JPH03198309A - Transformer for cycloconverter - Google Patents

Transformer for cycloconverter

Info

Publication number
JPH03198309A
JPH03198309A JP1339021A JP33902189A JPH03198309A JP H03198309 A JPH03198309 A JP H03198309A JP 1339021 A JP1339021 A JP 1339021A JP 33902189 A JP33902189 A JP 33902189A JP H03198309 A JPH03198309 A JP H03198309A
Authority
JP
Japan
Prior art keywords
winding
tap
impedance
primary
cycloconverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1339021A
Other languages
Japanese (ja)
Other versions
JP2723322B2 (en
Inventor
Satoshi Yamamoto
聡 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1339021A priority Critical patent/JP2723322B2/en
Publication of JPH03198309A publication Critical patent/JPH03198309A/en
Application granted granted Critical
Publication of JP2723322B2 publication Critical patent/JP2723322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To decrease the phase difference between the positive impedance accompanying tap changeover and the negative group impedance as far as possible so as to check the output wave distortion of a converter by arranging the tap winding of primary winding between the primary main winding and the secondary winding positioned inside it. CONSTITUTION:The tap winding 26 of primary winding 23 is arranged between the primary winding 23 and the secondary winding 22 positioned inside it, that is, on the side of an inner main gap d1 where a gap is large originally. By doing it this way, the rate of the change of a leaked magnetic flux accompanying tap changeover becomes small, therefore the fluctuation of impedance also becomes small. That is, the phase difference of impedance between the positive group and the negative group accompanying tap changeover becomes small, and the distortion of output waveform does not become large. Moreover, each winding diameter of the primary winding and the second winding can be made small, and the entire constitution becomes small and light.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、交流電源に接続される一次巻線と、サイクロ
コンバータの正群コンバータ及び負群コンバータにそれ
ぞれ接続される2個の二次巻線とを備えて成るサイクロ
コンバータ用変圧器に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention provides a primary winding connected to an AC power source, and two windings connected to a positive group converter and a negative group converter of a cycloconverter, respectively. The present invention relates to a cycloconverter transformer comprising two secondary windings.

(従来の技術) この種のサイクロコンバータ用変圧器の一例を第4図及
び第5図に示す。第4図はサイクロコンバータの単相分
の概略電気的構成を示す図である。この第4図において
、サイクロコンバータ用の変圧器1は、一次巻線2及び
2個の二次巻線3゜4を有している。一次巻線2は、交
流電源である例えば商用三相交流電源5に接続されてい
る。
(Prior Art) An example of this type of cycloconverter transformer is shown in FIGS. 4 and 5. FIG. 4 is a diagram showing a schematic electrical configuration of a single phase component of the cycloconverter. In this FIG. 4, a transformer 1 for a cycloconverter has a primary winding 2 and two secondary windings 3.4. The primary winding 2 is connected to an AC power source, for example, a commercial three-phase AC power source 5.

方の二次巻線3は、サイクロコンバータ6の正群コンバ
ータ7に接続されていると共に、他方の二次巻線4は、
サイクロコンバータ6の負群コンバータ8に接続されて
いる。正群コンバータ7及び負群コンバータ8は、循環
電流抑制用のりアクドル9及び10を介して同図に示す
ように逆並列に接続されている。各コンバータ7.8は
、例えばサイリスタを三相ブリッジ制御回路に構成して
なる。そして、上記リアクトル9及び10の各中点9a
及び10aをサイクロコンバータ6の出力端子としてい
る。この出力端子から出力される単相交流は、その正側
半波が正群コンバータ7により供給され、負側半波が負
群コンバータ8により供給されるようになっている。
One secondary winding 3 is connected to the positive group converter 7 of the cycloconverter 6, and the other secondary winding 4 is connected to the positive group converter 7 of the cycloconverter 6.
It is connected to the negative group converter 8 of the cycloconverter 6. The positive group converter 7 and the negative group converter 8 are connected in antiparallel as shown in the figure via the circulating current suppressing glue handles 9 and 10. Each converter 7.8 is formed by configuring, for example, a thyristor into a three-phase bridge control circuit. And each midpoint 9a of the reactors 9 and 10
and 10a are the output terminals of the cycloconverter 6. The single-phase alternating current output from this output terminal is configured such that its positive half wave is supplied by the positive group converter 7 and its negative half wave is supplied by the negative group converter 8.

