JPH03197632A - Intermetallic compound tial-fe base alloy - Google Patents

Intermetallic compound tial-fe base alloy

Info

Publication number
JPH03197632A
JPH03197632A JP33579589A JP33579589A JPH03197632A JP H03197632 A JPH03197632 A JP H03197632A JP 33579589 A JP33579589 A JP 33579589A JP 33579589 A JP33579589 A JP 33579589A JP H03197632 A JPH03197632 A JP H03197632A
Authority
JP
Japan
Prior art keywords
intermetallic compound
titanium
atoms
iron
compressive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33579589A
Other languages
Japanese (ja)
Other versions
JP2735331B2 (en
Inventor
Naoya Masahashi
直哉 正橋
Soji Matsuo
松尾 宗次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33579589A priority Critical patent/JP2735331B2/en
Publication of JPH03197632A publication Critical patent/JPH03197632A/en
Application granted granted Critical
Publication of JP2735331B2 publication Critical patent/JP2735331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the compressive deformation properties of the alloy and to permit the regulation of its structure by specifying the ratios of Ti, Al and Fe by atomic fractions. CONSTITUTION:The compsn. of an intermetallic compound TiAl-Fe base alloy is formed of a formula TixAl1-x-y-zFey; where, by atomic fraction, 0.50<=x<=0.52, 0.005<=y<=0.04 and 0.505<=x+y<=0.55 are satisfied. Its compressive properties are improved only when Fe atoms are blended so as to be substituted with Al atoms each other. Furthermore, the solid soln. strengthening owing to the addition of Fe is also permitted. In this way, its application to the process of working such as rolling and forging in which compressive stress is influential is made advantageous.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軽量かつ高温強度に優れたTiAji系金属
間化合物に関し、特に該金属間化合物の変形特性を向上
させるために成分制御を施した合金系に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a TiAji-based intermetallic compound that is lightweight and has excellent high-temperature strength, and in particular to a TiAji-based intermetallic compound that has been subjected to component control in order to improve the deformation characteristics of the intermetallic compound. Regarding alloy systems.

〔従来の技術〕[Conventional technology]

耐熱材料として実用化の期待されている金属間化合物T
iAj!は、展延性に乏しいために加工が難しい。Ti
Aj!の実用化のための最大の障害であるこの低加工性
改善のための手法は、大別して加工プロセスの応用と合
金設計が挙げられる。低加工性とは主として室温におけ
る延性の欠如を指し、Tilは圧延、鍛造といった従来
行なわれている加工法を直接室温で適用することはでき
ない。
Intermetallic compound T expected to be put into practical use as a heat-resistant material
iAj! is difficult to process due to its poor malleability. Ti
Aj! Methods for improving this low formability, which is the biggest obstacle to practical application, can be broadly divided into machining process application and alloy design. Low workability mainly refers to lack of ductility at room temperature, and conventional processing methods such as rolling and forging cannot be directly applied to Til at room temperature.

加工プロセス適用の場合、粉末加工法に代表されるニア
−・ネット・シェイプ化から従来の圧延、鍛造といった
加工法も含む。これまでにCo基超超合金S−816)
を用いての高温シース圧延(x00℃、圧延速度: 1
.5 m/m1n)による成型(特開昭61−2133
61号公報)や、800℃以上、歪速度10−” 5e
c−’以下における恒温鍛造(特開昭63−17186
2号公報)等による加工形状付与化が報告されている。
When applied to machining processes, it includes near-net shaping typified by powder machining, as well as conventional machining methods such as rolling and forging. Until now, Co-based superalloy S-816)
High temperature sheath rolling using (x00℃, rolling speed: 1
.. 5 m/m1n) (Japanese Patent Application Laid-Open No. 61-2133
61 Publication), 800°C or higher, strain rate 10-” 5e
Constant temperature forging below c-' (JP-A-63-17186
It has been reported that processing shapes can be imparted by methods such as Publication No. 2).

