JPH0319872B2 - - Google Patents

Info

Publication number
JPH0319872B2
JPH0319872B2 JP8334283A JP8334283A JPH0319872B2 JP H0319872 B2 JPH0319872 B2 JP H0319872B2 JP 8334283 A JP8334283 A JP 8334283A JP 8334283 A JP8334283 A JP 8334283A JP H0319872 B2 JPH0319872 B2 JP H0319872B2
Authority
JP
Japan
Prior art keywords
water
coating
fatty acid
parts
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8334283A
Other languages
Japanese (ja)
Other versions
JPS59207973A (en
Inventor
Kozo Sawada
Shigeki Matsubara
Yosei Nakayama
Tetsuo Aihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP8334283A priority Critical patent/JPS59207973A/en
Publication of JPS59207973A publication Critical patent/JPS59207973A/en
Publication of JPH0319872B2 publication Critical patent/JPH0319872B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は常温で乾燥硬化しうる電着塗装用水性
塗料組成物に関し、さらに詳しくは、或る種の特
定の脂肪酸変性重合体のマレイン化物の水溶化物
または水分散化物、或る種の特定の有機溶剤およ
び水を主成分として含有する電着塗装用常温乾燥
型水性塗料組成物に関する。 電着塗装方式は、他の塗装方式、例えば流し塗
り、刷毛塗り、スプレー塗装、浸潰塗装などに比
べて多くの利点を有しており、自動車をはじめと
する各種の製品の塗装に使用されている。例え
ば、電着塗装方式は、上記の他の塗装方式に比
べ、複雑な形状を有する被塗物の塗装困難な部分
にも均一な膜厚に塗装することができること、塗
料の損失が少なく利用効率が極めて高いこと、塗
面に流れ、タレ、タマリなどが生じにくいことな
ど利点がある。しかしながら、その反面、従来の
電着塗装には、殆んど熱硬化形の水性塗料が用い
られており、電着後の塗膜の硬化には100℃以上
の高温での焼付を必要とするために、熱容量の大
なる被塗物には適用困難であり、或いは経済的損
失が大きい等の欠点がある。 そこで、本発明者等は、電着後の塗膜を焼付け
する必要がない常温で乾燥硬化する水性塗料を電
着塗装することができ、しかも常温で実用的な塗
膜が形成することが可能となれば、電着塗装方式
がもつ前記の如き利点を生かしつつ上記の如き欠
点を解消することができると考え、電着塗装に適
した常温乾燥型の水性塗料組成物につき検討を行
なつた。 もつとも、電着塗装に使用するための水性塗料
組成物がもつべき特性としては、該塗料組成物か
ら形成される塗膜が常温で乾燥硬化するというだ
けでは不充分であり、同時にいくつかの厳しい特
性を具備していることが要求される。例えば、(1)
電着浴中において塗料成分が劣化せずに安定性に
すぐれていること;(2)常温において平滑性にすぐ
れた塗膜を与えること;(3)つきまわり性がよいこ
と、などが要求される。 そこで、本発明者等は、常温乾燥形水性塗料と
して一般の汎用塗料として用いられているアルキ
ド樹脂系やマレイン化ポリブタジエン系のエマル
ジヨン型および水溶液型の常温乾燥形水性塗料を
用いて電着塗装を試みたところ、これらのうち、
エマルシヨン型水性塗料ではいずれもち密で平滑
性にすぐれた塗膜が得られず、しかもつきまわり
性も十分でなかつた。 また、水溶性アルキド樹脂塗料は、その塗膜硬
度に限界があつて長時間の乾燥を余儀なくされ、
しかも電着浴中で該アルキド樹脂は容易に加水分
解され、かつ浴安定性も悪いので、つきまわり性
が劣り、塗面に肌あれが発生する等の欠陥を有し
ている。一方、水溶性マレイン化ポリブタジエン
塗料は殆ど加水分解されないが常温における乾燥
性が劣るので実用性に乏しいものであつた。 このように、従来一般の汎用塗料として用いら
れている常温乾燥型水性塗料は、電着浴安定性、
塗膜のつきまわり性、塗膜の乾燥性、塗膜の平滑
性等の常温乾燥型電着塗装用水性塗料組成物に要
求される性能のうちのいずれかの性能に欠けてお
り、電着塗装に供することは困難である。 ところが、今回、驚くべきことに、 (A) アリルアルコール含有重合体からなる主鎖と
エステル結合を介して結合した乾性油脂肪酸残
基および/または半乾性油脂肪酸残基にマレイ
ン酸および/または無水マレイン酸を付加せし
めてなる、ガラス転移温度が−30〜60℃、該脂
肪酸残基の含有率が5〜70重量%、酸価が5〜
260である脂肪酸変性重合体のマレイン化物の
水溶化物または水分散化物、 (B) ブチルセロソルブ、ベンジルアルコール、オ
クチルアルコール、n−ブタノール、3メチル
3メトキシブタノール、3メトキシブチルアセ
テート、ブチルカルビトール、メチルエチルケ
トンから選ばれた1種もしくは2種以上の有機
溶剤および (C) 水 を主成分とする常温乾燥型水性塗料組成物は、電
着塗装を容易に行なうことができ、且つ浴安定
性、つきまわり性、塗膜の平滑性に優れており、
しかも、他の塗装法で塗布した場合には乾燥性が
不充分であるにもかかわらず、電着塗装した場合
には意外にも常温における乾燥硬化性が著るしく
優れていることを見い出し、本発明を完成するに
至つた。 しかして、本発明によれば、上記(A)脂肪酸変性
重合体のマレイン化物の水溶化物または水分散化
物、(B)特定の有機溶剤および(C)水を主成分とする
ことを特徴とする電着塗装用常温乾燥型水性塗料
組成物が提供される。 本発明において用いる上記(A)脂肪酸変性重合体
のマレイン化物(以下、これを単に「変性マレイ
ン化重合体」と略称することがある)の水溶化物
または水分散化物は、その重合体主鎖中にエステ
ル結合を含んでいないものであり、電着浴中にお
いて加水分解されることが殆どないので、本発明
の塗料組成物は電着浴の安定性およびつきまわり
性(被塗面のあらゆる部分に塗膜が均一厚さに形
成すること)および塗面の平滑性などがすぐれて
いる。 また、上記の変性マレイン化重合体はガラス転
移温度が特定の範囲に調整されているために、塗
装後の本発明の塗料組成物の塗膜は、乾性油もし
くは半乾性油の脂肪酸にもとずく酸化重合による
ことなく、塗膜から揮発性物質(水、有機溶剤な
ど)が蒸発するだけで使用に耐える初期硬度を有
せしめることができる。そして、本発明の塗料組
成物から形成された電着塗膜は、該脂肪酸が、空
気中で酸化重合することによつてさらに硬化が進
行して、塗膜のたわみ性、付着性、破壊強度など
がより一層向上するのである。ところで該変性マ
レイン化重合体中の乾性油または半乾性油脂肪酸
含有量が多くなると、電着浴の開放カクハンによ
る電着浴と空気との接触が多くなつたり、或いは
ターンオーバーが長くなつたりした場合におい
て、電着浴中で該脂肪酸が酸化重合して塗面状態
を劣化させるおそれはあるが、本発明における電
着塗膜は前記したように初期硬度がすぐれ、しか
も下記のごとく該脂肪酸による架橋反応を効率よ
く行なえるので、かかる劣化が発生する可能性が
ある電着塗装系では脂肪酸含有量を最少限にする
ことができ、かかる欠陥を解消することが可能で
ある。 さらに、本発明の水性塗料組成物から形成され
た塗膜は、該水性塗料組成物を他の塗装法、例え
ばスプレー塗装、浸潰塗装などで塗装した場合の
塗膜に比べて、乾燥性、たわみ性、破壊強度、耐
水性などが著しくすぐれているのである。このよ
うな技術的効果は予期せざることであり、おどろ
くべき現象である。かかる技術的効果が得られる
根拠は不明であるが、電着塗装方式によつて陽極
(被塗物)に折出させた本発明の水性塗料組成物
の塗膜中には中和剤が殆んど含まれていないので
塗膜の乾燥性、耐水性が向上し、さらに陽極で発
生する酸素ガスおよび陽極から溶出される金属イ
オン(例えば、鉄、亜鉛、鉛、カルシウムなどの
イオン)などによつて、重合体鎖(主鎖)にペン
ダント側鎖として結合している脂肪酸の酸化重合
による塗膜の架橋反応が促進され、その結果、塗
膜の乾燥性、たわみ性、破壊強度、耐水性などの
性能が著しく向上したものと推察される。そし
て、このことから、脂肪酸の酸化重合反応にもと
ずく架橋反応を効率よく行なえることが可能にな
つたので、不飽和脂肪酸の使用量を少なくするこ
とができ、電着浴の安定性向上に寄与させること
ができたものと考えられる。 また、本発明の水性塗料組成物には特定の有機
溶剤を含有せしめてあるので、塗膜表面の平滑性
(光沢)を著しく向上させることが可能となつた。
これは、該有機溶剤が電着後の塗膜中に分配され
て、塗膜に流展性を与えるものと思われる。 以下、本発明に係る水性塗料組成物についてさ
