JPH03197906A - Method for adjusting optical axis of optical signal reception module - Google Patents

Method for adjusting optical axis of optical signal reception module

Info

Publication number
JPH03197906A
JPH03197906A JP33654289A JP33654289A JPH03197906A JP H03197906 A JPH03197906 A JP H03197906A JP 33654289 A JP33654289 A JP 33654289A JP 33654289 A JP33654289 A JP 33654289A JP H03197906 A JPH03197906 A JP H03197906A
Authority
JP
Japan
Prior art keywords
optical
gap
optical fiber
length
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33654289A
Other languages
Japanese (ja)
Inventor
Toshiyuki Emori
江森 俊行
Shizuka Takano
高野 静
Takashi Takashima
高島 貴志
Jun Kojima
小島 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP33654289A priority Critical patent/JPH03197906A/en
Publication of JPH03197906A publication Critical patent/JPH03197906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the easy, simple and rapid adjustment of a gap by disposing an optical system of a microminiature type connected to a monitor camera into a package and monitoring the gap from the lateral in such a manner that the gap corresponds diametrically to the length of the optical path connecting the light exit part of an optical fiber and the light incident part of a photodetector. CONSTITUTION:The optical axis adjusting device fully automatically adjusts the optical axis by monitoring the gap (optical path length) of the photodetector 2 fixed in the inside bottom of the package 1 and the optical fiber 2 from the lateral so as to adjust the gap. The optical fiber 3 is moved in its longitudinal direction and the photodetecting surface direction of the photodetector 2 by a computer 9, etc., to the prescribed initial position from the image data obtd. by monitoring the optical fiber 3 and the photodetector 2 from the lateral. The gap adjustment in a direction Z is executed by monitoring the gap from the lateral and adjusting the gap to the optimum length so as to diametrically correspond to the above-mentioned length. The accuracy is, therefore, excellent. Since the operation is simple and easy, the efficiency of the adjusting operation is improved overall. The reliability of the optical axis adjusting operation of the optical signal reception module is greatly improved.

Description

【発明の詳細な説明】 〔概 要〕 光受信モジュールの光軸調整方法に関し、従来の不都合
を特に伴うことなく精度良く迅速に調整作業を行い得る
光受信モジュールの光軸調整方法を提供することを目的
とし、 光路方向変換用の斜面を先端部に有する光ファイバを、
パッケージ内に固設した受光素子の受光面に略平行にな
るようにパッケージ側壁を通して挿設し、光路方向が変
換されて光ファイバから出射する光が受光素子に入射し
得るように光軸調整手段を介して光ファイバ及び受光素
子の光軸調整を行う光受信モジュールにおいて、モニタ
カメラに接続された超小型の光学系をパッケージ内部に
挿入配置して、光ファイバの上記光出射部と受光素子の
上記光入射部とを結ぶ光路の長さに正対するように側方
からこれを監視し、当該光路長が最適長さとなるよう構
成する。
[Detailed Description of the Invention] [Summary] An object of the present invention is to provide an optical axis adjustment method for an optical receiving module, which allows adjustment work to be performed accurately and quickly without any particular inconveniences of conventional methods. For the purpose of
An optical axis adjusting means is inserted through the side wall of the package so as to be substantially parallel to the light receiving surface of the light receiving element fixedly installed in the package, and the optical axis adjustment means is configured to convert the optical path direction so that the light emitted from the optical fiber can enter the light receiving element. In an optical receiving module that adjusts the optical axis of an optical fiber and a light receiving element through a The length of the optical path connecting to the light incidence section is monitored from the side so as to be directly opposite to the length of the optical path, so that the length of the optical path becomes an optimum length.