こうした加工法の特徴は、TiA[の800℃以上に詔
ける延性能の発現を利用したものであり、Tilの機械
的性質に及ぼす歪速度依存性と併用することにより、成
型加工を可能にしている。但し充分な成型加工を行なう
ための加工条件が、1000℃以上の高温であること、
更に歪速度をできるだけ低減化させなくてはならないこ
とから、大型設備の適用が必ずしも容易では無いという
欠点を有する。
The feature of this processing method is that it takes advantage of the ductility of TiA that can reach temperatures above 800°C, and when used in conjunction with the strain rate dependence of TiA's mechanical properties, it enables molding. There is. However, the processing conditions for sufficient molding processing must be a high temperature of 1000°C or higher.
Furthermore, since the strain rate must be reduced as much as possible, it has the disadvantage that it is not necessarily easy to apply large-scale equipment.

一方、Ti と、lの混合、圧粉成型後、高温高圧処理
による成型化が報告されている(特開昭63−1400
49号公報)。この法は上δ己加エプロセスとは異なり
、成型化と同時に様々な形への形状加工化が可能である
ことを長所とする反面、問題点としてT1やAlといっ
た活性金属を用いることによる不純物混入が不可避であ
るという点が指摘される。
On the other hand, it has been reported that Ti and L are mixed, compacted, and then formed by high-temperature and high-pressure treatment (Japanese Patent Application Laid-Open No. 63-1400
Publication No. 49). This method is different from the upper δ self-adding process, and has the advantage of being able to be shaped into various shapes at the same time as molding. However, the problem is that the use of active metals such as T1 and Al causes impurities. It is pointed out that contamination is inevitable.

これに対して添加元素による室温延性改善の報告は、U
nited Technology Carp、  に
よるV添加(特開昭56−41344号公報)、金属材
料技術研究所によるMn添加(特開昭61−41740
号公報)、Ag添加(特開昭58−123847号公報
)、そしてGeneral巳1ectric Corp
、によるS1添加(米国特許第4836983号公報)
 、Ta添加(米国特許第4842817号公報)、C
r添加(米国特許第4f142819号公報)、B添加
(米国特許第4842820号公報)が挙げられる。ま
た、高温延性改善のために、0.005〜0.2重1%
B添加(特開昭63−x4930号公報)、あるいは0
.02〜0.3重量%Bと0.2〜5.0重量%Siを
複合添加(特開昭63−125634号公報)した報告
がある。これらの添加元素の効果は、低性能改善に加え
、耐酸化性の改善や耐クリープ特性の改善も含めて、幅
広い合金成分調整が行なわれている。
On the other hand, there have been reports of improvement in room temperature ductility due to additive elements.
V addition (Japanese Unexamined Patent Publication No. 56-41344) by nited Technology Carp, Mn addition (Japanese Unexamined Patent Publication No. 61-41740) by Metal Materials Technology Research Institute.
No. 1), Ag addition (Japanese Patent Application Laid-open No. 123847/1983), and General Electric Corp.
, S1 addition (US Pat. No. 4,836,983)
, Ta addition (US Pat. No. 4,842,817), C
Examples include r addition (US Pat. No. 4F142819) and B addition (US Pat. No. 4,842,820). In addition, to improve high-temperature ductility, 0.005 to 0.2 weight 1%
B addition (Japanese Unexamined Patent Publication No. 63-x4930) or 0
.. There is a report on the combined addition of 02 to 0.3% by weight B and 0.2 to 5.0% by weight Si (Japanese Patent Application Laid-open No. 125634/1983). The effects of these additive elements include not only improvements in low performance but also improvements in oxidation resistance and creep resistance, resulting in a wide range of alloy component adjustments.

延性能の目安は室温引張伸び値が3.0%といわれてい
るが、どの添加元素の選択による成分設計法によっても
未だ達成されておらず、加工プロセスとの併用による微
細化等の組織制御を通した対応が不可欠と考えられる。
The standard for ductility performance is said to be a room temperature tensile elongation value of 3.0%, but this has not yet been achieved by any compositional design method based on the selection of additive elements, and microstructural control such as refinement by combining with processing processes is required. It is considered essential to respond through these measures.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、金属間化合物TiA1’基合金の成分
設計を行なうことにより、圧縮変形特性に優れ、同時に
組織制御の可能な実用性の高い合金を提供することにあ
る。
An object of the present invention is to provide a highly practical alloy that has excellent compressive deformation properties and is also capable of microstructural control by designing the composition of an intermetallic compound TiA1'-based alloy.