らに詳しく説明する。 該水性塗料組成物は、前述したとおり、(A)変性
マレイン化重合体の水溶化物または水分散化物、
(B)特定の有機溶剤および(C)水を主成分とする常温
で乾燥硬化しうる電着塗装用水性塗料組成物であ
る。 (A) 変性マレイン化重合体の水溶化物または水分
散化物 これは、アリルアルコール含有重合体からなる
主鎖とエステル結合を介して結合した乾性油脂肪
酸残基および/または半乾性油脂肪酸残基にマレ
イン酸および/または無水マレイン酸を付加せし
めてなる、ガラス転移温度が−30〜60℃、該脂肪
酸残基の含有率が5〜70重量%、酸価が5〜260
である脂肪酸変性重合体のマレイン化物(変性マ
レイン化重合体)の水溶化物または水分散化物で
ある。 該変性マレイン化重合体は、種々の方法によつ
て製造でき、例えば、(イ)アリルアルコールを用い
てなる重合体もしくはアリルアルコールと、それ
以外のその他の重合性不飽和単量体(以下、「他
のビニルモノマー」と略称することもある)との
共重合体に、乾性油脂肪酸および/または半乾性
油脂肪酸(以下、これらを「不飽和脂肪酸」と総
称することもある)をエステル反応せしめ、次い
で該エステル化反応生成物中の不飽和脂肪酸残基
にマレイン酸および/または無水マレイン酸(以
下、これらを「マレイン酸等」と総称することも
ある)を付加する、または(ロ)アリルアルコールと
不飽和脂肪酸とのエステル化反応生成物を用いて
なる重合体もしくは該エステル化反応生成物と他
のビニルモノマーとからなる共重合体中の不飽和
脂肪酸残基にマレイン酸等を付加する、などによ
つて得られる。 まず、上記(イ)においてアリルアルコールを用い
てなる重合体、およびアリルアルコールと他のビ
ニルモノマーとの共重合体はそれ自体公知の方法
によつて製造することができる。ここで、他のビ
ニルモノマーとの共重合体においては、アリルア
ルコールは、該共重合体中5重量%以上含有せし
めることが好ましい。そして、該重合体または該
共重合体に含まれる水酸基に不飽和脂肪酸をエス
テル化反応によつて結合せしめるのである。この
エステル化反応において、不飽和脂肪酸の量は、
変性マレイン化重合体中の不飽和脂肪酸残基の含
有率が5〜70重量%になるようにすべきであつ
て、また、このエステル化反応は、該両成分を50
〜300℃に加熱することによつて行なわれる。次
に、このエステル化反応生成物中の不飽和脂肪酸
残基にマレイン酸等を付加(マレイン化)するの
であり、マレイン化は通常の方法により行えば良
く、マレイン酸等を約120〜250℃で反応させれば
良い。特に重合体主鎖中に水酸基が多く残つてい
る場合には酢酸、プロピオン酸、ステアリン酸等
の低分子又は高分子の酸でエステル化して過剰の
水酸基を除いた後、マレイン化を行なうのが好ま
しい。無水マレイン酸でマレイン化する場合は、
脂肪酸残基に付加した酸無水基の開環が必要で、
これは水、アルコール、アンモニア、アミン等で
行なうことができ、最終酸価が5〜260となるよ
うに無水マレイン酸の量を調整する。マレイン酸
でマレイン化する場合は、やはり最終酸価が上記
の範囲となるように、マレイン酸の量を調整す
る。 また、上記(ロ)において、アリルアルコールと不
飽和脂肪酸とのエステル化反応は、それ自体公知
の方法で行なうことができる。例えば、アリルア
ルコールと不飽和脂肪酸との反応は、上記両成分
を適当な不活性有機溶媒、好ましくは沸点が180
℃以下の水−非混和性有機溶媒、例えば、ベンゼ
ン、トルエン、キシレンなどの芳香族炭化水素基
系;ヘプタン、ヘキサン、オクタンなどの脂肪酸
炭化水素系溶媒などの中で、エステル化触媒例え
ば、硫酸、硫酸アルミニウム、メチル硫酸、p−
トルエンスルホン酸、塩酸、リン酸等および重合
禁止剤例えば、ハイドロキノン、メトキシフエノ
ール、tert−ブチルカテコール、ベンゾキノンな
どの存在下に、約110〜160℃の温度で約0.5〜9
時間反応させることによつて行なうことができ
る。そして、このエステル化反応生成物の重合反
応、または該エステル化反応生成物と他のビニル
モノマーとの共重合反応は、アクリル系共重合体
を製造するためのそれ自体公知の方法に従い、例
えば溶液重合法、乳化重合法、懸濁重合法等を用
いて行なうことができる。有利には溶液重合法に
従つて行なうことが好ましく、各モノマー成分を
適当な有機溶媒(例えば後記した有機溶剤から選
ばれた1種もしくは2種以上)中で、ラジカル重
合触媒(例えば、アゾ系化合物、パーオキサイド
系化合物、スルフイド類、スルフイン類、ジアゾ
化合物、ニトロソ化合物、レドツクス系など)の
存在下に、通常約0〜約180℃、好ましくは約40
〜約170℃の温度で、約1〜20時間、好ましくは
約2〜10時間反応を続けることにより行なうこと
ができる。該エステル化反応生成物と他のビニル
モノマーとを共重合せしめるには、該エステル化
反応生成物の配合量は、変性マレイン化重合体中
の不飽和脂肪酸残基の含有率が5〜70重量%にな
るように調整すべきであり、例えば、該共重合体
中5重量%以上であることが好ましい。そして、
このようにして得た重合体または共重合体に含ま
れる不飽和脂肪酸残基へのマレイン酸および/ま
たは無水マレイン酸の付加(マレイン化)は、上
記(イ)と同様にして行なうことができる。 上記(イ)、(ロ)において、アリルアルコールと共重
合させる他のビニルモノマーとしては、例えばス
チレン、ビニルトルエン、α−メチルスチレン、
アクリロニトリル、メタクリロニトリル、炭素数
1〜26の1価アルコールとアクリル酸若しくはメ
タクリル酸とのエステル、エチレングリコールモ
ノアルキルエーテル若しくはジエチレングリコー
ルモノアルキルエーテル(アルキル基の炭素数1
〜8)とアクリル酸若しくはメタクリル酸とのエ
ステル、プロピレングリコールモノアルキルエー
テル若しくはジプロピレングリコールモノアルキ
ルエーテル(アルキル基の炭素数1〜8)とアク
リル酸若しくはメタクリル酸とのエステル、上記
不飽和脂肪酸以外の炭素数4〜26のモノカルボン
酸とグリシジルメタクリレート若しくはグリシジ
ルアクリレートとの付加モノマー等が挙げられ、
前記アリルアルコール、またはアリルアルコール
と不飽和脂肪酸とのエステル化反応物との共重合
性にすぐれ、生成した変性マレイン化重合体が高
温で安定であるモノマーを使用するのが望まし
い。その他ブタジエン、イソプレン、クロロプレ
ン、ペンタジエン、酢酸ビニル、塩化ビニル、ベ
オバモノマー(アメリカ、シエルケミカル社製、
商品名)等の一般のラジカル重合に使用されるモ
ノマーも他のモノマーとして使用できる。 又不飽和脂肪酸は常温乾燥性を付与する成分で
あり、例えばサフラワー油脂肪酸、ダイズ油脂肪
酸、アマニ油脂肪酸、ゴマ油脂肪酸、エノ油脂肪
酸、ブドウ核脂肪酸、トウモロコシ油脂肪酸、麻
実油脂肪酸、ケシ油脂肪酸、ヒマワリ油脂肪酸、
トール油脂肪酸、綿実油脂肪酸、ゴム種油脂肪
酸、クルミ油脂肪酸等の非共役の二重結合を多く
含む炭素数が6〜30、好ましくは17〜20のもの
が、マレイン化反応をゲル化させることなく容易
に行なえ、しかも電着塗装した塗膜の常温硬化性
がすぐれているので好ましく、特に、サフラワー
油脂肪酸、アマニ油脂肪酸、ダイズ油脂肪酸、ト
ール油脂肪酸が好適で、さらにカラシ油脂肪酸、
オイチシカ油脂肪酸、落花生油脂肪酸、キリ油脂
肪酸、脱水ヒマシ油脂肪酸、ハイジエン脂肪酸等
も使用できる。 また、上記の如くにして得られる変性マレイン
化重合体の水溶化または水分散化は、該重合体中
のマレイン酸等によるカルボキシル基の一部もし
くは全部を中和剤水性溶液で中和処理することに
より行なわれる。用いうる中和剤としては、例え
ば、アンモニア、アミン、アルカリ金属の水酸化
物、アルカリ金属の炭酸塩もしくは重炭酸塩など
があげられる。該アミンとしては第1級、第2級
又は第3級低級アルキルアミン;第1級、第2級
又は第3級低級アルカノールアミン;およびシク
ロアルキルアミンなどが使用できる。また、アル
カリ金属の水酸化物としては、水酸化カリウム、
水酸化ナトリウムなど;アルカリ金属の炭酸塩も
しくは重炭酸塩としては炭酸ナトリウム、重炭酸
ナトリウムなどが使用できる。これらの中和剤の
中では、特にトリエチルアミンが好適である。中
和剤の使用量は、一般に、変性マレイン化重合体
中のカルボキシル基に対して0.1〜2.0当量、好ま
しくは0.5〜1.2当量とすることができる。 本発明で用いる変性マレイン化重合体は、 (1) ガラス転移温度が−30℃〜60℃、好ましくは
−25℃〜50℃、さらに好ましくは−23〜20℃で
あり; (2) 乾性油脂肪酸残基及び/又は半乾性油脂肪酸
残基の含有率が5〜70重量%、好ましくは10〜
60重量%、さらに好ましくは20〜55重量%であ
り;且つ (3) 酸価が5〜260、好ましくは10〜150、さらに
好ましくは20〜100となるように調節すること
が重要であり、かかる特性要件を満たす脂肪酸
変性付加重合ポリマーのマレイン化物を製造す
るための各モノマーの割合は当業者であれば簡
単な小規模実験を行なうことにより容易に決定
しうることである。 この変性マレイン化重合体の特性に関し、ガラ
ス転移温度が−30℃よりも低くなるとその共重合
体を用いて電着塗装した直後の初期塗膜硬化が十
分でなく、一方、60℃よりも高くなると十分に酸
化乾燥した塗膜のたわみ性、付着性および耐衝撃
性などが低下する。また、不飽和脂肪酸の含有率
