JPH03199614A - Exhaust gas cleaner for engine - Google Patents

Exhaust gas cleaner for engine

Info

Publication number
JPH03199614A
JPH03199614A JP1339042A JP33904289A JPH03199614A JP H03199614 A JPH03199614 A JP H03199614A JP 1339042 A JP1339042 A JP 1339042A JP 33904289 A JP33904289 A JP 33904289A JP H03199614 A JPH03199614 A JP H03199614A
Authority
JP
Japan
Prior art keywords
regeneration
trap
amount
time
immediately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1339042A
Other languages
Japanese (ja)
Other versions
JP2616075B2 (en
Inventor
Motohiro Niizawa
元啓 新沢
Shunichi Aoyama
俊一 青山
Yoshiki Sekiya
関谷 芳樹
Nobukazu Kanesaki
兼先 伸和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33904289A priority Critical patent/JP2616075B2/en
Priority to GB9027940A priority patent/GB2239407B/en
Priority to US07/629,700 priority patent/US5195316A/en
Priority to FR9016364A priority patent/FR2657649A1/en
Priority to DE4041917A priority patent/DE4041917C2/en
Priority to KR1019900021938A priority patent/KR940009048B1/en
Priority to DE4042562A priority patent/DE4042562C2/en
Priority to DE4042563A priority patent/DE4042563C2/en
Publication of JPH03199614A publication Critical patent/JPH03199614A/en
Priority to US08/006,283 priority patent/US5287698A/en
Priority to US08/006,299 priority patent/US5319930A/en
Application granted granted Critical
Publication of JP2616075B2 publication Critical patent/JP2616075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To prevent error in judging the time of regeneration due to trap amount hysteresis by calculating unburnt trap amount immediately after regeneration according to the ratio of front to rear pressure differential and limit pressure differential immediately after regeneration. CONSTITUTION:In the case a trap 3 is judged to be regenerated immediately before, a control unit 41 calculates the ratio of detected front rear pressure differential of the trap 3 from a semiconductor type pressure sensor 31 to a limit pressure differential, and calculates unburnt trap amount from the calculated ratio. Assuming the unburnt trap amount as the initial value of the integrated value of the particulate trap amount. Regeneration time is judged by integrating the particulate trap amount calculated according to detected values of a crank angle sensor 34, and an accelerator lever opening sensor 35 from the initial value. This makes it possible, even if particulate trapped with the trap 3 remains unburnt after regeneration, the time of regeneration is accordingly made earlier.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はエンジンの排気浄化装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine exhaust purification device.

(従来の技術) 排気中に含まれるカーボン等の微粒子(パーティキュレ
ート)を徘ス通路に備えたトラップで捕集するようにし
であるエンジン(特にディーゼルエンジン)では、パー
ティキュレートの堆積により排気圧力が過度に上昇し、
エンジンおよびエミッション性能を低下させるため、堆
積されたパーティキュレートを所定の時期に燃焼させト
ラップを再生する装置が設けられている(特開昭s a
 −s、 1235号公報参照)。
(Prior art) In engines (particularly diesel engines) in which particulates such as carbon contained in exhaust gas are collected in a trap provided in a wandering passage, the exhaust pressure increases due to the accumulation of particulates. rise excessively,
In order to reduce engine and emission performance, a device is provided to regenerate the trap by burning the accumulated particulates at a predetermined time (Japanese Patent Application Laid-open No.
-s, see Publication No. 1235).

これを第8図で説明すると、エンジン1から排出される
パーティキュレートは徘ス通路2に介装される耐熱性フ
ィルタ構造のトラップ31こで捕集される。
To explain this with reference to FIG. 8, particulates discharged from the engine 1 are collected by a trap 31 having a heat-resistant filter structure interposed in the wandering passage 2.

一方、吸ヌ通路5に吸汽流量を絞るバタフライ型紋り弁
6が設けられ、この絞り弁6には、一端部が紋り弁6の
弁軸に固定され他i部がロッド8dに回動自由に取り付
けられるレバー7を介して、ダイヤ7ラムアクチユエー
タ8が連結される。
On the other hand, the suction passage 5 is provided with a butterfly-type crest valve 6 that throttles the intake and steam flow rate, and this throttle valve 6 has one end fixed to the valve shaft of the crest valve 6 and the other end connected to a rod 8d. A diamond 7 ram actuator 8 is connected via a freely movably mounted lever 7.

このアクチュエータ8と、アクチュエータ8の圧力室8
bに導かれる制御負圧を制御装置15カ・らのデユーテ
ィ信号に応じて変化させ得る電磁弁9とから絞り弁駆動
装置が構成される。たとえば、デユーティ信号のデユー
ティ値(開弁時間割合)を増加させて、圧力室8bへの
負圧を強めると、ダイヤ7ラム8Bがリターンスプリン
グ8cに抗してD7ド8dを図で右方へと移動させるの
で、絞り弁6が閉じていく。10は負圧ポンプである。
This actuator 8 and the pressure chamber 8 of the actuator 8
A throttle valve drive device is constituted by an electromagnetic valve 9 that can change the control negative pressure guided by the control device 15 in response to a duty signal from the control device 15 and the like. For example, when the duty value (valve open time ratio) of the duty signal is increased to strengthen the negative pressure in the pressure chamber 8b, the diamond 7 ram 8B resists the return spring 8c and moves D7 and 8d to the right in the figure. As the throttle valve 6 moves, the throttle valve 6 closes. 10 is a negative pressure pump.