〔課題を解決させるための手段〕[Means to solve the problem]

上記の目的を達成させるTiAA’基合金は、基本組成
としてチタン、アルミニウム、及び鉄とし、原子分率成
分を用いると次式によって表示される。
A TiAA'-based alloy that achieves the above object has titanium, aluminum, and iron as its basic composition, and is expressed by the following formula using atomic fraction components.

ここでX・yはチタンと鉄の原子分率を指す。Here, X.y refers to the atomic fraction of titanium and iron.

Ti、A RI−M−’yFey  但し 0.50≦
x≦0.520.005≦y≦0.04 0.505≦x+y≦0.55 以下本発明につき詳細に説明する。
Ti, ARI-M-'yFey However, 0.50≦
x≦0.520.005≦y≦0.04 0.505≦x+y≦0.55 The present invention will be described in detail below.

溶解原料としては、高純度チタンと高純度アルミニウム
及び高純度鉄を用い、酸素、窒素等の気体不純物の混入
を回避す6ために、好ましくはチタンゲッター同時溶解
による高真空雰囲気制御可能な多極式アルゴンアーク溶
解法により、TiAA−Fe基合金を溶製する。成分元
素の偏析による不均質性を防止するためには、多数回溶
解を行なった方が良く、更に1050℃で48時間程度
の均質化熱処理を、I Xl0−’Torr以上の高真
空下で行なう。
High-purity titanium, high-purity aluminum, and high-purity iron are used as melting raw materials, and in order to avoid contamination with gaseous impurities such as oxygen and nitrogen, it is preferable to use a multi-electrode that can control a high vacuum atmosphere by simultaneously melting a titanium getter. A TiAA-Fe-based alloy is melted using the argon arc melting method. In order to prevent heterogeneity due to segregation of component elements, it is better to perform melting multiple times, and further perform homogenization heat treatment at 1050°C for about 48 hours under high vacuum of IXl0-'Torr or higher. .

本発明のTil基合金の成分が上記のように限定される
理由は以下の通りである。
The reason why the components of the Til-based alloy of the present invention are limited as described above is as follows.

チタン:50〜52原子% TiAl1の単相領域は、チタンが室温において45.
0〜51.0原子%の範囲内であり、それよりチタン過
剰側ではTi、A flが、アルミニウム過剰側ではT
iAl2が晶出する。Ti −に元系における室温圧縮
試験によれば、化学量論組成よりもわずかにチタン過剰
側で圧縮特性が優れている。これらのことから、圧縮特
性に優れた組成はTi、Al2の体積分率が10%以下
の上記組成とし、さらに高圧縮特性を安定して得るため
には、チタンは50〜51原子%が好ましい。
Titanium: 50 to 52 atomic% In the single phase region of TiAl1, titanium is 45% at room temperature.
Within the range of 0 to 51.0 at%, Ti and A fl are on the titanium-excess side, and T is on the aluminum-excess side.
iAl2 crystallizes out. According to a room temperature compression test in a Ti - based system, the compression properties are superior when the titanium content is slightly more than the stoichiometric composition. For these reasons, the composition with excellent compression properties is the above composition in which the volume fraction of Ti and Al2 is 10% or less, and in order to stably obtain high compression properties, titanium is preferably 50 to 51 atomic %. .

鉄:0.5〜4原子% 鉄添加は組織の微細化を施す以外に、TiAlのLl。Iron: 0.5-4 atomic% In addition to making the structure finer, the addition of iron also improves the Ll of TiAl.

型構造(正方晶)に起因するc / aを、鉄添加によ
り1に近づけることから、正方晶格子から面心立方晶格
子に近づき、TiAji!のもつ結晶異方性を低下させ
る効果がある。その固溶量は3原子%以下と少ないが、
4原子%までは上言己効果を有し、それを越えると第二
相の体積分率が著しく増加すると同時に、微細化の効果
も低減する。
Since c/a caused by the type structure (tetragonal) is brought closer to 1 by adding iron, the tetragonal lattice approaches a face-centered cubic lattice, and TiAji! It has the effect of reducing the crystal anisotropy of The amount of solid solution is small at less than 3 at%, but
Up to 4 atomic %, there is a self-effect, and beyond that, the volume fraction of the second phase increases significantly, and at the same time, the refinement effect decreases.