が5重量%より少なくなると、塗膜の酸化乾燥性
が期待できず、硬度が不十分となり、一方70重量
%より多くなると電着塗装浴中において酸化重合
が進行し、均一な塗面を得られない。さらに、酸
価が5より低くなると該脂肪酸変性共重合体の水
溶化または水分散化が困難となり、一方260より
高くなると塗膜の耐水性が低下するので、いずれ
も好ましくなく、本発明の目的を達成できないの
である。 本発明における変性マレイン化重合体のガラス
転移温度の測定は、自由ねじり振動法の原理にも
とずくトーシヨナルプレードアナライザー(理学
電機株式会社製、TBA−8120A1)を用い、定速
昇温下における該脂肪酸変性カルボキシル基含有
共重合体を含浸させた繊維の力学的減衰指数のピ
ークとなる温度を測定したものである。繊維への
該重合体の含浸は、該重合体の溶液(固形分含量
40重量%の酢酸エチル/ブチルセロソルブ=1/
1溶液)に前記測定装置で定められている組みひ
もを浸潰したのち、引き上げ、真空乾燥して溶媒
を除去することによつて調整した。 また、不飽和脂肪酸は、電着浴の安定性を劣化
させるおそれがあるのでできるだけ少量にするこ
とが好ましいが、電着浴と空気との接触が少な
く、かつターンオーバーが短い電着塗装系におい
ては変性共重合体中に多量含有せしめてもさしつ
かえないのである。 (B) 有機溶剤 本発明で用いる有機溶剤はブチルセロソルブ、
ペンジルアルコール、オクチルアルコール、n−
ブタノール、3メチル3メトキシブタノール、3
−メトキシブチルアセテート、ブチルカルビトー
ルから選ばれた1種もしくは2種以上であつて、
これらの有機溶剤は電着塗装した塗膜中に程よく
分配され、塗膜に流動性を付与し、平滑性を著し
く向上させることができるのである。該有機溶剤
の配合量は、(A)変性マレイン化重合体100重量部
あたり、15〜500重量部、さらに30〜200重量部、
特に50〜150重量部が好ましい。本発明の塗料組
成物において、有機溶剤として上記特定した以外
のものを配合すると塗膜の平滑性を向上できない
が、適用する目的によつて、上記特定有機溶剤と
それ以外の有機溶剤とを併用することも可能であ
る。上記以外の溶剤として、例えば、トルエン、
キシレン、メチルエチルケトン、メチルイソブチ
ルケトンなどがあげられる。 (C) 水 上水、水道水、脱イオン水などが使用できる。 本発明の塗料組成物は、このようにして水溶性
化または水分散化された変性マレイン化重合体、
有機溶剤および水を主成分として含有するもので
あり、そのまま電着塗装に使用することができる
が、必要に応じて、通常行なわれているように、
着色顔料、体質顔料、防錆顔料、界面活性剤等を
配合してもよい。 さらに、常温における塗膜の乾燥硬化性を向上
させる目的で、ナフテン酸コバルト、ナフテン酸
鉛などの通常一般に用いられている金属塩乾燥剤
を添加することも可能であるが、電着浴の安定性
を低下するおそれがあるので、浴安定性の要求さ
れる程度に応じて添加する量を選択することが好
ましい。具体的には、変性マレイン化重合体100
重量部あたり、金属塩乾燥剤を金属量にもとずい
て0.001〜0.1重量部の範囲で添加することが好ま
しい。 以上述べた如くして製造される本発明の水性塗
料組成物は電着塗装用塗料として広範に使用する
ことができる。電着塗装に当つて、電着塗装浴は
上記水性塗料組成物中の変性マレイン化重合体の
含有率が一般に3〜25重量%、好ましくは5〜20
重量%になるように希釈することによつて得られ
る。 被塗物は少なくともその表面が導電性金属で構
成されているものであればその大きさおよび形状
には特に制限はなくどのようなものであつてもよ
い。特に、本発明の樹脂組成物は塗膜を加熱によ
つて硬化せしめる必要がないので、熱容量が大き
く、塗膜を加熱により硬化させることが困難な被
塗物にも有利に適用することがきる。具体的に
は、鉄、アルミニウム、鋼、およびこれらの表面
を公知の方法で化成処理(例えば、リン酸亜鉛処
理、リン酸鉄処理など)せしめたものがあげられ
る。 電着塗装操作はそれ自体公知の方法で行なうこ
とができる。例えば、上記の如くして調製した電
着塗装浴の温度を10〜50℃、好ましくは20〜35℃
に調整し、これに被塗物を陽極として浸潰し、他
に設けた陰極との間に10〜300ボルト、好ましく
は30〜250ボルトの電圧で、30秒〜20分、好まし
くは1〜10分間通電することによつて被塗物(陽
極)表面に塗膜を析出させることができる。しか
るのちに、被塗物を電着浴から引き上げて常温で
放置すれば、塗膜が乾燥硬化する。勿論必要に応
じて、塗膜成分が熱分解しない程度(約250℃以
下)に被塗物を加熱して硬化させてもさしつかえ
ない。 次に、実施例および比較例をあげて、本発明を
さらに具体的に説明する。なお、以上において
「部」および「%」はそれぞれ重量部及び重量%
である。 実施例 1 (a) 変性マレイン化重合体の製造: RJ−100(数平均分子量1600,OH含有率7.8%
のスチレン−アリルアルコール共重合体、モンサ
ント・ケミカル(株)製)1264部、アマニ油脂肪酸
1180部、キシレン100部及びジブチルチンオキサ
イド1.5部からなる混合物を反応器に入れ、生成
する縮合水を反応系から取り除きながら230℃で
10時間反応させて酸価5.5の樹脂を得る。これに
無水マレイン酸145部を加えて190〜200℃で7時
間マレイン化反応を行なう。 減圧蒸留によつてキシレンと未反応のマレイン
酸を除いた後水を加えて無水基を開環し、n−ブ
チルセロソルブを加えて全酸価56、固形分80%の
変性マレイン化重合体Aを得た。 (b) 水性塗料組成物の製造: 上記(a)で得た変性マレイン化重合体Aにn−ブ
チルセロソルブを樹脂固形分100部あたり30部に
なるように追加配合し、さらにオクタノールを該
樹脂固形分100部あたり30部の割合で加えた。つ
いで該変性マレイン化重合体の全酸価に対し約
0.9当量のトリエチルアミンを用いて中和した。 ついで、この中和した樹脂溶液に樹脂固形分
100部あたり顔料Titanium Dioxide JR−600(帝
国化工株式会社製商品名、ルチル型チタン白)29
部、カーボンブラツクMA−100(三菱化成株製商
品名、カーボンブラツク)0.4部およびストロン
チウムクロメート(菊池色素工業(株)製)1.0部の
割合で配合し、ペイントコンデイシヨナーで分散
したのち、樹脂分および顔料分の合計含有量が10
%となるようイオン交換水で希釈し、電着塗装用
水性塗料組成物とした。 (c) 電着塗装: 該電着塗装用塗料組成物をマグネチツクスター
ラーでかくはんできる4l硬質ポリ塩化ビニル製容
器に入れ、電極として75×50×0.8(mm)の脱脂洗
浄した磨軟鋼板−SPCCJIS−G3141を用い、陽極
及び陰極とした。両電極間に直流電圧を整流器
(株式会社高砂製作所TYPE G−25M GP0250−
5)にて2分間かけた。電極間の距離は15cmと
し、両電極は浴組成物中にそれぞれ10cmの深さに
浸漬した。150ボルト、2分間の電着後陽極側で
あつた軟鋼板を浴より取り出し、垂直に吊下げて
室温にて乾燥させた。該電着塗装用塗料組成物の
電着浴における安定性と得られた塗膜の性能試験
結果は後記第1表にまとめて示す。 実施例 2 (a) 変性マレイン化重合物の製造: RJ−100(数平均分子量1600、OH含有率7.8%
のスチレン−アリルアルコール共重合体、モンサ
ント・ケミカル(株)製)1264部、ダイズ油脂肪酸
1180部、キシレン100部及びジブチルチンオキサ
イド1.5部からなる混合物を反応容器に入れ、生
成する縮合水を反応系から取除きながら230℃で
10時間反応させて酸価5.5の樹脂を得る。これに
無水マレイン酸116部を加えて190℃〜200℃で7
時間マレイン化反応を行なう。 減圧蒸留によつてキシレンと未反応のマレイン
酸を除いた後、水で開環し、n−ブチルセロソル
ブを加えて全酸価45、固形分79.5%の変性マレイ
ン化重合体Bを得た。 (b) 水性塗料組成物の製造および電着塗装 上記(a)で得た変性マレイン化重合体B溶液に、
n−ブチルセロソルブを該樹脂固形分100部あた
り30部になるように追加配合し、さらにベンジル
アルコールを該樹脂固形分100部あたり50部の割
合で加えたのち、該樹脂の全酸価に対し約0.9当
量のトリエチルアミンを用いて中和した。ついで
この中和した樹脂溶液に実施例1の(1)−bと同様
の方法によつて顔料を分散し、電着塗装用樹脂組
成物とし、(1)−cと同様に電着塗装を行い、試験
に供した。結果は後記第1表に示す。 実施例 3 (a) 変性マレイン化重合体の製造: RJ−100(数平均分子量1600、OH含有率7.8%
のスチレン−アリルアルコール共重合体、モンサ
ント・ケミカル(株)製)1264部、アマニ油脂肪酸
1180部、キシレン100部及びジブチルチンオキサ
イド1.5部からなる混合物を反応容器に入れ、生
成する縮合水を反応系から取除きながら230℃で
10時間反応させて酸価5.5の樹脂を得る。これに
無水マレイン酸87部を加えて190℃〜200℃で7時
間マレイン化反応を行なう。 減圧蒸留によつてキシレンと未反応のマレイン
酸を除いた後水で開環しn−ブチルセロソルブを
加えて全酸価45、固形分80%の変性マレイン化重
合体Cを得た。 (b) 水性塗料組成物の製造および電着塗装 上記(a)で得た変性マレイン化重合体C溶液に、