制御装置15には、燃料噴射ポンプ】1にそれぞれ設け
られたエンジン1の負荷センサ12と回転数センサ13
、絞り弁6下流のryi気通路5に設けられた吸ス圧セ
ンサ14等からの信号が入力され、制御装置15では以
下の制御を行なう。
The control device 15 includes a load sensor 12 and a rotation speed sensor 13 of the engine 1, which are respectively provided in the fuel injection pump 1.
, signals from the suction pressure sensor 14 and the like provided in the air passage 5 downstream of the throttle valve 6 are input, and the control device 15 performs the following control.

所定の走行距離や走行時間等からトラップ3の再生時期
にあると判断された場合に、そのときのエンジンの負荷
と回転数から定まる運転条件が、多量の余剰空気がエン
ジン1に流入する運転状態にあるかどうかを判定する。
When it is determined that it is time to regenerate the trap 3 based on the predetermined travel distance, travel time, etc., the operating conditions determined from the engine load and rotation speed at that time are the operating conditions in which a large amount of surplus air flows into the engine 1. Determine whether it is.

この運転状態にあることが判定されると、絞り弁6が所
定の角度まで閉じられるように、デユーティ信号を出力
し、かつ制御精度を高めるため吸ス圧センサ14からの
信号に基づいて、紋り弁6下流の吸ス負圧が略−定とな
るようにフィードパγり制御する。
When it is determined that this operating state is present, a duty signal is output so that the throttle valve 6 is closed to a predetermined angle, and a duty signal is output based on the signal from the suction pressure sensor 14 to improve control accuracy. The feed pressure is controlled so that the suction negative pressure downstream of the feed valve 6 is approximately constant.

このようにして、エンジン1への空気導入量を減少させ
ると、徘只温度が上昇するので、温度上昇した徘スの熱
でトラップ3に捕集されたパーティキュレートが再燃焼
され、トラップ3が再生される。
In this way, when the amount of air introduced into the engine 1 is reduced, the wandering temperature increases, so the particulates collected in the trap 3 are re-burned by the heat of the wandering air whose temperature has increased, and the trap 3 is will be played.

(発明が解決しようとする課題) ところで、このような装置では、所定の時間を再生時開
にあて、その時間が終了すればトラップが完全に再生さ
れたものとみなしている。
(Problem to be Solved by the Invention) In such a device, a predetermined period of time is spent opening during regeneration, and when the time period ends, the trap is considered to have been completely regenerated.

しかしながら、再生時開を過ぎても、捕集量の一部が燃
え残ることがある。また、この燃え残り量は運転条件の
相違により変動する。
However, even after the regeneration period has passed, some of the collected amount may remain unburned. Further, the amount of unburned remains varies depending on the operating conditions.

このため、捕集量履歴により再生時期を判断するように
しているものでは、この燃え残り分だけの誤差を生じ、
再生を行う時期が遅すぎる場合が生ずる。この結果、捕
集量の限界をこえ、再生を行ったときには急激にパーテ
ィキュレートが燃焼することによ+) )う/プが溶損
したりする不都合を1<ず く 。
For this reason, if the regeneration timing is determined based on the collected amount history, an error will occur due to the amount of unburnt material.
There may be cases where the timing of regeneration is too late. As a result, when the limit of the amount of collected particles is exceeded and regeneration is performed, the particulates are rapidly burned, resulting in the inconvenience of melting and damage of the particles.

この発明はこのような従来の課題に着目しでなされたも
ので、再生直後のトラップの前後差圧と限界差圧との比
率から燃え残r)捕集量を把握することにより、(m集
風履歴による再生時期tq断に誤差を生じないようにし
た装置を提供することを目的とする。
This invention was made by focusing on such conventional problems, and by determining the amount of unburned residue r) collected from the ratio of the differential pressure across the trap immediately after regeneration and the critical differential pressure, It is an object of the present invention to provide a device that does not cause errors in regeneration timing tq due to wind history.

(課題を解決するための手段) この発明は、第1図で示1ように、徘ヌ中のパーティキ
ュレートを捕集する一力で再生温度以上になると捕集し
たパーティキュレートを再燃焼させるトラップ53と、
このトラップ53を昇温させる装置54と、エンノンの
負荷Qと回転数Neをそれぞれ検出するセンサ55,5
(3と、これらの検出値に応じて単位時間当たりのパー
ティキュレート捕集量ΔPCTを計算する手段57と、
この捕集量ΔPCTを所定時間ごとに$Aヰする手段5
8と、この積算値SUMより再生時期にあるかどうかを
判定する手段59と、この再生時期になると前記昇温装
置54を作動させる手段60と、前記トラップ53の前
後差圧ΔPを検出するセンサ61と、再生直後にあるか
どうかを判定する手段62と、再生直後にあることが判
定された場合に前記前後差圧の検出値と限界差圧ΔP 
maxの比率を計算する手段63と、この比率に応じて
再生直後の燃え残り捕集量Z A Nを計算する手段6
4と、この燃え残’) fin集量ZANをiガ記積算
値S UMの初期値として設定する手段65とを設けた
(Means for Solving the Problems) As shown in FIG. 1, the present invention provides a trap that collects particulates wandering around and re-burns the collected particulates when the temperature exceeds the regeneration temperature. 53 and
A device 54 that raises the temperature of this trap 53, and sensors 55, 5 that detect the load Q and rotation speed Ne of the ennon, respectively.
(3, and means 57 for calculating the particulate collection amount ΔPCT per unit time according to these detected values,
Means 5 for adjusting this collection amount ΔPCT by $A at every predetermined time
8, a means 59 for determining whether or not it is the regeneration time based on the integrated value SUM, a means 60 for operating the temperature raising device 54 when the regeneration time comes, and a sensor for detecting the differential pressure ΔP across the trap 53. 61, a means 62 for determining whether the state is immediately after regeneration, and a means 62 for determining whether the state is immediately after regeneration, and a detection value of the differential pressure before and after the pressure difference and a limit differential pressure ΔP when it is determined that the state is immediately after regeneration.
Means 63 for calculating the ratio of max, and means 6 for calculating the amount of unburned residue collected immediately after regeneration Z A N according to this ratio
4, and a means 65 for setting the fin collection amount ZAN as the initial value of the integrated value SUM.