ここで、上記変圧器1の一般的な巻線配置について第5
図に従って詳述する。この第5図に示すように、鉄心1
1の鉄心脚11aに前記一方の二次巻線3が巻回され、
この二次巻線3の外周に一次巻線2が巻回され、この一
次巻線2の外周に他方の二次巻114が巻回されている
。上記一次巻線2は、商用三相交流電源5の電圧変動に
対応するためのタップ巻線12及び−法主巻線13から
構成されている。上記タップ巻線12は、−法主巻線1
3の外側に設けられて該−法主巻線13と二次巻線4と
の間に配置されている。
Here, regarding the general winding arrangement of the transformer 1, the fifth
The details will be explained according to the figures. As shown in Fig. 5, the iron core 1
The one secondary winding 3 is wound around the one iron core leg 11a,
The primary winding 2 is wound around the outer periphery of this secondary winding 3, and the other secondary winding 114 is wound around the outer periphery of this primary winding 2. The primary winding 2 is composed of a tap winding 12 and a negative main winding 13 for coping with voltage fluctuations of the commercial three-phase AC power supply 5. The above-mentioned tap winding 12 is the negative main winding 1
3 and between the main winding 13 and the secondary winding 4.

上記構成では、サイクロコンバータ6の出力端子から出
力される単相交流は、その正側半波が正群コンバータ7
により供給され、負側半波が負群コンバータ8により供
給される。このため、上記交流の出力波形を正負対称に
するには、正群インピーダンスと負群インピーダンスと
を等しくする必要がある。この場合、両二次巻線3,4
は、容量、電圧が同じであるから、導体のサイズ及び層
構成等の巻線構成を同一にできる。一方、一次巻線2の
内周面と二次巻線3の外周面との間の距離(以下内側主
ギャップと称す)と、一次巻線2の外周面この場合タッ
プ巻線12の外周面と二次巻線4の内周面との間の距離
(以下外側主ギャップと称す)とを等しくして、正群イ
ンピーダンス及び負群インピーダンスに影響を与える漏
れ磁束の分布を等しくすると、二次巻線4の巻径寸法が
二次巻線3の巻径寸法よりも大きくなることから、負群
インピーダンスが正群インピーダンスよりも大きくなる
。このため、内側主ギャップを外側主ギャップよりも大
きくして、内側主ギヤツプ側の漏れ磁束を多くし、正群
インピーダンスを大きくすることにより、正群インピー
ダンスと負群インピーダンスの値を等しくするようにし
ている。
In the above configuration, the positive half wave of the single-phase AC output from the output terminal of the cycloconverter 6 is the positive half wave of the positive group converter 7.
The negative half wave is supplied by the negative group converter 8. Therefore, in order to make the alternating current output waveform positive and negative symmetrical, it is necessary to make the positive group impedance and the negative group impedance equal. In this case, both secondary windings 3, 4
Since the capacitance and voltage are the same, the winding structure such as the conductor size and layer structure can be made the same. On the other hand, the distance between the inner circumferential surface of the primary winding 2 and the outer circumferential surface of the secondary winding 3 (hereinafter referred to as the inner main gap) and the outer circumferential surface of the primary winding 2 (in this case, the outer circumferential surface of the tap winding 12) If the distance between the inner peripheral surface of the secondary winding 4 (hereinafter referred to as the outer main gap) is made equal, and the distribution of leakage flux that affects the positive group impedance and the negative group impedance is made equal, the secondary Since the winding diameter of the winding 4 is larger than that of the secondary winding 3, the negative group impedance becomes larger than the positive group impedance. Therefore, by making the inner main gap larger than the outer main gap, increasing the leakage flux on the inner main gap side, and increasing the positive group impedance, the values of the positive group impedance and the negative group impedance are made equal. ing.

(発明が解決しようとする課題) さて、上記従来構成において、一次巻線2のタップ巻線
12に通電する、通電しないによって、正群インピーダ
ンス及び負群インピーダンスの各位がどのように変化す
るか、その影響を考えてみる。
(Problem to be Solved by the Invention) Now, in the conventional configuration described above, how does each of the positive group impedance and the negative group impedance change depending on whether the tap winding 12 of the primary winding 2 is energized or not energized? Let's consider the impact.

上記構成では、二次巻線3には正側半波が通電され、二
次巻線4には負側半波が通電され、一次巻線2には全波
が通電される。この場合、正群インピーダンス及び負群
インピーダンスに影響を与える漏れ磁束の分布は、第6
図に示すようになる。
In the above configuration, the secondary winding 3 is energized with a positive half wave, the secondary winding 4 is energized with a negative half wave, and the primary winding 2 is energized with a full wave. In this case, the distribution of leakage flux that affects the positive group impedance and negative group impedance is
The result will be as shown in the figure.

この第6図において、タップ巻線12全体にa電する場
合即ち最高タップ時の漏れ磁束分布を実線で示し、タッ
プ巻線12全体に通電しない場合即ち最低タップ時の漏
れ磁束分布を一点鎖線で示す。
In FIG. 6, the leakage flux distribution when the entire tap winding 12 is energized, that is, at the highest tap, is shown by a solid line, and the leakage flux distribution when the entire tap winding 12 is not energized, that is, at the lowest tap, is shown by a dashed line. show.

また、正群及び負群インピーダンスについての各漏れ磁
束分布を比較し易くするために、内側主ギャップと外側
主ギャップとを等しく設定している。
Furthermore, in order to facilitate comparison of the leakage flux distributions for the positive group impedance and the negative group impedance, the inner main gap and the outer main gap are set to be equal.

この第6図から明らかなように、最高タップがら最低タ
ップへ順次切換えていくに伴うて、正群インピーダンス
についての漏れ磁束が減少するから、正群インピーダン
スは小さくなる。これに対して、負群インピーダンスに
ついての漏れ磁束はタップを順次切換えていくに伴って
増大するから、負群インピーダンスは大きくなる。従っ
て、タップ切換えに伴って、正群インピーダンスと負群
インピーダンスとが大きく異なるようになり、サイクロ
コンバータ6の出力波形の歪みが大きくなるという問題
点があった。
As is clear from FIG. 6, as the taps are sequentially switched from the highest tap to the lowest tap, the leakage flux with respect to the positive group impedance decreases, so the positive group impedance becomes smaller. On the other hand, since the leakage flux for the negative group impedance increases as the taps are sequentially switched, the negative group impedance becomes larger. Therefore, as the taps are changed, the positive group impedance and the negative group impedance become largely different, resulting in a problem that the distortion of the output waveform of the cycloconverter 6 increases.

そこで、本発明の目的は、タップ切換えに伴なう正群イ
ンピーダンスと負群インピーダンスとの相違を極力小さ
くし得て、サイクロコンバータの出力波形の歪みを極力
防止することができるサイクロコンバータ用変圧器を提
供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a transformer for a cycloconverter that can minimize the difference between the positive group impedance and the negative group impedance caused by tap switching, and can prevent distortion of the output waveform of the cycloconverter as much as possible. is to provide.

[発明の構成] (課題を解決するための手段) 本発明のサイクロコンバータ用変圧器は、法主巻線及び
タップ巻線からなり交流電源に接続される一次巻線を備
えると共に、この一次巻線の内外に設けられサイクロコ
ンバータの正群コンバータ及び負群コンバータにそれぞ
れ接続される2個の二次巻線を備えたものにおいて、前
記一次巻線のタップ巻線を、前記−法主巻線とその内側
に位置する二次巻線との間に配置したところに特徴を有
する。
[Structure of the Invention] (Means for Solving the Problems) A transformer for a cycloconverter of the present invention includes a primary winding that is connected to an AC power source and is made up of a main winding and a tap winding. In a device equipped with two secondary windings provided inside and outside the wire and respectively connected to a positive group converter and a negative group converter of the cycloconverter, the tap winding of the primary winding is connected to the main winding of the cycloconverter. It is characterized by the fact that it is placed between the secondary winding and the secondary winding located inside it.

(作用) 正群インピーダンスと負群インピーダンスを等しくする
ために、もともと内側主ギャップを外側主ギャップより
も大きくしている。このような配置関係にある中で、従
来構成では、一次巻線のタップ巻線を、−法主巻線とそ
の外側に位置する二次巻線との間に即ち外側主ギヤツプ
側に配置している。これに対して、上記手段によれば、
一次巻線のタップ巻線を、−法主巻線とその内側に位置
する二次巻線との間に即ち内側主ギヤツプ側に配置して
いる。従って、もともとギャップの広い側に同じ巻回数
のタップ巻線を配置するのであるから、もともとギャッ
プの狭い側に配置していた従来に比べて、タップ切換え
に伴なう漏れ磁束の変化の割合が小さくなる。従って、
゛インピーダンスの変動も小さくなる。この結果、タッ
プ切換えに伴なう正群インピーダンスと負群インピーダ
ンスとの相違を、従来に比べて小さくできる。
(Function) In order to equalize the positive group impedance and the negative group impedance, the inner main gap is originally made larger than the outer main gap. In such an arrangement, in the conventional configuration, the tap winding of the primary winding is arranged between the negative main winding and the secondary winding located outside it, that is, on the outside main gap side. ing. On the other hand, according to the above means,
The tap winding of the primary winding is arranged between the negative main winding and the secondary winding located inside thereof, that is, on the inner main gap side. Therefore, since tap windings with the same number of turns are originally placed on the wide side of the gap, the rate of change in leakage magnetic flux due to tap switching is reduced compared to the conventional case where tap windings are placed on the narrow side of the gap. becomes smaller. Therefore,
゛The fluctuation of impedance is also reduced. As a result, the difference between the positive group impedance and the negative group impedance due to tap switching can be made smaller than in the past.

(実施例) 以下、本発明の第1の実施例につき第1図及び第2図を
参照しながら説明する。
(Example) Hereinafter, a first example of the present invention will be described with reference to FIGS. 1 and 2.

まず第1図において、鉄心21の鉄心脚21aには一方
の二次巻線22が巻回され、この二次巻線22の外周に
一次巻線23が巻回され、更にこの一次巻線23の外周
に他方の二次巻線24が巻回されている。これにより、
一次巻線23の内外に2個の二次巻線22及び24が設
けられている。
First, in FIG. 1, one secondary winding 22 is wound around the core leg 21a of the iron core 21, a primary winding 23 is wound around the outer periphery of this secondary winding 22, and furthermore, this primary winding 23 is wound around the outer periphery of this secondary winding 22. The other secondary winding 24 is wound around the outer periphery of the secondary winding 24 . This results in
Two secondary windings 22 and 24 are provided inside and outside the primary winding 23.

この場合、内側の二次巻線22が図示しないサイクロコ
ンバータの正群コンバータに接続され、外側の二次巻線
24がサイクロコンバータの負群コンバータに接続され
ている。上記一次巻線23は、−法主巻線25及びタッ
プ巻線26から構成されており、図示しない商用三相交
流電源に接続されている。そして、タップ巻線26のタ
ップを切換えて一次巻線23の巻回数を変えることによ
り、上記商用三相交流電源の電圧変動に対応するように
なっている。
In this case, the inner secondary winding 22 is connected to a positive group converter of a cycloconverter (not shown), and the outer secondary winding 24 is connected to a negative group converter of the cycloconverter. The primary winding 23 includes a negative main winding 25 and a tap winding 26, and is connected to a commercial three-phase AC power source (not shown). By switching the tap of the tap winding 26 and changing the number of turns of the primary winding 23, it is possible to cope with voltage fluctuations of the commercial three-phase AC power supply.

ここで、上記タップ巻線26は、−法主巻線25の内側
に設けられて該−法主巻線25とその内側に位置する二
次巻線22との間に配置されている。尚、一次巻線23
の内周面この場合タップ巻線26の内周面と二次巻線2
2の外周面との間の距離である内側主ギャップd1を、
一次巻線23の外周面この場合−法主巻線25の外周面
と二次巻線24の内周面との間の距離である外側主ギャ
ップd2よりも大きく設定している。これにより、正群
インピーダンスと負群インピーダンスの値を等しくする
ようにしている。
Here, the tap winding 26 is provided inside the -modal main winding 25 and is arranged between the -modal main winding 25 and the secondary winding 22 located inside it. In addition, the primary winding 23
In this case, the inner peripheral surface of the tap winding 26 and the secondary winding 2
The inner main gap d1, which is the distance between the outer peripheral surface of
The outer circumferential surface of the primary winding 23 is set larger than the outer main gap d2, which is the distance between the outer circumferential surface of the primary winding 25 and the inner circumferential surface of the secondary winding 24. This makes the values of the positive group impedance and negative group impedance equal.

このような構成の本実施例によれば、一次巻線23のタ
ップ巻線26を、−法主巻線25とその内側に位置する
二次巻線22との間に即ちもともとギャップの大きい内
側主ギヤツプ側l側に配置したので、ギャップの狭い外
側主ギヤツプ側にタップ巻線12を配置していた従来構
成(第5図参照)に比べて、タップ巻線の巻回数が同じ
即ちその径方向の厚さ寸法が同じであることを考慮する
と、タップ切換えに伴なう漏れ磁束の変化の割合が小さ
くなる。このため、インピーダンスの変動も小さくなる
。従って、タップ切換えに伴なう正群インピーダンスと
負群インピーダンスとの相違を、従来に比べて小さくす
ることができる。この結果、サイクロコンバータの出力
波形の歪みが大きくなることを極力防止できる。尚、本
実施例において、正群インピーダンス及び負群インピー
ダンスに影響を与える漏れ磁束の分布は、第2図に示す
ようになる。この第2図において、タップ巻線26全体
に通電する場合即ち最高タップ時の漏れ磁束分布を実線
で示し、タップ巻線26全体に通電しない場合即ち最低
タップ時の漏れ磁束分布を一点鎖線で示す。
According to this embodiment having such a configuration, the tap winding 26 of the primary winding 23 is placed between the negative main winding 25 and the secondary winding 22 located inside it, that is, on the inside where the gap is originally large. Since the tap winding 12 is placed on the main gap side l side, compared to the conventional configuration (see Fig. 5) in which the tap winding 12 is placed on the outside main gap side where the gap is narrow, the number of turns of the tap winding is the same, that is, the diameter Considering that the thickness dimension in the direction is the same, the rate of change in leakage magnetic flux due to tap switching becomes small. Therefore, fluctuations in impedance are also reduced. Therefore, the difference between the positive group impedance and the negative group impedance due to tap switching can be made smaller than in the past. As a result, it is possible to prevent distortion of the output waveform of the cycloconverter from increasing as much as possible. In this embodiment, the distribution of leakage magnetic flux that affects the positive group impedance and the negative group impedance is as shown in FIG. 2. In FIG. 2, the leakage flux distribution when the entire tap winding 26 is energized, that is, at the highest tap, is shown by a solid line, and the leakage flux distribution when the entire tap winding 26 is not energized, that is, at the lowest tap, is shown by a dashed line. .

ところで、従来構成(第5図参照)では、もともとギャ
ップの狭い外側主ギヤツプ側にタップ巻線12を配置し
ていたので、タップ巻線12の外周面と外側の二次巻線
の内周面との間が狭く、この間にタップの口出し線を通
すことができないため、タップの口出し部をタップ巻線
12の上下両端側にそれぞれ設けなければならなかった
。このため、タップの口出し部にリード線を接続する作
業をタップ巻線12の上下両端で行なわなければならず
、作業性が悪いという欠点があった。これに対して、上
記実施例では、タップ巻線26を、−法主巻線25とそ
の内側に位置する二次巻線22との間に配置し、更に、
タップ巻線26の内周面と内側の二次巻線の外周面との
間のギャップを大きく設定しているので、この間にタッ
プの口出し線を通すことができる。従って、タップの口
出し部をタップ巻線の例えば上端側にだけ設けることが
でき、タップの口出し部にリード線を接続する作業性を
向上できる。
By the way, in the conventional configuration (see Fig. 5), the tap winding 12 was originally placed on the outer main gap side where the gap was narrower, so the outer circumferential surface of the tap winding 12 and the inner circumferential surface of the outer secondary winding Since the space between the tap winding 12 and the tap winding 12 is narrow and it is not possible to pass the tap lead wire through this gap, tap lead parts must be provided at both the upper and lower ends of the tap winding 12. For this reason, the work of connecting the lead wire to the outlet of the tap must be performed at both the upper and lower ends of the tap winding 12, which has the drawback of poor workability. On the other hand, in the above embodiment, the tap winding 26 is disposed between the negative main winding 25 and the secondary winding 22 located inside thereof, and further,
Since the gap between the inner circumferential surface of the tap winding 26 and the outer circumferential surface of the inner secondary winding is set large, the lead wire of the tap can be passed through this gap. Therefore, the tap outlet can be provided, for example, only on the upper end side of the tap winding, and the workability of connecting the lead wire to the tap outlet can be improved.

尚、上記実施例においては、内側主ギャップを従来(第
5図参照)と同じにしているが、この場合、タップ巻線
26に通電しないときには、タップ巻線26の径方向厚
さ寸法の分だけ内側主ギャップが従来に比べて広がり、
漏れ磁束が多くなってインピーダンスが大きくなること
になる。従って、これに着目し、上記実施例に代えて、
タップ巻線に通電しないとき即ち一次主巻線の内周面と
内側の二次巻線の外周面との間のギャップを従来(第5
図参照)の内側主ギャップと同じに設定するようにして
も良い。この場合には、内側主ギャップ(タップ巻線の
内周面と内側の二次巻線の外周面との間のギャップ)を
従来に比べて小さくできるから、一次巻線及びその外側
の二次巻線の各巻径を小さくでき、全体構成の小形化及
び軽量化を図り得、また、使用導体量を減少できると共
に、損失を低減できる。
In the above embodiment, the inner main gap is the same as the conventional one (see FIG. 5), but in this case, when the tap winding 26 is not energized, the radial thickness of the tap winding 26 is The inner main gap is wider than before,
The leakage magnetic flux increases and the impedance increases. Therefore, paying attention to this, instead of the above example,
When the tap winding is not energized, that is, the gap between the inner peripheral surface of the primary main winding and the outer peripheral surface of the inner secondary winding is
(see figure) may be set to be the same as the inner main gap. In this case, since the inner main gap (the gap between the inner circumferential surface of the tap winding and the outer circumferential surface of the inner secondary winding) can be made smaller than before, the primary winding and the outer secondary winding The diameter of each winding can be made small, the overall structure can be made smaller and lighter, and the amount of conductors used can be reduced, as well as losses can be reduced.

第3図は本発明の第2の実施例を示すもので、第1の実
施例と異なるところを説明する。この第3図に示すよう
に、二次巻線22に代わる二次巻線27は、上下に配設
された2個の部分二次巻線27a、27bからなる。ま
た、一次巻線23に代わる一次巻線28は、−法主巻線
29及びタップ巻線30から構成されている。上記−法
主巻線29は、上下に配設された2個の部分−法主巻線
29a、29bからなる。また、タップ巻線30は、同
じく上下に配設された2個の部分タップ巻線30a、3
0bからなる。更に、二次巻線24に代わる二次巻線3
1は、上下に配設された2個の部分二次巻線31a、3
1bからなる。これによって、第1の実施例に示すサイ
クロコンバータ用変圧器を上下に2個設けた構成と同等
になっている。
FIG. 3 shows a second embodiment of the present invention, and the differences from the first embodiment will be explained. As shown in FIG. 3, the secondary winding 27 that replaces the secondary winding 22 consists of two partial secondary windings 27a and 27b arranged one above the other. Further, a primary winding 28 that replaces the primary winding 23 is composed of a negative main winding 29 and a tap winding 30. The above-mentioned main winding 29 is composed of two main main windings 29a and 29b arranged above and below. The tap winding 30 also includes two partial tap windings 30a and 3 arranged above and below.
Consists of 0b. Furthermore, a secondary winding 3 replacing the secondary winding 24
1 is two partial secondary windings 31a and 3 arranged above and below.
Consisting of 1b. This makes the structure equivalent to the first embodiment in which two cycloconverter transformers are provided above and below.

従って、この第2の実施例においても第1の実施例と同
じ作用効果を得ることができるが、特に、第1の実施例
に示すサイクロコンバータ用変圧器を2個使用する場合
には、上記第2の実施例による1個の変圧器で対応する
ことができる。
Therefore, in this second embodiment, the same effects as in the first embodiment can be obtained, but especially when two cycloconverter transformers shown in the first embodiment are used, the above-mentioned One transformer according to the second embodiment can be used.

[発明の効果] 本発明は以上の説明から明らかなように、次巻線のタッ
プ巻線を、−法主巻線とその内側に位置する二次巻線と
の間に配置する構成としたので、タップ切換えに伴なう
正群インピーダンスと負群インピーダンスとの相違を極
力小さくし得て、サイクロコンバータの出力波形の歪み
を極力防止することができるという優れた効果を奏する
[Effects of the Invention] As is clear from the above description, the present invention has a configuration in which the tap winding of the next winding is arranged between the main winding and the secondary winding located inside the main winding. Therefore, the difference between the positive group impedance and the negative group impedance due to tap switching can be minimized, and distortion of the output waveform of the cycloconverter can be prevented as much as possible, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の第1の実施例を示すもので
、第1図は部分縦断面図、第2図は漏れ磁束の分布を示
す図である。また、第3図は本発明の第2の実施例を示
す第1図相当図である。 そして、第4図ないし第6図は従来構成を示すもので、
第4図は電気的構成図、第5図及び第6図はそれぞれ第
1図相当図及び第2図相当図である。 図面中、22.27は二次巻線、23.28は一次巻線
、24.31は二次巻線、25.29は一次主巻線、2
6.30はタップ巻線を示す。
1 and 2 show a first embodiment of the present invention, in which FIG. 1 is a partial longitudinal sectional view and FIG. 2 is a diagram showing the distribution of leakage magnetic flux. Further, FIG. 3 is a diagram corresponding to FIG. 1 showing a second embodiment of the present invention. FIGS. 4 to 6 show the conventional configuration,
FIG. 4 is an electrical configuration diagram, and FIGS. 5 and 6 are diagrams corresponding to FIG. 1 and FIG. 2, respectively. In the drawing, 22.27 is a secondary winding, 23.28 is a primary winding, 24.31 is a secondary winding, 25.29 is a primary main winding, 2
6.30 indicates a tap winding.

Claims (1)

【特許請求の範囲】[Claims] 1.一次主巻線及びタップ巻線からなり交流電源に接続
される一次巻線と、この一次巻線の内外に設けられサイ
クロコンバータの正群コンバータ及び負群コンバータに
それぞれ接続される2個の二次巻線とを備えたものにお
いて、前記一次巻線のタップ巻線を、前記一次主巻線と
その内側に位置する二次巻線との間に配置したことを特
徴とするサイクロコンバータ用変圧器。
1. A primary winding consisting of a primary main winding and a tap winding connected to an AC power source, and two secondary windings installed inside and outside this primary winding and connected to the positive group converter and negative group converter of the cycloconverter, respectively. A transformer for a cycloconverter, characterized in that a tap winding of the primary winding is arranged between the primary main winding and a secondary winding located inside the primary main winding. .
JP1339021A 1989-12-27 1989-12-27 Transformer for cyclo converter Expired - Lifetime JP2723322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339021A JP2723322B2 (en) 1989-12-27 1989-12-27 Transformer for cyclo converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339021A JP2723322B2 (en) 1989-12-27 1989-12-27 Transformer for cyclo converter

Publications (2)

Publication Number Publication Date
JPH03198309A true JPH03198309A (en) 1991-08-29
JP2723322B2 JP2723322B2 (en) 1998-03-09

Family

ID=18323525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339021A Expired - Lifetime JP2723322B2 (en) 1989-12-27 1989-12-27 Transformer for cyclo converter

Country Status (1)

Country Link
JP (1) JP2723322B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013303A (en) * 2010-07-12 2011-04-13 吴江市变压器厂有限公司 Coil structure
CN102543400A (en) * 2011-12-23 2012-07-04 中国西电电气股份有限公司 Low-voltage regulation coil device of traction transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013303A (en) * 2010-07-12 2011-04-13 吴江市变压器厂有限公司 Coil structure
CN102543400A (en) * 2011-12-23 2012-07-04 中国西电电气股份有限公司 Low-voltage regulation coil device of traction transformer

Also Published As

Publication number Publication date
JP2723322B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
US20190312516A1 (en) Multiple parallel-connected resonant converter, inductor-integrated magnetic element and transformer-integrated magnetic element
US4488136A (en) Combination transformer with common core portions
US6101113A (en) Transformers for multipulse AC/DC converters
US7049921B2 (en) Auto-transformer for use with multiple pulse rectifiers
US2404254A (en) Electrical apparatus
US3774135A (en) Stationary induction apparatus
US20210383961A1 (en) Transformer
US6982884B1 (en) Autotransformers to parallel AC to DC converters
US6100781A (en) High leakage inductance transformer
JPH03198309A (en) Transformer for cycloconverter
JPH06333754A (en) Transformer for cycloconverter
JP2000299232A (en) Transformer for resonance-type power supply
JPS5821309A (en) On-load tap-changing transformer
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JP3556817B2 (en) Tap-switching autotransformer under load
US2369038A (en) Electric transformer
US3833849A (en) Transformers with additional compensating reactor windings for electric arc welding
JPH08335520A (en) Scott connected transformer
JPS6228736Y2 (en)
EP0117515A1 (en) Reactor having a plurality of coaxially disposed windings
JPH0132347Y2 (en)
TW202211266A (en) Multi-phase voltage transforming device capable of generating special phase angles
KR19990073377A (en) A three phase single winding transformer
JPH09205024A (en) Electromagnetic induction machine
JPS62205611A (en) Transformer for three-phase, two-phase conversion

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 13