n−ブチルセロソルブを該重合体固形分100部あ
たり35部になるように追加配合し、さらにベンジ
ルアルコールを該重合体固形分100部あたり35部
の割合で加えたのち、該重合体の全酸価に対し約
0.9当量のトリエチルアミンを用いて中和した。 ついでこの中和溶液に、実施例2の(b)と同様の
方法によつて顔料分散し、電着塗装用塗料組成物
とし、実施例2の(c)と同様に電着塗装を行い、試
験に供した。 結果は後記第1表に示す。 比較例 1 下記の成分 ネオペンチルグリコール 52.5 部 トリメチロールプロパン 68.25部 イソフタル酸 149.4 部 トリメリツト酸 13.44部 アマニ油脂肪酸 70 部 パラターシヤリーブチル安息香酸 26.7 部 の配合物を240℃7時間の縮合反応を行なつて
製造した樹脂酸価40、ガードナー粘度V〜W、脂
肪酸含有量20%の乾性油脂肪酸変性アルキド樹脂
に、n−ブチルセロソルブ30部及びベンジルアル
コール30部を加え、次に該樹脂の全酸価に対し
て、約1.0当量のトリエチルアミンを用いて中和
した。 次いで該アルキド樹脂固形分100部あたり顔料
Titanium Dioxide JR−600、30部、カーボンブ
ラツクMA−100 0.4部、ストロンチウムクロメ
ート、1.0部の割合で配合し、ペイントコンデイ
シヨナーで分散したのち、樹脂分および顔料分の
合計含有量が10%になるようイオン交換水で希釈
し、電着塗装用水性塗料組成物とした。前記実施
例1と同様の方法で電着塗装を行い、比較例とし
て試験に供した。結果を下記第1表にまとめて示
す。 比較例 2 前記実施例1における顔料分散まで行なつた組
成物を水で希釈し、フオードカツプNo.4 25秒の
粘度に調整し、75×50×0.8(mm)の脱脂洗浄した
磨軟鋼板−SPCCJIS−G3141にスプレー塗装を行
なつて試験板を作成した。試験板は乾燥状態での
膜厚が20μとなるものを試験に供した。結果を下
記第1表に示す。
The present invention relates to a water-based coating composition for electrodeposition coating which can be dried and cured at room temperature, and more particularly, it relates to a water-based coating composition containing a water-solubilized product or water-dispersed product of maleic acid of a certain specific fatty acid-modified polymer, The present invention relates to an aqueous coating composition for electrodeposition coating that dries at room temperature and contains an organic solvent and water as main components. Electrodeposition coating has many advantages over other coating methods such as flow coating, brush coating, spray coating, and immersion coating, and is used for coating various products including automobiles. ing. For example, compared to the other coating methods mentioned above, the electrodeposition coating method can coat difficult-to-coat parts of objects with complex shapes with a uniform film thickness, and there is less loss of paint, making it more efficient to use. It has the advantages of being extremely high in corrosion resistance, and being less likely to run, sag, or sag on the painted surface. However, on the other hand, most conventional electrodeposition coatings use thermosetting water-based paints, which require baking at a high temperature of 100℃ or higher to harden the coating after electrodeposition. Therefore, it is difficult to apply to coated objects with a large heat capacity, or there are drawbacks such as large economic losses. Therefore, the inventors of the present invention were able to electrodeposit a water-based paint that dries and hardens at room temperature without the need to bake the coating film after electrodeposition, and it is also possible to form a practical coating film at room temperature. Therefore, we thought that it would be possible to eliminate the above disadvantages while taking advantage of the advantages of the electrodeposition coating method, and we investigated a water-based paint composition that dries at room temperature and is suitable for electrodeposition coating. . However, the properties that a water-based coating composition for use in electrodeposition coating should have include that the coating film formed from the coating composition dries and hardens at room temperature; It is required to have the following characteristics. For example, (1)
The paint components are required to have excellent stability without deterioration in the electrodeposition bath; (2) to provide a coating film with excellent smoothness at room temperature; (3) to have good throwing power. Ru. Therefore, the present inventors performed electrodeposition coating using emulsion type and aqueous solution type water-based paints that dry at room temperature, such as alkyd resin-based and maleated polybutadiene-based paints, which are generally used as general-purpose paints. When I tried, among these,
With none of the emulsion type water-based paints, it was not possible to obtain a coating film that was dense and had excellent smoothness, and the throwing power was also insufficient. In addition, water-soluble alkyd resin paints have a limited film hardness and are forced to dry for a long time.