(作用) 再生直後のトラップ前後差圧ΔPと限界差圧ΔPωax
の比率は再生の効単に対応するものであり、これが大き
いことは、再生直後に燃え残る捕集量も多いことを意味
する。したがって、これまでと同じにbn集量がたまる
とすれば、次の再生時期は早めにしなければならない。
(Function) Immediately after regeneration, differential pressure across the trap ΔP and critical differential pressure ΔPωax
The ratio corresponds to the effectiveness of regeneration, and a large ratio means that a large amount of collected material remains unburned immediately after regeneration. Therefore, if the amount of BN collected remains the same as before, the next regeneration period must be set earlier.

この発明では、燃え残’)JI#JJffiZANが積
算値SLIMの初期値とされることがら、次の再生時期
が早く訪れる。燃え残る捕集量が多いほど再生時期も早
い。
In the present invention, the next regeneration time comes early because the burnt residue ')JI#JJffiZAN is used as the initial value of the integrated value SLIM. The larger the amount of collected material that remains unburned, the earlier the regeneration period will be.

(実施例) 第2図はこの発明の一実施例のシステム図である。図に
おいて、6は吸六通路5に設けられる常開のバタ75イ
型絞り弁で、この吸気絞り弁8にはダイヤフラムアクチ
ュエータ8が連結される。
(Embodiment) FIG. 2 is a system diagram of an embodiment of the present invention. In the figure, reference numeral 6 denotes a normally open butterfly-type throttle valve 6 provided in the intake passage 5, and a diaphragm actuator 8 is connected to this intake throttle valve 8.

このアクチュエータ8の圧力室と負圧源(たとえばf1
圧ポンプ)とを連通ずる通路には三方電磁弁19が介装
され、この電磁弁19をOFFからONにrろと、アク
チュエータ3の圧力室に大気圧に代えて一定圧の11圧
が導入され、吸気絞り弁6が一定角度まで閉じられる。
The pressure chamber of this actuator 8 and the negative pressure source (for example, f1
A three-way solenoid valve 19 is interposed in the passage communicating with the pressure pump), and when this solenoid valve 19 is turned from OFF to ON, constant pressure 11 is introduced into the pressure chamber of the actuator 3 instead of atmospheric pressure. and the intake throttle valve 6 is closed to a certain angle.

アクチュエータ8と電磁か19は吸′A絞り弁駆動装置
を構成するものである。
The actuator 8 and the electromagnetic valve 19 constitute an intake A throttle valve driving device.

同様にして、トラップ3上流の徘ス通路2に常開のバタ
フライ型紋り弁21が、排気絞り弁21の上流よりこの
絞り弁21とトラップ3をバイパスする通路24に常閉
のバタフライ型バイパス弁25がそれぞれ設けられる。
Similarly, a normally open butterfly type bypass valve 21 is provided in the wandering passage 2 upstream of the trap 3, and a normally closed butterfly type bypass is provided in the passage 24 that bypasses this throttle valve 21 and the trap 3 from upstream of the exhaust throttle valve 21. A valve 25 is provided respectively.

排気絞り弁21に連結されるダイヤプラムアクチュエー
タ22と三方電磁弁23とがら排気絞り弁駆動装置が、
またバイパス弁25に連結されるダイヤ7ラムアクチユ
エータ26と三方電磁弁27からバイパス弁駆動装置が
構成される。
The exhaust throttle valve driving device includes a diaphragm actuator 22 and a three-way solenoid valve 23 connected to the exhaust throttle valve 21.
A bypass valve driving device is constituted by a seven-diamond ram actuator 26 connected to the bypass valve 25 and a three-way solenoid valve 27.

トラップ3の上流側にはこれに近接してヒータ29が設
置すられ、コントロールユニット41からの通電信号を
受けるとトラップ3を加熱する。
A heater 29 is installed close to the upstream side of the trap 3, and heats the trap 3 upon receiving an energization signal from the control unit 41.

31は半導体式圧力センサで、トラップ3の前後差圧Δ
Pを検出する。32は熱電対からなる温度センサで、ト
ラップ3の入口温度TINを検出する。34はエンジン
1の回転数Neを検出するセンサ(クランク角センサ)
、35はポテンショメータから構成されアクセルレバ−
開度(エンジン負荷)Qを検出するセンサ、36は冷却
水温Twを検出するセンサである。
31 is a semiconductor pressure sensor, which detects the differential pressure Δ across the trap 3.
Detect P. 32 is a temperature sensor consisting of a thermocouple, which detects the inlet temperature TIN of the trap 3. 34 is a sensor (crank angle sensor) that detects the rotation speed Ne of the engine 1
, 35 is composed of a potentiometer and is connected to the accelerator lever.
A sensor 36 detects the opening degree (engine load) Q, and a sensor 36 detects the cooling water temperature Tw.