〔産業上の利用分野〕[Industrial application field]

本発明は、光路方向変換用の斜面を先端部に有する光フ
ァイバを、パッケージ内に固設した受光素子の受光面に
略平行になるようにパッケージ側壁を通して挿設し、光
路方向が変換されて光ファイバから出射する光が受光素
子に入射し得るように光軸調整手段を介して光ファイバ
及び受光素子の光軸調整を行う光受信モジュールにおけ
る当該光軸調整方法に関する。
In the present invention, an optical fiber having a slope for changing the direction of the optical path at its tip is inserted through the side wall of the package so as to be substantially parallel to the light receiving surface of a light receiving element fixed in the package, and the direction of the optical path is changed. The present invention relates to an optical axis adjustment method in an optical receiving module that adjusts the optical axes of an optical fiber and a light receiving element through an optical axis adjusting means so that the light emitted from the optical fiber can enter the light receiving element.

〔従来の技術〕[Conventional technology]

受光素子と光ファイバとを光結合する場合、光受信モジ
ュール全体をコンパクトに構成すると共に高速化に対応
する等のため、受光素子をプリアンプIC等の電子部品
と同じ平面上に配置し、光フアイバ先端部に形成した斜
面を利用して光路を90度変換して光結合する構造形式
がある。そして、その先軸調整のうち受光素子の受光面
に平行な面内方向に光ファイバを移動させる調整(xy
方向調整)は、光フアイバ側の光出力と受光素子側の光
電気出力とのトレランスカーブを測定することにより比
較的簡単に行うことができる。他方、受光素子の受光面
に垂直な方向に光ファイバを移動させる調整、換言・す
れば光ファイバの光出射部と受光素子の光入射部とを結
ぶ光路の長さ調整(Z方向調整あるいはギャップ調整)
は、顕微鏡を用い、上方側から光ファイバ及び受光面を
観測しその焦点深度の相違により行っている。
When optically coupling a photodetector and an optical fiber, the photodetector is placed on the same plane as electronic components such as a preamplifier IC, and the optical fiber is There is a structural type that uses a slope formed at the tip to convert the optical path by 90 degrees and couple the light. Then, as part of the front axis adjustment, adjustment (xy
Directional adjustment) can be performed relatively easily by measuring the tolerance curve between the optical output on the optical fiber side and the photoelectric output on the light receiving element side. On the other hand, adjustment by moving the optical fiber in a direction perpendicular to the light-receiving surface of the light-receiving element, in other words, adjustment of the length of the optical path connecting the light-emitting part of the optical fiber and the light-input part of the light-receiving element (Z-direction adjustment or gap adjustment)
This is done by observing the optical fiber and light-receiving surface from above using a microscope, based on the difference in the depth of focus.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、上記ギャップ(2方向)調整における焦点深
度の測定及びそれに基づく移動調整は、その要求される
精度が厳しいこともあり、極めて高度な熟練を必要とし
、このためこの調整作業の改良・改善が強く望まれてい
る。
However, the measurement of the depth of focus in the gap (two-way) adjustment and the movement adjustment based on the depth of focus require extremely high levels of skill due to the required accuracy, and therefore, it is difficult to improve and improve this adjustment work. Highly desired.