本発明における成分制御のもう一つの特徴は、鉄原子を
TiA[のアルミニウム原子と置換させて固溶させてい
る点にあり、チタンと鉄の原子分率をそれぞれx、yと
すると、次式によって表示される。
Another feature of component control in the present invention is that iron atoms are substituted with aluminum atoms in TiA to form a solid solution.If the atomic fractions of titanium and iron are x and y, respectively, the following equation displayed by.

Ti、Ax−x−yFey  但し 0.50≦x≦0
.520.005 ≦y≦0.04 0.505 ≦x+y≦0.55 本発明の要点は、鉄原子は結晶格子上でアルミニウム原
子と相互置換をするように配合している場合にのみ、圧
縮特性が改善されることを見出したことに基づくもので
ある。即ち、本発明の合金系の化学式は下式の様に表記
される(これを【タイプl]とする)。言い替えれば、
鉄原子をチタン原子と置換させているような場合(化学
式を【タイプ2]とする)や、チタンとアルミニウム原
子両方と置換するような場合(化学式を【タイプ3]と
する)とは異なる固溶形態を示している。
Ti, Ax-x-yFey However, 0.50≦x≦0
.. 520.005 ≦y≦0.04 0.505 ≦x+y≦0.55 The key point of the present invention is that the compressive properties are improved only when iron atoms are mixed so as to mutually substitute with aluminum atoms on the crystal lattice. This is based on the discovery that the That is, the chemical formula of the alloy system of the present invention is expressed as the following formula (this is referred to as [Type I]). In other words,
This is different from cases where an iron atom is replaced with a titanium atom (the chemical formula is [Type 2]) or when both titanium and aluminum atoms are substituted (the chemical formula is [Type 3]). Shows the dissolved form.

【タイプx   Ti(AA 、 Fe)【タイプ2]
    (Ti  、、Fe)Ai【タイプ3]   
 (Ti  、Fe)(Aj! 、Fe)TiAl系金
属間化合物の組成範囲を本発明の範囲に特定することに
よりタイプ1となって、組織は粒径が微細化し等軸晶が
発達しやすくなる。また圧縮変形に対する降伏応力及び
破壊応力が向上し、圧縮率も向上して変形しやすくなる
。タイプ2及びタイプ3では本発明のような圧縮特性の
向上は認められない。
[Type x Ti (AA, Fe) [Type 2]
(Ti,,Fe)Ai [Type 3]
(Ti, Fe) (Aj!, Fe) By specifying the composition range of the TiAl intermetallic compound within the range of the present invention, it becomes Type 1, and the grain size of the structure becomes fine and equiaxed crystals tend to develop. . Furthermore, the yield stress and fracture stress against compressive deformation are improved, the compressibility is also improved, and deformation becomes easier. In Type 2 and Type 3, no improvement in compression properties as in the present invention is observed.

〔実施例〕〔Example〕

純度99.9%の高純度チタン(酸素量400ppm以
下)50〜51原子%、純度99.99%のアルミニウ
ム46〜49原子%、及び純度99.99%の高純度鉄
1〜3原子%からなる溶解原料を、高真空雰囲気制御可
能な多極式アルゴンアーク溶解法により溶製した。
From high-purity titanium with a purity of 99.9% (oxygen content 400 ppm or less) 50 to 51 at%, aluminum with a purity of 99.99% from 46 to 49 at%, and high-purity iron with a purity of 99.99% from 1 to 3 at% The melted raw material was melted using a multipolar argon arc melting method that can control a high vacuum atmosphere.

溶解に際しては成分元素のマクロ偏析を回避するために
3回溶解を行ない、1050℃で48時間の均質化熱処
理をI X 1O−5Torr以上の高真空下で行った
During melting, melting was performed three times to avoid macro segregation of component elements, and homogenization heat treatment was performed at 1050° C. for 48 hours under high vacuum of I x 10-5 Torr or more.