これらセンサがらの信号は、マイクロコンピュータから
なるコントロールユニット41に入力され、コントロー
ルユニット41では第3図に示すところにしたがって、
3つの三方電磁弁19,23.27にON、OFF信号
を、ヒータ29に通電信号をそれぞれ出力する。
Signals from these sensors are input to a control unit 41 consisting of a microcomputer, and the control unit 41 performs the following operations as shown in FIG.
ON and OFF signals are output to the three three-way solenoid valves 19, 23, and 27, and an energization signal is output to the heater 29, respectively.

第4図はトラップを再生させるためのルーチンである。FIG. 4 is a routine for regenerating the trap.

Slではエンジン回転数Netエンジン負荷Q。In Sl, engine rotation speed Net engine load Q.

冷却水温Tub、)ラップ入口温度T Ipi−)ラッ
プのAir後差圧ΔPお上び積算計からの走行距離KM
を読み込む。
Cooling water temperature Tub,) Wrap inlet temperature T Ipi-) Wrap air differential pressure ΔP and mileage distance from totalizer KM
Load.

S2は後述するS7.S8とともに第1図の再生時M 
tQ定手段59の機能を果たす部分である。
S2 is S7, which will be described later. M when playing back Fig. 1 along with S8
This is a portion that performs the function of tQ determining means 59.

S2では再生時期であるかどうかをみて、再生時期にな
いと判定すればS3に進む。この場合、7ラグF1の値
にて再生時期を判断するようにしてあり、再生時期にな
い場合はF1=0となっている。
In S2, it is checked whether it is the playback time or not, and if it is determined that it is not the playback time, the process advances to S3. In this case, the reproduction time is determined based on the value of the 7-lag F1, and if it is not the reproduction time, F1=0.

S3は後述するS18.S26とともに第1図の再生直
後判定手段62の機能を果たす!lS分である。、S3
では再生直後にあるがどうがみて、再生直後になければ
S4に進む。ここでも、7ラグF2の値にて再生直後を
判断するようにしてあり、再生直後にない場合はF2=
0となっている。
S3 is S18, which will be described later. Together with S26, it functions as the immediately after reproduction determining means 62 in FIG. 1! It is 1S minute. , S3
Okay, so it's right after playback, but if you look at it, if it's not right after playback, the process goes to S4. Here, too, the value of 7 lag F2 is used to judge whether it is immediately after playback, and if it is not immediately after playback, F2=
It is 0.

S4ではパーティキュレート捕集量の積算時期かどうか
みて、積算時期であればS5に進む。この場合、積算時
期は一定の時間間隔ΔT+(たとえば数秒)で訪れる。
In S4, it is checked whether it is the time to integrate the amount of collected particulates, and if it is the time to integrate, the process advances to S5. In this case, the integration time comes at constant time intervals ΔT+ (for example, several seconds).

S5は第1図の捕集量計算手段57の機能を果たす部分
で、ここではΔT1当たり(単位時間当たり)のパーテ
ィキュレート捕集量ΔPCTをマツプ検索を行うことに
より求める。
S5 is a part that performs the function of the trapped amount calculation means 57 in FIG. 1, and here, the trapped particulate amount ΔPCT per ΔT1 (per unit time) is determined by performing a map search.

S6では次式により単位時間ごとにΔPCTを積算する
In S6, ΔPCT is integrated for each unit time using the following equation.

SUM=SUM+ΔPCT・・・■ つまり、積算時期ごとにΔPCTがSUMに加算されて
いくのであり、SUMはΔPCTの積算値を表す。この
86と84は第1図の捕集量積算手段58の機能を果た
す部分である。
SUM=SUM+ΔPCT...■ In other words, ΔPCT is added to SUM at each integration time, and SUM represents the integrated value of ΔPCT. These 86 and 84 are portions that perform the function of the collection amount accumulating means 58 shown in FIG.

なお、SUMの初期値は零ではなく、後述するS25に
て設定される値である。
Note that the initial value of SUM is not zero, but is a value set in S25, which will be described later.

八PCTのマツプの内容を第4図に示すと、低負荷低回
転域で正の最大であI)、高負荷高回転域では負の値と
している。負の値としてり)るのは、マツプ値が負の領
域は自前再生領域であt)、この領域では排気温度が高
しまため、捕集されたノく一ティキュレートの一部が燃
焼してなくなるので、捕集量の積算値としては減算する
必要があるからである。
The content of the 8 PCT map is shown in FIG. 4. In the low load, low rotation range, the maximum positive value is I), and in the high load, high rotation range, the value is negative. The reason why the map value is negative is that the region where the map value is negative is the self-regeneration region.In this region, the exhaust temperature is high, and part of the collected ticulate is burned. This is because the amount of collected water must be subtracted from the cumulative value of the collected amount.

なお、総走行距離が長くなるほどエンジンの両寸久劣化
によりΔPCTが大きくなるので、これを考慮するため
、S5でΔP CT l:討して走行距離補正を行うよ
うにしても構わな(1゜ S7では積算値SUMと予め定めた基卑値(−定値)と
の比較により、SUM≧基準値であれ+!再生時期にあ
ると判断し、S8に進む。
Note that as the total mileage increases, ΔPCT increases due to dimensional deterioration of the engine, so in order to take this into consideration, it may be possible to correct the mileage by calculating ΔPCT l: in S5 (1° In S7, by comparing the integrated value SUM with a predetermined base value (-constant value), if SUM≧reference value, it is determined that +! regeneration time has come, and the process proceeds to S8.