このような点に鑑み本発明は、上記ギャップ調整(光路
長を最適長さとする調整)を簡易・簡便にそして迅速に
行うことができ、従来の調整方法と同等あるいはそれ以
上の良好な調整精度を得ることができる光受信モジュー
ルの光軸調整方法を提供することを課題とする。
In view of these points, the present invention allows the above-mentioned gap adjustment (adjustment to optimize the optical path length) to be performed easily, conveniently, and quickly, and achieves good adjustment accuracy equivalent to or better than conventional adjustment methods. An object of the present invention is to provide a method for adjusting the optical axis of an optical receiving module that can obtain the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明に係る光受信モジュー
ルの光軸調整方法は、光路方向変換用の斜面を先端部に
有する光ファイバを、パッケージ内に固設した受光素子
の受光面に略平行になるようにパッケージ側壁を通して
挿設し、光路方向が変換されて光ファイバから出射する
光が受光素子に入射し得るように光軸調整手段を介して
光ファイバ及び受光素子の光軸調整を行う光受信モジュ
ールにおいて、モニタカメラに接続された超小型の光学
系をパッケージ内部に挿入配置して、光ファイバの上記
光出射部と受光素子の上記光入射部とを結ぶ光路の長さ
に正対するように側方からこれを監視し、当該光路長が
最適長さとなるようにしたことを構成上の特徴とする。
In order to solve the above problems, a method for adjusting the optical axis of an optical receiving module according to the present invention is such that an optical fiber having a sloped surface for changing the direction of the optical path at its tip is substantially parallel to the light receiving surface of a light receiving element fixed in a package. The optical axis of the optical fiber and the light receiving element is adjusted through the optical axis adjusting means so that the optical path direction is changed so that the light emitted from the optical fiber can enter the light receiving element. In the optical receiver module, an ultra-compact optical system connected to a monitor camera is inserted and arranged inside the package, and is directly opposed to the length of the optical path connecting the light output part of the optical fiber and the light input part of the light receiving element. The structural feature is that this is monitored from the side so that the optical path length becomes the optimum length.

〔作 用〕[For production]

光ファイバの光出射部と受光素子の光入射部とを結ぶ光
路の長さに正対するように、モニタカメラに接続された
超小型の光学系を配置して、側方からこれを監視してそ
れに基づいて光軸調整を行うために、その調整精度が向
上すると共に、調整時間が短縮できる。
An ultra-compact optical system connected to a monitor camera is placed directly in front of the length of the optical path connecting the light output part of the optical fiber and the light input part of the light receiving element, and is monitored from the side. Since the optical axis is adjusted based on this, the adjustment accuracy is improved and the adjustment time can be shortened.

〔実施例〕〔Example〕

以下、図面を参照して本実施例を説明する。 The present embodiment will be described below with reference to the drawings.

第1図は本発明に係る光受信モジュールの光軸調整装置
の一実施例の全体概略構成図、第2図は第1図の■−■
線に沿い矢印方向から見た断面図である。
FIG. 1 is an overall schematic configuration diagram of an embodiment of the optical axis adjustment device for an optical receiving module according to the present invention, and FIG.
FIG. 3 is a cross-sectional view taken along the line in the direction of the arrow.

本実施例の光軸調整装置は一言で言えば、パッケージ1
の内部底部に固設された受光素子2と光ファイバ3との
ギャップ(光路長)調整に関し、この長さを側方から正
対して監視し全自動調整を行うものである。
In short, the optical axis adjustment device of this embodiment can be summarized as package 1.
Regarding the gap (optical path length) adjustment between the light receiving element 2 fixedly installed at the internal bottom part of the optical fiber 3 and the optical fiber 3, this length is monitored from the side and is fully automatically adjusted.

先端部に光路方向変換用の斜面を有する光ファイバ3は
、パッケージ1側壁を通して挿入され受光素子2の受光
面に平行になるように配置される。
An optical fiber 3 having a slope for changing the direction of the optical path at its tip end is inserted through the side wall of the package 1 and arranged parallel to the light receiving surface of the light receiving element 2 .

また、光ファイバ3はアーム4等を介して公知の3次元
微動駆動袋f (XYZステージ)5に連結され、受光
素子2の受光面に対してそれに平行な面内(XY)方向
及びそれに垂直な(Z)方向に移動され得るようになっ
ている。なお、6は光軸調整後に、光ファイバ3をパッ
ケージ1に実際に固定するためのホルダである。
Further, the optical fiber 3 is connected to a known three-dimensional fine movement drive bag f (XYZ stage) 5 via an arm 4 etc., and is connected to the in-plane (XY) direction parallel to the light receiving surface of the light receiving element 2 and perpendicular thereto. (Z) direction. Note that 6 is a holder for actually fixing the optical fiber 3 to the package 1 after adjusting the optical axis.