溶製インゴットから断面が3mmφで高さ4.5 mm
の圧縮試験片をワイヤーカット装置で採取し、圧縮面を
精密平行研磨した後に、インストロン型試験機を用いて
室温圧縮試験を行なった。圧縮試験の信頼度を向上させ
るために試験は5回行なったものの平均値をとり、各機
械的特性値のバラツキ精度は最大、最小値が平均値から
15%以内とした。
The cross section from the melted ingot is 3 mmφ and the height is 4.5 mm.
A compression test piece was taken using a wire cutting device, and after precision parallel polishing of the compression surface, a room temperature compression test was conducted using an Instron type testing machine. In order to improve the reliability of the compression test, the test was conducted five times and the average value was taken, and the maximum and minimum variation accuracy of each mechanical property value was within 15% from the average value.

なおここでいう圧縮率は((試験片の初期高さ)−(応
力・歪線図で試験片が破断する直前の試験片の高さ))
/(試験片の初期高さ) X100とする。また圧縮破
断強度は応力・歪線図上で試験片が破断する直前の荷重
を初期断面積で除した値とする。
The compression ratio here is ((initial height of the test piece) - (height of the test piece just before it breaks in the stress/strain diagram))
/(Initial height of test piece) shall be X100. The compressive breaking strength is the value obtained by dividing the load immediately before the specimen breaks by the initial cross-sectional area on the stress-strain diagram.

本発明の上記実施例を第1表及び第2表に表示した。第
1表はその試験試料組成の化学分析値を示し、第2表は
圧縮試験結果を示す。また、下記に示す比較例(1)〜
(3)も同時、に、上記各表に表示した。各比較例での
試験試料の溶製方法及び試験方法は上記実施例と同様に
した。
The above examples of the present invention are shown in Tables 1 and 2. Table 1 shows the chemical analysis values of the test sample composition, and Table 2 shows the compression test results. In addition, the following comparative examples (1) to
(3) is also shown in each table above at the same time. The melting method and testing method for test samples in each comparative example were the same as in the above examples.

すなわち比較例(1)はTiAβ二元系の試料であり、
比較例(2)はTiA!二元系において鉄原子がチタン
原子と置換するよう、上記タイプ2の固溶形態をとるよ
うに添加したもので、これらの組成は原子分率表記によ
る下記式の組成範囲に相当する。
That is, Comparative Example (1) is a TiAβ binary system sample,
Comparative example (2) is TiA! They are added so that iron atoms replace titanium atoms in the binary system, forming a solid solution form of the type 2 described above, and these compositions correspond to the composition range of the following formula expressed as atomic fractions.

TI>IA j! I−X−yFe、  但し 0.4
5≦x≦0.4950.005 ≦y≦0.04 0.49≦x+y≦0.51 また、比較例(3)はTiAj!二元系において鉄原子
がチタン原子とアルミニウム原子双方と置換するよう、
上記タイプ3の固溶形態をとるように添加した。これら
の組成は原子分率表記による下記式の組成範囲に相当す
る。
TI>IA j! I-X-yFe, however, 0.4
5≦x≦0.4950.005 ≦y≦0.04 0.49≦x+y≦0.51 Comparative example (3) is TiAj! In the binary system, iron atoms replace both titanium atoms and aluminum atoms,
It was added so as to take the solid solution form of Type 3 above. These compositions correspond to the composition range of the following formula expressed in atomic fraction.

TixA l 1−x−yFey  但し 0.46≦
x≦0.500.01≦y≦0.05 0.51<x+y≦0.55 以上の本発明の実施例と各比較例とを比較すると、各比
較例はいずれも本発明の実施例の破断応力及び圧縮特性
より劣っていることが判明した。
TixA l 1-x-yFey However, 0.46≦
x≦0.500.01≦y≦0.05 0.51<x+y≦0.55 Comparing the above examples of the present invention and each comparative example, each comparative example is different from the example of the present invention. It was found that the breaking stress and compressive properties were inferior.

第 1 表 く原子%) 第 表 〔発明の効果〕 本発明は、圧縮変形特性を向上させると同時に、鉄元素
添加による固溶体強化も可能なことから、機械的性質を
総じて向上させることができ、圧縮応力が支配的な圧延
、鍛造といった加工プロセスへの適用に有利になった。
Table 1 (Atomic %) Table [Effects of the Invention] The present invention improves the compressive deformation characteristics and at the same time enables solid solution strengthening by adding iron elements, so it is possible to improve the mechanical properties as a whole. It has become advantageous for application to processing processes such as rolling and forging where compressive stress is dominant.