S8では再生時期7ラグF1を立てる(F1=1とする
)。つまり、F1=1は再生時期1こあることを意味す
る。
In S8, the reproduction time 7 lag F1 is set (F1=1). In other words, F1=1 means that there is one reproduction period.

S9では、排気と吸気の各校り弁21,6、ノくイバス
弁25、ヒータ29を何もしない状態にしておく。
In S9, the exhaust and intake calibration valves 21 and 6, the exhaust valve 25, and the heater 29 are left in a state where nothing is done.

一方、S2でF1=1であれば再生時期になったと判断
して、Sho〜S18に進み、ここでトラップが再生さ
れるように、三方電磁弁19,23t27とヒータ29
に指示を与える。つまり、SIO〜618は第1図の作
動手段60の機能を果たす部分である。
On the other hand, if F1=1 in S2, it is determined that the regeneration time has come, and the process proceeds to Sho to S18, where the three-way solenoid valves 19, 23t27 and the heater 29 are activated so that the trap is regenerated.
give instructions. In other words, SIO-618 is a portion that performs the function of the actuating means 60 in FIG.

SIOではトラップ入口温度(排気温度)T INが再
生温度に等しい値T+(たとえば400°C)以上かど
うかみて、TIN≧TIであれば何もしなくともトラッ
プ3が再生されるので312に進む。
The SIO checks whether the trap inlet temperature (exhaust temperature) TIN is equal to or higher than the regeneration temperature T+ (for example, 400°C), and if TIN≧TI, the trap 3 is regenerated without doing anything, so the process proceeds to 312.

この逆にT IN< T lであればSllに進み、冷
却水温Twが所定値(たとえば50°C)以上あるかど
うかみて、そうであればS13に進む。
Conversely, if T IN < T l, the process proceeds to Sll, and it is checked whether the cooling water temperature Tw is at least a predetermined value (for example, 50° C.), and if so, the process proceeds to S13.

S13では徘スと吸気の両方を紋り、かつヒータ29を
ONにする。これらの作動により、排気温度が再生温度
まで高められ、トラップ3の再生が行なわれる。
In S13, both air intake and air intake are turned on, and the heater 29 is turned on. Through these operations, the exhaust gas temperature is raised to the regeneration temperature, and the trap 3 is regenerated.

SllでTwy5’所定値より低い場合はS14に進み
、両紋り弁21,6、バイパス弁25ともすべて開く。
If Sll is lower than the predetermined value of Twy5', the process proceeds to S14, where both the double-barrel valves 21, 6 and the bypass valve 25 are opened.

両紋り弁21,6とも開く理由は、暖機前の低水温時は
排気温度も暖機完了後に比べて低いためトラップの再生
を行うことはできないし、吸気紋りや排気絞りを行うと
、もともと燃焼が安定しない低水温時にあってはエンジ
ンが失火して運転性が悪くなり、かつ失火によりパーテ
ィキユレートも増大するからである。また、バイパス弁
25を開くのは、冷たい排気によりトラップ3が冷やさ
れ過ぎないようにするためである。
The reason why both slit valves 21 and 6 open is that when the water temperature is low before warming up, the exhaust temperature is also lower than after warming up, so the trap cannot be regenerated. This is because at low water temperatures where combustion is inherently unstable, the engine will misfire, resulting in poor drivability, and the misfire will also increase particulates. Moreover, the reason why the bypass valve 25 is opened is to prevent the trap 3 from being excessively cooled by cold exhaust gas.

S15と51f3では再生時間をカウントし、S17に
進む、S17では、カウントした再生時間を所定時間(
たとえば10分)と比較し、所定時間経過すれば、再生
を終了したと判断してS18に進む。
In S15 and 51f3, the playback time is counted, and the process proceeds to S17. In S17, the counted playback time is counted for a predetermined time (
For example, 10 minutes), if a predetermined period of time has elapsed, it is determined that the reproduction has ended and the process proceeds to S18.

318では再生直後を示す7ラグF2を立て(F2=1
とする)、S19では再生時期の判断のために用いたデ
ータを消去する。
In 318, set 7 lag F2 to indicate immediately after playback (F2=1
), and in S19, the data used for determining the playback timing is erased.

この7ラグF2が立つと、S3より820以降へ進む。When this 7-lag F2 is reached, the process proceeds from S3 to 820 and thereafter.

S20ではΔPのサンプル条件かどうか判定し、この条
件が満たされた場合はS21に進む。この場合、サンプ
ル条件とはエンノンの負荷Qと回転数Neがそれぞれ所
定値以上あり、かつ前回のサンプルからのインターバル
が所定値(たとえば20秒)を越えることの総てを満た
す場合である。
In S20, it is determined whether the sampling condition of ΔP is met, and if this condition is met, the process proceeds to S21. In this case, the sample conditions are that the load Q and rotational speed Ne of the ennon are each greater than a predetermined value, and the interval from the previous sample exceeds a predetermined value (for example, 20 seconds).

S21ではΔPをメモリに格納し、さらに次式により温
度補正を行う。
In S21, ΔP is stored in the memory, and further temperature correction is performed using the following equation.

