difference and the resonance of the elastic member (33).
3a), at the same frequency as (3b).

かつ異なった位相で動くようになる。And they start to move in different phases.

ピストン(3aL (3b)とフリーディスプレーサ(
2)が異なった位相を持って動く時2作動空間内の作動
ガス(例えばヘリウム)は、逆スターリングサイクルと
して良く知られる熱力学的サイクルを構成し、膨張空間
(8)内に寒冷を発生させる。
Piston (3aL (3b) and free displacer (
2) When the working gas (e.g. helium) in the working space moves with different phases, it constitutes a thermodynamic cycle, better known as the inverted Stirling cycle, generating refrigeration in the expansion space (8). .

尚、上記“′逆スターリングサイクル″とその冷熱発生
の原理については2文献“Cryoeoolers(G
、Walker、Plenum Press、New 
York、1983. pp、177〜123)に詳細
に説明されている。
Regarding the above-mentioned "'Reverse Stirling Cycle" and its principle of cold generation, please refer to the 2nd document "Cryoeolers (G
, Walker, Plenum Press, New
York, 1983. pp. 177-123).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のガスサイクル機関は以上のように構成されている
ので、上記第一コイルと第二コイルの抵抗やインダクタ
ンスに差があると、第一コイルと第二コイルに流れる電
流に差が生じ、これによって、第一ピストンと第二ピス
トンの往復運動の位相や振幅にも差が生じ、この結果、
ガスサイクル機関の振動が大きくなる問題点があった。
Conventional gas cycle engines are configured as described above, so if there is a difference in resistance or inductance between the first and second coils, a difference will occur in the current flowing through the first and second coils. This causes a difference in the phase and amplitude of the reciprocating motion between the first and second pistons, and as a result,
There was a problem that the vibration of the gas cycle engine increased.

この発明は上記のような問題点を解消するためになされ
たもので、極低振動なガスサイクル機関を1辱ることを
目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to improve the extremely low vibration of gas cycle engines.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかるガスサイクル機関は、第一コイルと第
二コイルを直列に接続したものであり。
The gas cycle engine according to the present invention has a first coil and a second coil connected in series.

第一コイルと第二コイルに流れる電流を同一にすること
により、第一ピストンと第二ピストンの往復運動の位相
や振幅のアンバランスを小さくシ。
By making the current flowing through the first and second coils the same, the unbalance in phase and amplitude of the reciprocating motion of the first and second pistons can be minimized.

ガスサイクル機関の振動を低減する。Reduce vibrations in gas cycle engines.

〔作 用〕[For production]

この発明lこかかるガスサイクル機関は、第一コイルと
第二コイルが直列に接続され、第一コイルと第二コイル
に同一の電流が流れるため、第一コイルと第二コイルの
ピストンを動かす駆動力が等しくなり、これによって第
一ピストンと第二ビス!・ンの往復運動の位相や振幅の
アンバランスも小さくなるため、ガスサイクル機関の振
動が低減される。
In this gas cycle engine, the first coil and the second coil are connected in series, and since the same current flows through the first coil and the second coil, the piston of the first coil and the second coil is driven to move. The forces become equal, and this causes the first piston and the second screw! - The unbalance of the phase and amplitude of the reciprocating motion of the engine is also reduced, which reduces the vibration of the gas cycle engine.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、 (34)は外部配線であり、第一電気接
点(25a) と第二電気接点(25b)を接続するこ
とにより第一コイル(200と第二コイル(20b)が
電気的に直列に接続されるように配線されている。なお
2図中、第3図と同一符号の部品は同−又は相当部分を
示しており、ここでの説明は省略する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (34) is external wiring, and by connecting the first electrical contact (25a) and the second electrical contact (25b), the first coil (200) and the second coil (20b) are electrically connected in series. Components with the same reference numerals as those in FIG. 3 indicate the same or corresponding parts, and the explanation thereof will be omitted here.

以下2本実施例の動作について説明する。図において、
第一電気接点(24a)と第二電気接点(24b)に交
流電源(図示していない)を接続すると第一コイル(2
0a)と第二コイル(20b)には、順次、リード線(
22a) 、 (23a) 、外部配線(34) 、リ
ード@ (22bl及び(22b)を介して交番電流が
流れる。すると。
The operation of the two embodiments will be explained below. In the figure,
When an AC power source (not shown) is connected to the first electrical contact (24a) and the second electrical contact (24b), the first coil (24b)
0a) and the second coil (20b), the lead wires (
An alternating current flows through 22a), (23a), external wiring (34), lead @ (22bl and (22b). Then.

可動コイル(20a)及び(20b)には、環状間隙(
26a)及び(26b)の永久磁界と電流の相互作用に
より。
The moving coils (20a) and (20b) have an annular gap (
26a) and (26b) due to the interaction of the permanent magnetic field and the current.

軸方向のローレンツ力が働き、その結果、ピストン(3
a)と(3b)は軸方向に振動をし始める。乙の振(7
) (8) 動は、互いに同振動で逆方向の運動であるため。
An axial Lorentz force acts, and as a result, the piston (3
a) and (3b) begin to vibrate in the axial direction. Otsu no Furi (7)
) (8) This is because the motions are the same vibration and in opposite directions.

作動空間内に封入された作動ガスは圧縮、膨張を受け、
この結果、従来例において説明したのと全く同一の動作
原理により、膨張空間(8]内に寒冷が発生することに
なる。
The working gas sealed in the working space undergoes compression and expansion,
As a result, refrigeration will be generated in the expansion space (8) according to exactly the same operating principle as explained in the conventional example.

ここで2本実施例と従来例の違いは次の点にある。すな
わち2本実施例にわいては、第一コイル(20a) と
第二コイル(20b)が直列に接続されているため、第
一コイル(20a) と第二コイル(20b)の抵抗や
インダクタンスに差があっても、第一コイル(20a)
  と第二コイル(20b)に流れる電流は全く同一に
なる。こうして、第一ピストン(3a)と第二ピストン
(3b)を駆動する力が等しくなることにより2両ピス
トンの往復運動の位相や振幅のアンバランスも小さくな
り、ガスサイクル機関の振動が従来例に比べ著しく低減
されるのである。
Here, the difference between the two embodiments and the conventional example is as follows. In other words, in the two embodiments, since the first coil (20a) and the second coil (20b) are connected in series, the resistance and inductance of the first coil (20a) and the second coil (20b) Even if there is a difference, the first coil (20a)
The current flowing through the second coil (20b) is exactly the same. In this way, the forces driving the first piston (3a) and the second piston (3b) become equal, which reduces the unbalance in the phase and amplitude of the reciprocating motion of the two pistons, reducing vibrations in the gas cycle engine compared to the conventional example. This is a significant reduction in comparison.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、第一ピストンと第二
ピストンの往復運動の位相や振幅のアンバランスが小さ
くなるため、極低振動なガスサイクル機関が得られる効
果がある。
As described above, according to the present invention, the unbalance in the phase and amplitude of the reciprocating motion of the first piston and the second piston is reduced, so that a gas cycle engine with extremely low vibration can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるガスサイクル機関を
示す断面側面図、第2図は従来のガスサイクル機関を示
す断面側面図、第3図(a)は従来のガスサイクル機関
におけるピストンの運動の原理を示す説明図、及び第3
図(b)はピストンの作用表面の変位を示す曲線図であ
る。 (3a)・第一ピストン、 (3b)・第二ビス)・ン
。 (20a)・・第一可動コイル、 (20b)  は第
二可動コイル、 (26a) 、 (26b)−間隙、
 (27a) 、 (27b)  永久磁石、 (34
)・・外部配線。 なお2図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional side view showing a gas cycle engine according to an embodiment of the present invention, FIG. 2 is a cross-sectional side view showing a conventional gas cycle engine, and FIG. 3(a) is a cross-sectional side view showing a conventional gas cycle engine. Explanatory diagram showing the principle of movement, and the third
Figure (b) is a curve diagram showing the displacement of the working surface of the piston. (3a)・First piston, (3b)・Second screw)・N. (20a)...first moving coil, (20b) is the second moving coil, (26a), (26b) - gap,
(27a), (27b) Permanent magnet, (34
)...External wiring. Note that in the two figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 永久磁石の作る磁束の間隙に挿入された第一及び第二可
動コイルに交番電流を流すことにより、上記各可動コイ
ルに各々連結された第一ピストン及び第二ピストンを互
いに同じ位相、及び同じ振幅で逆方向に振動させ、作動
ガスを圧縮、膨張させるよう構成したガスサイクル機関
において、第一及び第二可動コイルを外部配線により電
気的に直列に接続したことを特徴とするガスサイクル機
関。
By passing an alternating current through the first and second moving coils inserted into the gap between the magnetic fluxes created by the permanent magnets, the first piston and second piston connected to each of the moving coils are made to have the same phase and amplitude. 1. A gas cycle engine configured to vibrate in opposite directions to compress and expand working gas, characterized in that first and second moving coils are electrically connected in series by external wiring.
JP1341891A 1989-12-28 1989-12-28 Gas cycle engine Expired - Lifetime JPH0737862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341891A JPH0737862B2 (en) 1989-12-28 1989-12-28 Gas cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1341891A JPH0737862B2 (en) 1989-12-28 1989-12-28 Gas cycle engine

Publications (2)

Publication Number Publication Date
JPH03199856A true JPH03199856A (en) 1991-08-30
JPH0737862B2 JPH0737862B2 (en) 1995-04-26

Family

ID=18349541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341891A Expired - Lifetime JPH0737862B2 (en) 1989-12-28 1989-12-28 Gas cycle engine

Country Status (1)

Country Link
JP (1) JPH0737862B2 (en)

Also Published As

Publication number Publication date
JPH0737862B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US4872313A (en) Gas cycle machine
JP2518671Y2 (en) Gas cycle engine for chiller
US5113662A (en) Cryogenic refrigerator
JPH0788985B2 (en) refrigerator
JP3566647B2 (en) Stirling refrigerator
US4822390A (en) Closed cycle gas refrigerator
JP2550492B2 (en) Gas compressor
JPH03199856A (en) Gas cycle engine
JPH076701B2 (en) Gas cycle engine
JPH0579720A (en) Refrigerator
JP2713675B2 (en) Cooler
JP2550657B2 (en) Chiller
JPH01137165A (en) Cooling machine
JPH0739893B2 (en) refrigerator
JPH04313650A (en) Cooler
JPH0527563U (en) refrigerator
JP2546081B2 (en) Linear motor compressor
JPH0593554A (en) Stirling freezer
JPH04143552A (en) Refrigerator
JPH0547759U (en) refrigerator
JPH05126042A (en) Linear motor compressor
JPH02256935A (en) Reciprocating device
JPH0735935B2 (en) Chiller
JPH055569A (en) Refrigerator
JP2550657C (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 15