XYZステージ(3次元微動駆動装置)5は、モータ等
を内蔵した市販のいわゆる微動台をX。
The XYZ stage (three-dimensional fine movement drive device) 5 is a commercially available so-called fine movement table with a built-in motor and the like.

Y、及びZの各軸が互いに直角となるように組み合わせ
たものであり、同様に市販されたXYZステージコント
ローラ8により実際に駆動される。
The Y and Z axes are combined so that they are perpendicular to each other, and are actually driven by a commercially available XYZ stage controller 8.

XYZステージコントローラ8はコンピュータ9に接続
され、これからの指令により制御される。
The XYZ stage controller 8 is connected to a computer 9 and is controlled by instructions from the computer 9.

光軸調整時にパッケージ1内に上方から挿入され得る超
小型の光学系11は、小型直角プリズム12及びマイク
ロレンズ系13等から成り、光ファイバ3の光出射部と
受光素子2の光入射部とを結ぶ光路の長さ(ギャップ)
に対して正対して監視できるようにパッケージ1側壁と
光ファイバ3及び受光素子2との間の空きスペースに配
置される(第2図)。光学系11の上部には、光学系1
1によって内部の光電変換素子上に結像された被写体像
を時系列電気信号に変換してこれをビデオ信号として出
力するモニタカメラ15が接続される。モニタカメラ1
5には、これが出力するビデオ信号が入力されそれに対
して二値化画像処理等を行って対象とする物理量(ギャ
ップ)を計測する画像処理装置16及びモニタテレビ1
7が接続される。画像処理装置16は、これに接続され
る上記コンピュータ9にその画像データを提供するよう
になっている。
The ultra-compact optical system 11, which can be inserted from above into the package 1 during optical axis adjustment, consists of a small right-angle prism 12, a microlens system 13, etc., and connects the light output part of the optical fiber 3 and the light input part of the light receiving element 2 The length of the optical path connecting the (gap)
It is placed in an empty space between the side wall of the package 1, the optical fiber 3, and the light receiving element 2 so that it can be monitored while directly facing the optical fiber (FIG. 2). At the top of the optical system 11, the optical system 1
1, a monitor camera 15 is connected which converts a subject image formed on an internal photoelectric conversion element into a time-series electric signal and outputs the signal as a video signal. Monitor camera 1
5 includes an image processing device 16 and a monitor television 1 to which a video signal outputted by the video signal is input and performs binarization image processing or the like on the video signal to measure a target physical quantity (gap).
7 is connected. The image processing device 16 is adapted to provide the image data to the computer 9 connected thereto.

以上の構成から成る本実施例装置により実際に光ファイ
バと受光素子との光軸調整を行う工程について説明する
The process of actually adjusting the optical axis between the optical fiber and the light receiving element using the apparatus of this embodiment having the above configuration will be described.

先ず、光学系11をパッケージlの上方から内部に挿入
して所定位置に配置し、その後、光ファイバ3をパッケ
ージ1内にゆつくり挿入する。
First, the optical system 11 is inserted into the package 1 from above and placed in a predetermined position, and then the optical fiber 3 is slowly inserted into the package 1.

次いで、光ファイバ3及び受光素子2を側方から監視す
ることによって得られる画像データから、コンピュータ
9等により光ファイバ3をその長手方向(例えばX方向
とする)及び受光素子2の受光面方向(X方向)に所定
の初期位置に移動させる(このとき、光ファイバ3と受
光素子2との上記ギャップを20ミクロン程度にする)
Next, from the image data obtained by monitoring the optical fiber 3 and the light-receiving element 2 from the side, the computer 9 or the like determines the direction of the optical fiber 3 in its longitudinal direction (for example, the X direction) and in the direction of the light-receiving surface of the light-receiving element 2 ( X direction) to a predetermined initial position (at this time, the gap between the optical fiber 3 and the light receiving element 2 is set to about 20 microns)
.

次いで、光ファイバ3の外部側の他端に接続された光源
19を発光させてこれが受光素子2に入射するようにす
ると共に、受光素子2にバイアス電圧を印加し、光電気
出力のトレランスカーブをコンピュータ9で読み取り、
これに基づき光ファイバ3のXY面内方向の粗調整を行
う。
Next, the light source 19 connected to the other external end of the optical fiber 3 is caused to emit light so that it enters the light receiving element 2, and a bias voltage is applied to the light receiving element 2 to determine the tolerance curve of the photoelectric output. Read by computer 9,
Based on this, rough adjustment of the optical fiber 3 in the XY plane direction is performed.

そして、再度画像処理データに基づきギャップ調整を行
う(10ミクロン程度にする)と共に、上記トレランス
カーブを測定してカーブの中心位置になるように最終的
な光ファイバ3のXY方向調整を行う。
Then, the gap is adjusted again based on the image processing data (to about 10 microns), the tolerance curve is measured, and the optical fiber 3 is finally adjusted in the X and Y directions so as to be at the center of the curve.

以上の工程により、受光素子2に対する光ファイバ3の
X、Y、及びX方向の光軸位置調整が完了する。X方向
のギャップ調整に関しては、その長さに正対するように
側方から自然な形で監視してそれに基づいて最適長さと
するために、その精度1優れる。また、その作業も簡単
・簡易であるために調整作業の能率が全般的に向上する
Through the above steps, the optical axis position adjustment of the optical fiber 3 in the X, Y, and X directions with respect to the light receiving element 2 is completed. Regarding the gap adjustment in the X direction, the accuracy is excellent because the length is naturally monitored from the side facing directly and the optimal length is determined based on that. Further, since the work is simple and simple, the efficiency of the adjustment work is generally improved.

なお、言うまでもないが、コンピュータ9を用いずに、
モニタカメラ17を目視しながら光ファイバ3を人為的
あるいは機械的に移動せしめるような半自動的な調整作
業を本発明に従って為すことが出来る。
Needless to say, without using the computer 9,
Semi-automatic adjustment work such as moving the optical fiber 3 manually or mechanically while visually observing the monitor camera 17 can be performed according to the present invention.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば、光ファイバと受光素子との
上記ギャップを自然な形で観測してそれに基づいて調整
を行うために精度上及び作業上優れ、従って光受信モジ
ュールの光軸調整作業の信顛性が著しく向上する。
As described above, according to the present invention, the gap between the optical fiber and the light-receiving element is observed in a natural manner and adjustment is performed based on the gap, which is excellent in terms of accuracy and workability. credibility will be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光受信モジュールの光軸調整装置
の一実施例の全体概略構成図、第2図は第1図の■−■
線に沿い矢印方向から見た断面図である。 1・・・パッケージ、  2・・・受光素子、3・・・
光ファイバ、 11・・・光学系、 16・・・画像処理装置。 5・・・XYZステージ、 15・・・モニタカメラ、
FIG. 1 is an overall schematic configuration diagram of an embodiment of the optical axis adjustment device for an optical receiving module according to the present invention, and FIG.
FIG. 3 is a cross-sectional view taken along the line in the direction of the arrow. 1... Package, 2... Light receiving element, 3...
Optical fiber, 11... Optical system, 16... Image processing device. 5...XYZ stage, 15...monitor camera,

Claims (1)