ΔP=ΔP X K vw・=■ ■式において、KTWは水温補正係数である。このKT
Wのマツプを第5図に示す。これは、冷機状態では排気
温度が低いためΔPが小さくなるので、低温時にはΔP
を太き目にみつもる必要があるからである。これにてΔ
Pの測定精度が向上する。
ΔP=ΔP X K vw·=■ In the formula, KTW is the water temperature correction coefficient. This KT
The map of W is shown in Figure 5. This is because when the engine is cold, the exhaust temperature is low and ΔP is small, so when the temperature is low, ΔP is
This is because it is necessary to keep a sharp eye on the image. With this Δ
The measurement accuracy of P is improved.

なお、冷却水温Twの代わりに、排気温度に応じて補正
するようにしても構わな〜1゜ S22は第1図の比率計算手段63と燃え残り捕集量計
算手段64の機能を果たす部分で、ここではΔPと限界
差圧ΔP waxの比率を計算し、この比率ΔP/ΔP
 maxから再生直後の燃え残り捕集fiZANをマツ
プ検索をすることにより求める。
Note that instead of the cooling water temperature Tw, it may be corrected according to the exhaust temperature ~1° S22 is a part that performs the functions of the ratio calculation means 63 and the amount of unburnt collection calculation means 64 in FIG. , here we calculate the ratio of ΔP and the limit differential pressure ΔP wax, and this ratio ΔP/ΔP
The remaining ember collection fiZAN immediately after regeneration is obtained from max by performing a map search.

第7図にZANのマツプ特性を示す。比率が大きいほど
燃え残りも多いと判断されるので、比率が大きくなるほ
どZANの値を多くしてりする。求めたZANはメモリ
に格納する。
FIG. 7 shows the map characteristics of ZAN. Since it is judged that the larger the ratio is, the more unburnt remains, the larger the ratio is, the larger the ZAN value is. The obtained ZAN is stored in memory.

なお、ΔP maxは第6図のマツプを検索することに
より求める。ΔP 1aaxは運転条件に応じて相違す
るからである。
Note that ΔP max is obtained by searching the map shown in FIG. This is because ΔP 1aax differs depending on the operating conditions.

S23では、820でのサンプル条件が満たされるごと
に求めたZANのデータ数が所定数(たとえば4個)に
なったかどうかみて、なっていれば、S23に進む。
In S23, it is checked whether the number of ZAN data obtained each time the sample condition in 820 is satisfied has reached a predetermined number (for example, 4), and if so, the process advances to S23.

S23では所定数のZANのデータにつき統計処理を行
う。この場合の統計処理は加重平均であり、最初のデー
タZAN+を次式により同じ名のメモリに格納する。
In S23, statistical processing is performed on the data of a predetermined number of ZANs. The statistical processing in this case is a weighted average, and the first data ZAN+ is stored in a memory with the same name using the following formula.

ZANI=ZANl・・・■ 次に、このメモリに格納されて警する値ZAN+と2番
目のデータZAN2とから次式により加重平均値を求め
、これを同じ名のメモリに格納する。
ZANI=ZANl...■ Next, a weighted average value is calculated from the alarm value ZAN+ stored in this memory and the second data ZAN2 using the following formula, and this is stored in the memory with the same name.

ZAN2=(3ZAN I+ZAN2)/4・・・■同
様にして、次式に上り加重平均値を逐次求める。
ZAN2=(3ZAN I+ZAN2)/4...■ In the same way, the weighted average value of the upstream is determined one by one using the following formula.

ZAN3=(3ZAN2+ZAN3)/4・・・■ZA
N4=(3ZAN3+ZAN4)/ 4・・・■最終的
にZAN4というメモリに格納される値が求める値であ
る。
ZAN3=(3ZAN2+ZAN3)/4...■ZA
N4=(3ZAN3+ZAN4)/4... ■The value finally stored in the memory ZAN4 is the value to be found.

S25は第1図の初期値設定手段65の機能を果たす部
分で、ここではZAN4の値をSUMの初期値として格
納する。
S25 is a part that functions as the initial value setting means 65 in FIG. 1, and here the value of ZAN4 is stored as the initial value of SUM.

326では再生直後を示す7ラグF2を消す(F2=0
とする)。
In 326, erase the 7 lag F2 that indicates immediately after playback (F2 = 0
).

ここで、この例の作用を説明する。Here, the operation of this example will be explained.

この例では再生直後のトラップ前後差圧ΔPと限界差圧
ΔP’waにの比率から再生の効率が把握され、この再
生効率に応じて再生直後に燃え残る捕集量ZANが計算
される。そして、この燃え残る捕集IZANを82W−
値SUMの初期値として、次回に再生を行うべき時期が
判断される。
In this example, the efficiency of regeneration is determined from the ratio between the differential pressure across the trap ΔP immediately after regeneration and the limit differential pressure ΔP'wa, and the amount of trapped material ZAN that remains unburned immediately after regeneration is calculated according to this regeneration efficiency. And, this burning collection IZAN is 82W-
As the initial value of the value SUM, the time when the next reproduction should be performed is determined.

このため、再生時間経過後にパーティキュレートが燃え
残ると、再生時期が早く訪れる。しかも、燃え残る量が
多いほど再生時期は早くなっていく。
Therefore, if the particulates remain burned after the regeneration time has elapsed, the regeneration time will come sooner. Moreover, the more the amount left unburned, the earlier the regeneration period will be.