更に添加元素量は微量であることから、TiAf!のも
つ従来の軽量性を損なっていないことから、航空機部材
への適用も可能になると考えられる。
Furthermore, since the amount of added elements is very small, TiAf! It is thought that it will also be possible to apply it to aircraft parts because it does not impair the conventional lightweight properties.

Claims (1)

【特許請求の範囲】 チタン、アルミニウム及び鉄からなり、かつ前記元素が
下記式によって原子分率成分表示されることを特徴とす
る圧縮変形特性に優れた金属間化合物TiAl−Fe基
合金。 Ti_xAl_1_−_x_−_yFe_y但し0.5
0≦x≦0.520.005≦y≦0.04 0.505≦x+y≦0.55
[Scope of Claims] An intermetallic compound TiAl-Fe-based alloy having excellent compressive deformation characteristics, comprising titanium, aluminum, and iron, and characterized in that the above elements are expressed as atomic fraction components according to the following formula. Ti_xAl_1_-_x_-_yFe_yHowever, 0.5
0≦x≦0.520.005≦y≦0.04 0.505≦x+y≦0.55
JP33579589A 1989-12-25 1989-12-25 Intermetallic compound TiA ▲ -Fe-based alloy Expired - Lifetime JP2735331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33579589A JP2735331B2 (en) 1989-12-25 1989-12-25 Intermetallic compound TiA ▲ -Fe-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33579589A JP2735331B2 (en) 1989-12-25 1989-12-25 Intermetallic compound TiA ▲ -Fe-based alloy

Publications (2)

Publication Number Publication Date
JPH03197632A true JPH03197632A (en) 1991-08-29
JP2735331B2 JP2735331B2 (en) 1998-04-02

Family

ID=18292517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33579589A Expired - Lifetime JP2735331B2 (en) 1989-12-25 1989-12-25 Intermetallic compound TiA ▲ -Fe-based alloy

Country Status (1)

Country Link
JP (1) JP2735331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634790A (en) * 2012-05-03 2012-08-15 华北电力大学 Fe-Ti and Fe-Al complex-phase intermetallic compound anti-corrosion layer and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634790A (en) * 2012-05-03 2012-08-15 华北电力大学 Fe-Ti and Fe-Al complex-phase intermetallic compound anti-corrosion layer and preparation method thereof

Also Published As

Publication number Publication date
JP2735331B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
EP0421070B1 (en) Method of modifying multicomponent titanium alloys and alloy produced
JP2599263B2 (en) Nickeloo iron aluminide alloy capable of high temperature processing
US4842819A (en) Chromium-modified titanium aluminum alloys and method of preparation
JPS63157831A (en) Heat-resisting aluminum alloy
US4842817A (en) Tantalum-modified titanium aluminum alloys and method of preparation
KR20110131327A (en) Aluminium alloy and aluminium alloy casting
US4836983A (en) Silicon-modified titanium aluminum alloys and method of preparation
EP3045557A1 (en) Zirconium-based amorphous alloy and preparation method therefor
JPH03274238A (en) Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
US4857268A (en) Method of making vanadium-modified titanium aluminum alloys
EP0348593A1 (en) High strength oxidation resistant alpha titanium alloy
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
US4923534A (en) Tungsten-modified titanium aluminum alloys and method of preparation
EP0379798B1 (en) Titanium base alloy for superplastic forming
US4902474A (en) Gallium-modified titanium aluminum alloys and method of preparation
KR20200095413A (en) High temperature titanium alloy and method for manufacturing the same
EP0476043B1 (en) Improved nickel aluminide alloy for high temperature structural use
JPH03197632A (en) Intermetallic compound tial-fe base alloy
CN111394636B (en) High-strength high-plasticity high-entropy alloy with martensite phase transformation and preparation method thereof
US2883284A (en) Molybdenum base alloys
JPH01272743A (en) High tensile aluminum alloy having excellent heat resistance
JP3626507B2 (en) High strength and high ductility TiAl intermetallic compound
JP7190286B2 (en) Al-Fe-Er series aluminum alloy
JPS63277738A (en) Al based alloy
JP2663802B2 (en) High rigidity Ti alloy and method for producing the same