Moreover, since the alkyd resin is easily hydrolyzed in the electrodeposition bath and has poor bath stability, it has defects such as poor throwing power and roughness on the coated surface. On the other hand, water-soluble maleated polybutadiene paints are hardly hydrolyzed but have poor drying properties at room temperature, so they are of little practical use. In this way, the water-based paints that dry at room temperature, which have been conventionally used as general-purpose paints, have excellent electrodeposition bath stability,
It lacks any of the properties required for a water-based paint composition for electrodeposition coating that dries at room temperature, such as coating film throwing power, coating film drying properties, and coating film smoothness. It is difficult to apply it for painting. However, this time, surprisingly, (A) maleic acid and/or anhydride was added to the drying oil fatty acid residue and/or semi-drying oil fatty acid residue bonded to the main chain consisting of the allyl alcohol-containing polymer via an ester bond. Made by adding maleic acid, the glass transition temperature is -30~60℃, the content of the fatty acid residue is 5~70% by weight, and the acid value is 5~5%.
260, aqueous solubilization or dispersion of maleic fatty acid modified polymer, (B) from butyl cellosolve, benzyl alcohol, octyl alcohol, n-butanol, 3-methyl-3-methoxybutanol, 3-methoxybutyl acetate, butyl carbitol, methyl ethyl ketone A water-based paint composition that dries at room temperature and mainly contains one or more selected organic solvents and (C) water can be easily applied by electrodeposition, and has good bath stability and throwing power. , has excellent coating film smoothness,
Furthermore, we discovered that although the drying properties are insufficient when applied using other coating methods, the drying properties at room temperature are surprisingly excellent when applied by electrodeposition. The present invention has now been completed. According to the present invention, the main components are (A) a water-solubilized or water-dispersed product of a maleate of a fatty acid-modified polymer, (B) a specific organic solvent, and (C) water. A room temperature drying type aqueous coating composition for electrodeposition coating is provided. The water-solubilized or water-dispersed product of the above (A) fatty acid-modified polymer maleated product (hereinafter sometimes simply referred to as "modified maleated polymer") used in the present invention is The coating composition of the present invention does not contain any ester bonds and is hardly hydrolyzed in the electrodeposition bath. The coating film is formed to a uniform thickness) and the coating surface has excellent smoothness. Furthermore, since the glass transition temperature of the above-mentioned modified maleated polymer is adjusted to a specific range, the coating film of the coating composition of the present invention after coating is based on the fatty acid of the drying oil or semi-drying oil. It is possible to obtain an initial hardness sufficient for use simply by evaporating volatile substances (water, organic solvents, etc.) from the coating film without using oxidative polymerization. The electrodeposited coating film formed from the coating composition of the present invention is further cured by oxidative polymerization of the fatty acid in the air, improving the flexibility, adhesion, and breaking strength of the coating film. etc. will be further improved. However, when the drying oil or semi-drying oil fatty acid content in the modified maleated polymer increases, contact between the electrodeposition bath and air due to the opening of the electrodeposition bath increases, or turnover becomes longer. In some cases, the fatty acid may undergo oxidative polymerization in the electrodeposition bath and deteriorate the coated surface condition. However, the electrodeposited coating film of the present invention has excellent initial hardness as described above, and furthermore, as described below, the fatty acid is Since the crosslinking reaction can be carried out efficiently, it is possible to minimize the fatty acid content in electrodeposition coating systems where such deterioration may occur, and it is possible to eliminate such defects. Furthermore, the coating film formed from the aqueous coating composition of the present invention has a higher drying property than a coating film formed by applying the aqueous coating composition using other coating methods such as spray coating and dip coating. It has outstanding flexibility, breaking strength, and water resistance. This technological effect is an unexpected and surprising phenomenon. Although the basis for obtaining such technical effects is unknown, it is clear that almost no neutralizing agent is present in the coating film of the aqueous coating composition of the present invention deposited on the anode (object to be coated) using the electrodeposition coating method. The dryness and water resistance of the coating film are improved because it does not contain much of the material, and it is also free from oxygen gas generated at the anode and metal ions (e.g. iron, zinc, lead, calcium ions, etc.) eluted from the anode. Therefore, the crosslinking reaction of the coating film due to oxidative polymerization of fatty acids bonded to the polymer chain (main chain) as pendant side chains is promoted, and as a result, the drying properties, flexibility, breaking strength, and water resistance of the coating film are improved. It is inferred that the performance has significantly improved. As a result, it has become possible to efficiently carry out the crosslinking reaction based on the oxidative polymerization reaction of fatty acids, making it possible to reduce the amount of unsaturated fatty acids used and improving the stability of the electrodeposition bath. It is thought that this contributed to the Further, since the aqueous coating composition of the present invention contains a specific organic solvent, it has become possible to significantly improve the smoothness (gloss) of the coating film surface.
This is thought to be because the organic solvent is distributed into the coating film after electrodeposition and imparts flowability to the coating film. Hereinafter, the water-based coating composition according to the present invention will be explained in more detail. As mentioned above, the aqueous coating composition comprises (A) a water-solubilized or water-dispersed product of a modified maleated polymer;
This is an aqueous coating composition for electrodeposition coating that can be dried and cured at room temperature, containing (B) a specific organic solvent and (C) water as main components. (A) A water-solubilized or water-dispersed product of a modified maleated polymer. Made by adding maleic acid and/or maleic anhydride, the glass transition temperature is -30 to 60°C, the content of the fatty acid residue is 5 to 70% by weight, and the acid value is 5 to 260.
It is a water-solubilized product or a water-dispersed product of a maleated product (modified maleated polymer) of a fatty acid-modified polymer. The modified maleated polymer can be produced by various methods, for example, (a) a polymer using allyl alcohol or allyl alcohol and other polymerizable unsaturated monomers (hereinafter referred to as Ester reaction of drying oil fatty acids and/or semi-drying oil fatty acids (hereinafter sometimes referred to collectively as "unsaturated fatty acids") to copolymers with copolymers with "other vinyl monomers") and then adding maleic acid and/or maleic anhydride (hereinafter, these may be collectively referred to as "maleic acid, etc.") to the unsaturated fatty acid residue in the esterification reaction product, or (b) Addition of maleic acid, etc. to unsaturated fatty acid residues in a polymer made of an esterification reaction product of allyl alcohol and unsaturated fatty acid or a copolymer made of the esterification reaction product and another vinyl monomer It can be obtained by, etc. First, in (a) above, a polymer using allyl alcohol and a copolymer of allyl alcohol and another vinyl monomer can be produced by a method known per se. Here, in a copolymer with other vinyl monomers, it is preferable that allyl alcohol is contained in the copolymer in an amount of 5% by weight or more. Then, unsaturated fatty acids are bonded to the hydroxyl groups contained in the polymer or copolymer through an esterification reaction. In this esterification reaction, the amount of unsaturated fatty acids is
The content of unsaturated fatty acid residues in the modified maleated polymer should be between 5 and 70% by weight, and the esterification reaction should
This is done by heating to ~300°C. Next, maleic acid, etc. is added to the unsaturated fatty acid residues in this esterification reaction product (maleation). You can react with In particular, when there are many hydroxyl groups remaining in the polymer main chain, it is recommended to esterify with a low-molecular or high-molecular acid such as acetic acid, propionic acid, or stearic acid to remove excess hydroxyl groups, and then perform maleation. preferable. When maleating with maleic anhydride,
Requires ring opening of the acid anhydride group attached to the fatty acid residue,
This can be done with water, alcohol, ammonia, amine, etc., and the amount of maleic anhydride is adjusted so that the final acid value is 5-260. When maleating with maleic acid, the amount of maleic acid is adjusted so that the final acid value falls within the above range. Furthermore, in (b) above, the esterification reaction between allyl alcohol and unsaturated fatty acid can be carried out by a method known per se. For example, in the reaction of allyl alcohol and unsaturated fatty acids, both of the above components are mixed in a suitable inert organic solvent, preferably with a boiling point of 180
℃ or less water-immiscible organic solvents, such as aromatic hydrocarbon group-based solvents such as benzene, toluene, and xylene; esterification catalysts such as sulfuric acid; , aluminum sulfate, methyl sulfate, p-
In the presence of toluenesulfonic acid, hydrochloric acid, phosphoric acid, etc. and a polymerization inhibitor such as hydroquinone, methoxyphenol, tert-butylcatechol, benzoquinone, etc., at a temperature of about 110 to 160°C, about 0.5 to 9
This can be carried out by reacting for a period of time. The polymerization reaction of this esterification reaction product or the copolymerization reaction of this esterification reaction product and other vinyl monomers is carried out in accordance with a method known per se for producing an acrylic copolymer, for example, in a solution solution. This can be carried out using a polymerization method, an emulsion polymerization method, a suspension polymerization method, or the like. It is preferable to carry out the polymerization according to a solution polymerization method, in which each monomer component is mixed with a radical polymerization catalyst (for example, an azo-based polymer) in a suitable organic solvent (for example, one or more selected from the organic solvents listed below). compound, peroxide type compound, sulfide, sulfine, diazo compound, nitroso compound, redox type, etc.), usually about 0 to about 180°C, preferably about 40°C.
The reaction can be carried out by continuing the reaction at a temperature of up to about 170°C for about 1 to 20 hours, preferably about 2 to 10 hours. In order to copolymerize the esterification reaction product with another vinyl monomer, the amount of the esterification reaction product blended is such that the content of unsaturated fatty acid residues in the modified maleated polymer is 5 to 70% by weight. For example, it is preferably 5% by weight or more in the copolymer. and,
Addition of maleic acid and/or maleic anhydride to unsaturated fatty acid residues contained in the polymer or copolymer thus obtained (maleation) can be carried out in the same manner as in (a) above. . In (a) and (b) above, other vinyl monomers to be copolymerized with allyl alcohol include, for example, styrene, vinyltoluene, α-methylstyrene,
Acrylonitrile, methacrylonitrile, ester of monohydric alcohol with 1 to 26 carbon atoms and acrylic acid or methacrylic acid, ethylene glycol monoalkyl ether or diethylene glycol monoalkyl ether (alkyl group with 1 carbon number)
~8) and acrylic acid or methacrylic acid, propylene glycol monoalkyl ether or dipropylene glycol monoalkyl ether (alkyl group having 1 to 8 carbon atoms) and acrylic acid or methacrylic acid, other than the above unsaturated fatty acids Examples include addition monomers of a monocarboxylic acid having 4 to 26 carbon atoms and glycidyl methacrylate or glycidyl acrylate.
It is desirable to use a monomer that has excellent copolymerizability with the allyl alcohol or the esterification product of allyl alcohol and an unsaturated fatty acid, and the resulting modified maleated polymer is stable at high temperatures. Other butadiene, isoprene, chloroprene, pentadiene, vinyl acetate, vinyl chloride, beoba monomer (manufactured by Siel Chemical Co., USA,
Monomers used in general radical polymerization such as (trade name) can also be used as other monomers. Unsaturated fatty acids are components that impart drying properties at room temperature, such as safflower oil fatty acids, soybean oil fatty acids, linseed oil fatty acids, sesame oil fatty acids, eno oil fatty acids, grape kernel fatty acids, corn oil fatty acids, hempseed oil fatty acids, and poppy oil fatty acids. fatty acids, sunflower oil fatty acids,
Those containing many non-conjugated double bonds and having carbon numbers of 6 to 30, preferably 17 to 20, such as tall oil fatty acids, cottonseed oil fatty acids, rubber seed oil fatty acids, and walnut oil fatty acids, can cause the maleation reaction to gel. Preferred are safflower oil fatty acids, linseed oil fatty acids, soybean oil fatty acids, tall oil fatty acids, and mustard oil fatty acids.
Oiticica oil fatty acids, peanut oil fatty acids, tung oil fatty acids, dehydrated castor oil fatty acids, hydene fatty acids, etc. can also be used. In addition, the modified maleated polymer obtained as described above can be made water-soluble or water-dispersed by neutralizing some or all of the carboxyl groups formed by maleic acid, etc. in the polymer with an aqueous solution of a neutralizing agent. This is done by Examples of neutralizing agents that can be used include ammonia, amines, alkali metal hydroxides, and alkali metal carbonates or bicarbonates. The amines that can be used include primary, secondary or tertiary lower alkyl amines; primary, secondary or tertiary lower alkanolamines; and cycloalkylamines. In addition, examples of alkali metal hydroxides include potassium hydroxide,
Sodium hydroxide, etc.; as the alkali metal carbonate or bicarbonate, sodium carbonate, sodium bicarbonate, etc. can be used. Among these neutralizing agents, triethylamine is particularly preferred. The amount of the neutralizing agent used can generally be 0.1 to 2.0 equivalents, preferably 0.5 to 1.2 equivalents, relative to the carboxyl groups in the modified maleated polymer. The modified maleated polymer used in the present invention has (1) a glass transition temperature of -30°C to 60°C, preferably -25°C to 50°C, more preferably -23 to 20°C; (2) a drying oil; The content of fatty acid residues and/or semi-drying oil fatty acid residues is 5 to 70% by weight, preferably 10 to 70% by weight.