つまり、燃え残り量の多少に関係なく再生時期が適切と
なるのである。
In other words, the regeneration timing is appropriate regardless of the amount of unburned fuel.

この結果、再生時期が遅すぎて次の再生時に捕集量が限
界を越え、再生を行ったときには、tWIiにパーティ
キュレートが燃焼しトラップが溶損するといった事態を
防止することができる。
As a result, it is possible to prevent a situation in which the regeneration timing is too late and the amount of trapped particles exceeds the limit during the next regeneration, and when regeneration is performed, the particulates are burned at tWIi and the trap is eroded.

また、圧力と運転履歴の併用で再生時期を判断するもの
に比べて制御が簡単である。
In addition, control is easier than in systems where the regeneration timing is determined based on both pressure and operation history.

(発明の効果) この発明は、再生直後のトラップの前後差圧と限界差圧
との比率に応じて再生直後の燃え残り捕集量を計算する
ことにしたため、トラップに捕集されたパーティキュレ
ートが再生直後に燃え残ることがあっても、その分再生
時期を早めることができ、これにてトラップの溶損防止
をはかることができる。
(Effect of the invention) This invention calculates the amount of unburned residue collected immediately after regeneration according to the ratio between the differential pressure across the trap and the critical pressure difference immediately after regeneration, so that the particulates collected in the trap are Even if the trap remains unburned immediately after regeneration, the regeneration time can be moved forward by that amount, thereby preventing the trap from being eroded.

【図面の簡単な説明】[Brief explanation of drawings]

PjS1図はこの発明のクレーム対応図、tIS2図は
一実施例のシステム図、第3図はこの実施例の制御動作
を説明するための流れ図、第4図ないし第7図はそれぞ
れこの実施例のΔP CT 、K IwwΔPwaxお
よりZANの特性図、第8図は従来例のシステム図であ
る。 2・・・排気通路、5・・・吸気通路、6・・・@ス絞
り弁、8・・・ダイヤ7ラムアクチユエータ、19・・
・三方電磁弁、21・・・排気絞り弁、22・・・ダイ
ヤ7ラムアクチユエータ、23・・・三方電磁弁、24
・・・バイパス通路、25・・・バイパス弁、26・・
・ダイヤプラムアクチュエータ、27・・・三方電磁弁
、29・・・ヒータ、31・・・圧力センサ、32・・
・トラップ入口温度センサ、34・・・クランク角セン
サ(エンノン回転数センサ)、35・・・アクセルレバ
−開度センサ(エンノン負荷センサ)、41・・・コン
トロールユニット、53・・・トラップ、54・・・昇
温装置、55・・・エンジン負荷センサ、56・・・エ
ンジン回転数センサ、57・・・捕集量計算手段、58
・・・捕集量積算手段、59・・・再生時期判定手段、
60・・・作動手段、61・・・差圧センサ、62・・
・再生直後判定手段、63・・・比率計算手段、 6°4・・・燃え残り#II集量計量計算手段 5・・・初期値設定手段。
Figure PjS1 is a claim correspondence diagram of this invention, Figure tIS2 is a system diagram of one embodiment, Figure 3 is a flowchart for explaining the control operation of this embodiment, and Figures 4 to 7 are respectively diagrams of this embodiment. ΔP CT , K IwwΔPwax Characteristic diagram of ZAN, FIG. 8 is a system diagram of a conventional example. 2...Exhaust passage, 5...Intake passage, 6...@throttle valve, 8...Diamond 7 ram actuator, 19...
・Three-way solenoid valve, 21...Exhaust throttle valve, 22...Diamond 7 ram actuator, 23...Three-way solenoid valve, 24
...Bypass passage, 25...Bypass valve, 26...
- Diaphragm actuator, 27... Three-way solenoid valve, 29... Heater, 31... Pressure sensor, 32...
- Trap inlet temperature sensor, 34... Crank angle sensor (Ennon rotation speed sensor), 35... Accelerator lever opening sensor (Ennon load sensor), 41... Control unit, 53... Trap, 54 ... Temperature raising device, 55 ... Engine load sensor, 56 ... Engine rotation speed sensor, 57 ... Collection amount calculation means, 58
. . . Collection amount integrating means, 59 . . . Regeneration time determining means,
60... Operating means, 61... Differential pressure sensor, 62...
Immediately after regeneration determination means, 63... Ratio calculation means, 6°4... Unburnt #II collection measurement calculation means 5... Initial value setting means.

Claims (1)