【特許請求の範囲】[Claims] 1、光路方向変換用の斜面を先端部に有する光ファイバ
(3)を、パッケージ(1)内に固設した受光素子(2
)の受光面に略平行になるようにパッケージ(1)側壁
を通して挿設し、光路方向が変換されて光ファイバ(3
)から出射する光が受光素子(2)に入射し得るように
光軸調整手段を介して光ファイバ(3)及び受光素子(
2)の光軸調整を行う光受信モジュールにおいて、モニ
タカメラ(15)に接続された超小型の光学系(11)
をパッケージ(1)内部に挿入配置して、光ファイバ(
3)の上記光出射部と受光素子(2)の上記光入射部と
を結ぶ光路の長さに正対するように側方からこれを監視
し、当該光路長が最適長さとなるようにしたことを特徴
とする光受信モジュールの光軸調整方法。
1. An optical fiber (3) having a sloped surface for changing the direction of the optical path is fixed in a package (1), and a light receiving element (2) is attached.
) is inserted through the side wall of the package (1) so that it is approximately parallel to the light-receiving surface of the optical fiber (3).
) through the optical axis adjusting means so that the light emitted from the light receiving element (2) can enter the light receiving element (2).
2) In the optical receiving module that performs optical axis adjustment, an ultra-compact optical system (11) connected to a monitor camera (15)
is inserted into the package (1), and the optical fiber (
3) The length of the optical path connecting the light emitting part and the light incidence part of the light receiving element (2) is monitored from the side so as to directly face the length of the optical path, so that the length of the optical path becomes the optimum length. A method for adjusting the optical axis of an optical receiving module, characterized by:
JP33654289A 1989-12-27 1989-12-27 Method for adjusting optical axis of optical signal reception module Pending JPH03197906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33654289A JPH03197906A (en) 1989-12-27 1989-12-27 Method for adjusting optical axis of optical signal reception module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33654289A JPH03197906A (en) 1989-12-27 1989-12-27 Method for adjusting optical axis of optical signal reception module

Publications (1)

Publication Number Publication Date
JPH03197906A true JPH03197906A (en) 1991-08-29

Family

ID=18300211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33654289A Pending JPH03197906A (en) 1989-12-27 1989-12-27 Method for adjusting optical axis of optical signal reception module

Country Status (1)

Country Link
JP (1) JPH03197906A (en)

Similar Documents

Publication Publication Date Title
KR100227259B1 (en) Optical-axis alignment method, optical-axis alignment device, inspection method of optical devices, inspection device of optical devices, method of producing optical module, and apparatus of producing optical module
US6933962B2 (en) Electronic endoscope with three-dimensional image capturing device
JPH04309907A (en) Manufacture of photosemiconductor element module
US7656513B2 (en) System for checking centration of lens surfaces of aspheric lens
CN102822928A (en) Optical sensor, method for fixing lens section thereof, method for fixing light emitting component
CN101028692A (en) Measuring device and measuring method therewith
JPH03197906A (en) Method for adjusting optical axis of optical signal reception module
JP3078133B2 (en) Method for inspecting alignment state of optical waveguide and optical waveguide
JP7066557B2 (en) Temperature measurement sensor, temperature measurement system, and temperature measurement method
CN1146724C (en) Small light spot detector for CD driver objective
CN114114564B (en) Space light-optical fiber coupling device and method based on visual detection
JP3691361B2 (en) Optical element module assembling apparatus and optical axis adjusting method
JP2007155973A (en) Alignment method of optical module and method of manufacturing the same
JP2002156562A (en) Semiconductor laser module and method for manufacturing the same
JP2581257B2 (en) Method for manufacturing optical semiconductor device module
CN209400808U (en) A kind of photoelectric integral parallel light tube
JPH0843676A (en) Method for coupling optical fiber and optical waveguide module
JP2518078B2 (en) Method for manufacturing optical semiconductor device module
KR20040009924A (en) Optical axis alignment equipment with vision device
CN218584668U (en) Semiconductor wafer detection system
JP2003156655A (en) System and method for coupling light passing through waveguide in planar optical device
CN217819006U (en) Weak vibration signal amplification device based on bionic vision
JP2635315B2 (en) Image sensor vibration device
CN2246294Y (en) Angle distribution measuring device for scattered light
US7221830B2 (en) Method and apparatus for connecting optical transmission module and core position detection method for optical waveguide