60% by weight, more preferably 20 to 55% by weight; and (3) it is important to adjust the acid value to 5 to 260, preferably 10 to 150, more preferably 20 to 100; Those skilled in the art can easily determine the proportions of each monomer to produce a maleated fatty acid-modified addition polymer that satisfies these property requirements by conducting simple small-scale experiments. Regarding the properties of this modified maleated polymer, when the glass transition temperature is lower than -30℃, the initial coating film curing immediately after electrodeposition coating using the copolymer is insufficient; If this happens, the flexibility, adhesion, impact resistance, etc. of the sufficiently oxidized and dried coating film will deteriorate. In addition, if the content of unsaturated fatty acids is less than 5% by weight, the oxidative drying properties of the coating film cannot be expected, resulting in insufficient hardness, while if it exceeds 70% by weight, oxidative polymerization progresses in the electrodeposition coating bath. However, it is not possible to obtain a uniform painted surface. Furthermore, if the acid value is lower than 5, it becomes difficult to water-solubilize or water-disperse the fatty acid-modified copolymer, while if it is higher than 260, the water resistance of the coating film decreases, both of which are unfavorable, and the purpose of the present invention is to cannot be achieved. The glass transition temperature of the modified maleated polymer in the present invention was measured using a torsional plate analyzer (manufactured by Rigaku Corporation, TBA-8120A1) based on the principle of the free torsional vibration method. The temperature at which the mechanical damping index of the fiber impregnated with the fatty acid-modified carboxyl group-containing copolymer reaches its peak was measured. Impregnation of the polymer into the fibers is carried out using a solution of the polymer (solids content
40% by weight ethyl acetate/butyl cellosolve = 1/
The braided cord specified by the measuring device was immersed in the solution (1 solution), then taken out and dried under vacuum to remove the solvent. In addition, unsaturated fatty acids may deteriorate the stability of the electrodeposition bath, so it is preferable to keep the amount as small as possible. may be contained in a large amount in the modified copolymer. (B) Organic solvent The organic solvent used in the present invention is butyl cellosolve,
Penzyl alcohol, octyl alcohol, n-
butanol, 3 methyl 3 methoxybutanol, 3
- One or more selected from methoxybutyl acetate and butyl carbitol,
These organic solvents are appropriately distributed in the electrodeposited coating film, impart fluidity to the coating film, and can significantly improve smoothness. The blending amount of the organic solvent is 15 to 500 parts by weight, further 30 to 200 parts by weight, per 100 parts by weight of the modified maleated polymer (A).
Particularly preferred is 50 to 150 parts by weight. In the coating composition of the present invention, if organic solvents other than those specified above are blended, the smoothness of the coating film cannot be improved, but depending on the purpose of application, the above specified organic solvents and other organic solvents may be used in combination. It is also possible to do so. Examples of solvents other than the above include toluene,
Examples include xylene, methyl ethyl ketone, and methyl isobutyl ketone. (C) Water Tap water, tap water, deionized water, etc. can be used. The coating composition of the present invention comprises a modified maleated polymer made water-soluble or water-dispersed in this way,
It contains an organic solvent and water as its main components, and can be used as is for electrodeposition coating, but if necessary, as is usually done,
Coloring pigments, extender pigments, antirust pigments, surfactants, etc. may also be blended. Furthermore, it is possible to add commonly used metal salt desiccants such as cobalt naphthenate and lead naphthenate in order to improve the dry curing properties of the coating film at room temperature; It is preferable to select the amount added depending on the required degree of bath stability. Specifically, modified maleated polymer 100
It is preferable to add the metal salt desiccant in an amount of 0.001 to 0.1 part by weight based on the amount of metal per part by weight. The aqueous coating composition of the present invention produced as described above can be widely used as a coating for electrodeposition coating. In electrodeposition coating, the content of the modified maleated polymer in the aqueous coating composition in the electrodeposition coating bath is generally 3 to 25% by weight, preferably 5 to 20% by weight.
% by weight. The object to be coated may be of any size and shape, as long as at least its surface is made of conductive metal. In particular, since the resin composition of the present invention does not require the coating film to be cured by heating, it can be advantageously applied to objects having a large heat capacity and for which it is difficult to cure the coating film by heating. . Specifically, examples thereof include iron, aluminum, steel, and those whose surfaces have been subjected to chemical conversion treatment (for example, zinc phosphate treatment, iron phosphate treatment, etc.). The electrodeposition coating operation can be carried out in a manner known per se. For example, the temperature of the electrodeposition coating bath prepared as described above is set at 10 to 50°C, preferably 20 to 35°C.
The object to be coated is immersed in this as an anode, and the voltage between it and another cathode is 10 to 300 volts, preferably 30 to 250 volts, for 30 seconds to 20 minutes, preferably 1 to 10 volts. A coating film can be deposited on the surface of the object to be coated (anode) by applying electricity for a minute. Thereafter, if the object to be coated is taken out of the electrodeposition bath and left at room temperature, the coating film dries and hardens. Of course, if necessary, the object to be coated may be cured by heating to an extent (approximately 250° C. or less) that the coating film components will not be thermally decomposed. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In addition, in the above, "part" and "%" refer to parts by weight and weight %, respectively.
It is. Example 1 (a) Production of modified maleated polymer: RJ-100 (number average molecular weight 1600, OH content 7.8%
1264 parts of styrene-allylic alcohol copolymer (manufactured by Monsanto Chemical Co., Ltd.), linseed oil fatty acid
A mixture of 1,180 parts of xylene, 100 parts of xylene, and 1.5 parts of dibutyltin oxide was placed in a reactor, and the mixture was heated at 230°C while removing the condensation water produced from the reaction system.
React for 10 hours to obtain a resin with an acid value of 5.5. To this was added 145 parts of maleic anhydride, and a maleation reaction was carried out at 190-200°C for 7 hours. After removing xylene and unreacted maleic acid by vacuum distillation, water was added to open the anhydride groups, and n-butyl cellosolve was added to obtain modified maleated polymer A with a total acid value of 56 and solid content of 80%. Obtained. (b) Manufacture of water-based coating composition: Add n-butyl cellosolve to the modified maleated polymer A obtained in (a) above in an amount of 30 parts per 100 parts of resin solid content, and further add octanol to the resin solid content. Added at a rate of 30 parts per 100 parts per minute. Then, the total acid value of the modified maleated polymer is approximately
Neutralized using 0.9 equivalents of triethylamine. Next, the resin solid content is added to this neutralized resin solution.
Pigment Titanium Dioxide JR-600 (trade name, manufactured by Teikoku Kako Co., Ltd., rutile type titanium white) 29 per 100 parts
0.4 parts of Carbon Black MA-100 (product name: Carbon Black, manufactured by Mitsubishi Kasei Corporation) and 1.0 parts of strontium chromate (manufactured by Kikuchi Color Industries, Ltd.), dispersed with a paint conditioner, and then mixed with the resin. The total content of minute and pigment minutes is 10
% with ion-exchanged water to obtain a water-based paint composition for electrodeposition coating. (c) Electrodeposition coating: The electrodeposition coating composition was placed in a 4L hard polyvinyl chloride container that can be stirred with a magnetic stirrer, and a 75 x 50 x 0.8 (mm) degreased and cleaned polished mild steel plate was used as an electrode. SPCCJIS-G3141 was used as an anode and a cathode. Connect a DC voltage rectifier between both electrodes (Takasago Manufacturing Co., Ltd. TYPE G-25M GP0250-
5) for 2 minutes. The distance between the electrodes was 15 cm, and both electrodes were each immersed in the bath composition to a depth of 10 cm. After electrodeposition at 150 volts for 2 minutes, the mild steel plate on the anode side was removed from the bath and hung vertically to dry at room temperature. The stability of the electrodeposition coating composition in the electrodeposition bath and the performance test results of the resulting coating film are summarized in Table 1 below. Example 2 (a) Production of modified maleated polymer: RJ-100 (number average molecular weight 1600, OH content 7.8%
1264 parts of styrene-allylic alcohol copolymer (manufactured by Monsanto Chemical Co., Ltd.), soybean oil fatty acid
A mixture consisting of 1,180 parts of xylene, 100 parts of xylene, and 1.5 parts of dibutyltin oxide was placed in a reaction vessel, and the mixture was heated at 230°C while removing the condensed water produced from the reaction system.
React for 10 hours to obtain a resin with an acid value of 5.5. Add 116 parts of maleic anhydride to this and heat at 190°C to 200°C.
Carry out the maleation reaction for a period of time. After removing xylene and unreacted maleic acid by distillation under reduced pressure, the mixture was ring-opened with water and n-butyl cellosolve was added to obtain a modified maleated polymer B having a total acid value of 45 and a solid content of 79.5%. (b) Production and electrodeposition coating of aqueous coating composition Into the modified maleated polymer B solution obtained in (a) above,
After adding n-butyl cellosolve to 30 parts per 100 parts of the resin solid content and further adding benzyl alcohol at a ratio of 50 parts per 100 parts of the resin solid content, approximately Neutralized using 0.9 equivalents of triethylamine. Then, a pigment was dispersed in this neutralized resin solution in the same manner as in Example 1 (1)-b to obtain a resin composition for electrodeposition coating, and electrodeposition was applied in the same manner as in (1)-c. and used it for testing. The results are shown in Table 1 below. Example 3 (a) Production of modified maleated polymer: RJ-100 (number average molecular weight 1600, OH content 7.8%
1264 parts of styrene-allylic alcohol copolymer (manufactured by Monsanto Chemical Co., Ltd.), linseed oil fatty acid
A mixture consisting of 1,180 parts of xylene, 100 parts of xylene, and 1.5 parts of dibutyltin oxide was placed in a reaction vessel, and the mixture was heated at 230°C while removing the condensed water produced from the reaction system.
React for 10 hours to obtain a resin with an acid value of 5.5. To this was added 87 parts of maleic anhydride, and a maleation reaction was carried out at 190°C to 200°C for 7 hours. After removing xylene and unreacted maleic acid by vacuum distillation, the ring was opened with water and n-butyl cellosolve was added to obtain a modified maleated polymer C having a total acid value of 45 and a solid content of 80%. (b) Production and electrodeposition coating of aqueous coating composition Into the modified maleated polymer C solution obtained in (a) above,
After adding n-butyl cellosolve to 35 parts per 100 parts of solid content of the polymer and adding benzyl alcohol at a ratio of 35 parts per 100 parts of solid content of the polymer, the total acid value of the polymer was determined. for about
Neutralized using 0.9 equivalents of triethylamine. Then, a pigment was dispersed in this neutralized solution in the same manner as in Example 2 (b) to obtain a coating composition for electrodeposition, and electrodeposition was performed in the same manner as in Example 2 (c). Tested. The results are shown in Table 1 below. Comparative Example 1 A mixture of the following components: neopentyl glycol 52.5 parts trimethylolpropane 68.25 parts isophthalic acid 149.4 parts trimellitic acid 13.44 parts linseed oil fatty acid 70 parts para-tert-butylbenzoic acid 26.7 parts was subjected to a condensation reaction at 240°C for 7 hours. 30 parts of n-butyl cellosolve and 30 parts of benzyl alcohol were added to a drying oil fatty acid-modified alkyd resin with an acid value of 40, a Gardner viscosity of V to W, and a fatty acid content of 20%, and then the total acid value of the resin was It was neutralized using about 1.0 equivalent of triethylamine. Then, pigment per 100 parts of solid content of the alkyd resin.
Titanium Dioxide JR-600, 30 parts, Carbon Black MA-100, 0.4 parts, Strontium Chromate, 1.0 parts were blended and dispersed with a paint conditioner, resulting in a total resin and pigment content of 10%. The mixture was diluted with ion-exchanged water to obtain a water-based coating composition for electrodeposition coating. Electrodeposition coating was performed in the same manner as in Example 1, and the sample was subjected to a test as a comparative example. The results are summarized in Table 1 below. Comparative Example 2 The composition obtained up to the dispersion of the pigment in Example 1 was diluted with water and adjusted to a viscosity of 25 seconds for food cup No. 4, and a degreased and cleaned polished mild steel plate of 75 x 50 x 0.8 (mm) was prepared. A test board was prepared by spray painting SPCCJIS-G3141. A test plate with a film thickness of 20 μm in a dry state was used for the test. The results are shown in Table 1 below.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) アリルアルコール含有重合体からなる主
鎖とエステル結合を介して結合した乾性油脂肪
酸残基および/または半乾性油脂肪酸残基にマ
レイン酸および/または無水マレイン酸を付加
せしめてなる、ガラス転移温度が−30〜60℃、
該脂肪酸残基の含有率が5〜70重量%、酸価が
5〜260である脂肪酸変性重合体のマレイン化
物の水溶化物または水分散化物 (B) ブチルセロソルブ、ベンジルアルコール、オ
クチルアルコール、n−ブタノール、3メチル
3メトキシブタノール、3メトキシブチルアセ
テート、ブチルカルビトール、メチルエチルケ
トンから選ばれた1種もしくは2種以上の有機
溶剤および (C) 水 を主成分とする電着塗装用常温乾燥型水性塗料
組成物。
[Scope of Claims] 1 (A) Maleic acid and/or maleic anhydride in the drying oil fatty acid residue and/or semi-drying oil fatty acid residue bonded to the main chain consisting of an allyl alcohol-containing polymer via an ester bond. The glass transition temperature is -30 to 60℃,
Water soluble or water dispersion of maleic acid of fatty acid modified polymer having fatty acid residue content of 5 to 70% by weight and acid value of 5 to 260 (B) Butyl cellosolve, benzyl alcohol, octyl alcohol, n-butanol , 3-methyl-3-methoxybutanol, 3-methoxybutyl acetate, butyl carbitol, methyl ethyl ketone, and one or more organic solvents selected from methyl ethyl ketone; thing.
JP8334283A 1983-05-12 1983-05-12 Cold-curing water-based paint composition for electrodeposition coating Granted JPS59207973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8334283A JPS59207973A (en) 1983-05-12 1983-05-12 Cold-curing water-based paint composition for electrodeposition coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8334283A JPS59207973A (en) 1983-05-12 1983-05-12 Cold-curing water-based paint composition for electrodeposition coating

Publications (2)

Publication Number Publication Date
JPS59207973A JPS59207973A (en) 1984-11-26
JPH0319872B2 true JPH0319872B2 (en) 1991-03-18

Family

ID=13799759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8334283A Granted JPS59207973A (en) 1983-05-12 1983-05-12 Cold-curing water-based paint composition for electrodeposition coating

Country Status (1)

Country Link
JP (1) JPS59207973A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987608A (en) * 1995-09-11 1997-03-31 Minnesota Mining & Mfg Co <3M> Water-base adhesive composition, adhesive film, and production of adhesive film

Also Published As

Publication number Publication date
JPS59207973A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
CA1297606C (en) Polymer dispersions, process for their preparation, and their use as binders
WO1998031756A1 (en) Water-base metallic paint composition and method of forming overcoat
US4226901A (en) Method for metallic finish coating
EP0025285B1 (en) Aqueous coating compositions and articles coated thereby
US3590016A (en) Polymerizable monomers
JP5127519B2 (en) Water-based metallic paint composition
JPH09505847A (en) Powder coating suitable for body painting
US3796770A (en) Water-soluble coating compositions
US5425997A (en) Fatty acid modified alkyd coatings with improved substrate adhesion
JP3443455B2 (en) Microgel-containing anionic water-dispersible resin composition and electrodeposition coating composition containing the same
JPH0319872B2 (en)
US4933380A (en) Air-drying aqueous coating composition for electrodeposition
JP2513161B2 (en) Resin composition for low temperature dry paint
JP3025367B2 (en) Resin composition for water-based paint
JPH0236150B2 (en)
JPH0427274B2 (en)
JP5052374B2 (en) Phosphate group-containing resin
US3651005A (en) Coating compositions of aziridinyl alkyl acrylate or methacrylate acrylic graft copolymers
JPH0441191B2 (en)
US5093428A (en) Anionic matte electrodeposition coating composition and process for the formation of matte film
JPS6348367A (en) Electrodeposition paint composition
JPH06279713A (en) Water spot filling agent and use thereof in method for preparation of multilayer coating
GB2048941A (en) Readily cross-linkable anodically electrodeposited polybutadiene compositions
JPS5933032B2 (en) Metallic finishing method
JPH03149271A (en) Thermosetting solvent-base paint composition having good adhesiveness