【特許請求の範囲】[Claims] 排気中のパーティキュレートを捕集する一方で再生温度
以上になると捕集したパーティキュレートを再燃焼させ
るトラップと、このトラップを昇温させる装置と、エン
ジンの負荷と回転数をそれぞれ検出するセンサと、これ
らの検出値に応じて単位時間当たりのパーティキュレー
ト捕集量を計算する手段と、この捕集量を所定時間ごと
に積算する手段と、この積算値より再生時期にあるかど
うかを判定する手段と、この再生時期になると前記昇温
装置を作動させる手段と、前記トラップの前後差圧を検
出するセンサと、再生直後にあるかどうかを判定する手
段と、再生直後にあることが判定された場合に前記前後
差圧の検出値と限界差圧の比率を計算する手段と、この
比率に応じて再生直後の燃え残り捕集量を計算する手段
と、この燃え残り捕集量を前記積算値の初期値として設
定する手段とを設けたことを特徴とするエンジンの排気
浄化装置。
A trap that collects particulates in the exhaust while re-burning the collected particulates when the temperature exceeds the regeneration temperature, a device that raises the temperature of this trap, and sensors that respectively detect the load and rotation speed of the engine. Means for calculating the amount of particulates collected per unit time according to these detected values, means for integrating this collected amount at predetermined time intervals, and means for determining whether it is time for regeneration based on this integrated value. and a means for activating the temperature raising device at this regeneration time, a sensor for detecting a differential pressure across the trap, a means for determining whether the trap is immediately after regeneration, and a means for determining that the trap is immediately after regeneration. means for calculating the ratio between the detected value of the differential pressure across the front and rear and the limit differential pressure; means for calculating the amount of unburned residue collected immediately after regeneration according to this ratio; 1. An engine exhaust purification device characterized by comprising: means for setting as an initial value.
JP33904289A 1989-12-27 1989-12-27 Engine exhaust purification device Expired - Fee Related JP2616075B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP33904289A JP2616075B2 (en) 1989-12-27 1989-12-27 Engine exhaust purification device
US07/629,700 US5195316A (en) 1989-12-27 1990-12-21 Exhaust gas purifying device for an internal combustion engine
GB9027940A GB2239407B (en) 1989-12-27 1990-12-21 Exhaust gas purifying device for an internal combustion engine
DE4041917A DE4041917C2 (en) 1989-12-27 1990-12-27 Emission control system for use in an internal combustion engine
KR1019900021938A KR940009048B1 (en) 1989-12-27 1990-12-27 Exhaust gas cleaning apparatus
DE4042562A DE4042562C2 (en) 1989-12-27 1990-12-27 IC engine exhaust filter cleaning system - has box calculating when set degree of clogging has been reached and controlling heater to induce soot burning
FR9016364A FR2657649A1 (en) 1989-12-27 1990-12-27 DEVICE FOR PURIFYING THE EXHAUST GAS OF AN INTERNAL COMBUSTION ENGINE AND METHOD OF OPERATION THEREOF.
DE4042563A DE4042563C2 (en) 1989-12-27 1990-12-27 Emission control system for use in an internal combustion engine
US08/006,283 US5287698A (en) 1989-12-27 1993-01-19 Exhaust gas purifying device for an internal combustion engine
US08/006,299 US5319930A (en) 1989-12-27 1993-01-19 Exhaust gas purifying device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33904289A JP2616075B2 (en) 1989-12-27 1989-12-27 Engine exhaust purification device

Publications (2)

Publication Number Publication Date
JPH03199614A true JPH03199614A (en) 1991-08-30
JP2616075B2 JP2616075B2 (en) 1997-06-04

Family

ID=18323720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33904289A Expired - Fee Related JP2616075B2 (en) 1989-12-27 1989-12-27 Engine exhaust purification device

Country Status (1)

Country Link
JP (1) JP2616075B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153342B2 (en) 2003-01-10 2006-12-26 Nissan Motor Co., Ltd. Exhaust gas purifying system of internal combustion engine
US7677029B2 (en) 2004-03-11 2010-03-16 Toyota Jidosha Kabushiki Kaisha Regeneration controller for exhaust purification apparatus of internal combustion engine
CN113339109A (en) * 2021-07-07 2021-09-03 天津大学 Method for detecting and purifying trapping amount of automobile particle trap

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153342B2 (en) 2003-01-10 2006-12-26 Nissan Motor Co., Ltd. Exhaust gas purifying system of internal combustion engine
US7677029B2 (en) 2004-03-11 2010-03-16 Toyota Jidosha Kabushiki Kaisha Regeneration controller for exhaust purification apparatus of internal combustion engine
CN113339109A (en) * 2021-07-07 2021-09-03 天津大学 Method for detecting and purifying trapping amount of automobile particle trap

Also Published As

Publication number Publication date
JP2616075B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US6983591B2 (en) Particulate filter regenerating device
US5195316A (en) Exhaust gas purifying device for an internal combustion engine
EP1455070B1 (en) Regeneration of particulate filter
US7147693B2 (en) Engine exhaust gas purification device
JPH03202609A (en) Engine exhaust emission control device
US6990802B2 (en) Apparatus and method for regenerating particulate filter that removes particulates out of exhaust gas for internal combustion engine
US20030230078A1 (en) Exhaust gas cleaning system having particulate filter
JP2626111B2 (en) Engine exhaust purification device
JPH0713452B2 (en) Particle collection amount detection device for exhaust particle collector of internal combustion engine
JP2004308439A (en) Exhaust emission cleaning device
JPH03199614A (en) Exhaust gas cleaner for engine
JP2543608B2 (en) Engine exhaust purification device
JP2623879B2 (en) Engine exhaust purification device
JP2630024B2 (en) Engine exhaust purification device
JP2616074B2 (en) Engine exhaust purification device
JP3374500B2 (en) Diesel engine exhaust purification system
JP4092480B2 (en) Exhaust gas purification device for internal combustion engine
JPH03229909A (en) Exhaust cleaner for engine
JPH0544439A (en) Exhaust gas purifying device for diesel engine
JPS62291414A (en) Exhaust emission control device for diesel engine
JPH05332125A (en) Exhaust emission control device of engine
JP6962262B2 (en) Exhaust treatment system
JP2705250B2 (en) Reburning device for particulate trap
JPH04358714A (en) Exhaust purifying device for engine
JPH0713454B2 (en) Filter recycling processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees