JPH03197380A - Production of organic crystal - Google Patents

Production of organic crystal

Info

Publication number
JPH03197380A
JPH03197380A JP33550489A JP33550489A JPH03197380A JP H03197380 A JPH03197380 A JP H03197380A JP 33550489 A JP33550489 A JP 33550489A JP 33550489 A JP33550489 A JP 33550489A JP H03197380 A JPH03197380 A JP H03197380A
Authority
JP
Japan
Prior art keywords
glass capillary
crystal
trimethylchlorosilane
organic
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33550489A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hattori
康弘 服部
Naota Uenishi
直太 上西
Takafumi Uemiya
崇文 上宮
Yasuji Ogaki
安二 大垣
Akira Mizoguchi
晃 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33550489A priority Critical patent/JPH03197380A/en
Publication of JPH03197380A publication Critical patent/JPH03197380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the subject organic crystal useful for a wave changing device showing a high second-order nonlinear optical effect by growing a crystal of an organic crystalline material in a glass capillary having the inner wall surface treated with trimethylchlorosilane. CONSTITUTION:The inner wall of a glass capillary is subjected to a surface treatment with trimethylchlorosilane and a crystal of an organic crystalline material is subsequently grown in the glass capillary to obtain the objective organic crystal. The inner wall surface of the glass capillary is generally covered with hydroxyl groups. And, by the surface treatment thereof with trimethylchlorosilane, trimethylchlorosilane is bonded to a hydroxyl group on the surface of the inner wall of the glass capillary 20 and the surface of the inner wall of the glass capillary 20 is modified from the hydrophilic nature to the hydrophobic nature due to formation of a trimethylchlorosilane molecular layer. As the organic crystalline material for use, 2-methyl-4-nitroaniline, 4,5- dimethyl-1,3-dithiol-2-ylidene cyanoacetate, etc., are exemplified.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、有機結晶のの製造方法に関し、より詳しく
は二次の非線形光学効果を示す波長変換素子等の製造に
好適に用いられる有機結晶のの製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing an organic crystal, and more specifically, an organic crystal suitable for manufacturing a wavelength conversion element etc. that exhibits a second-order nonlinear optical effect. The present invention relates to a manufacturing method of.

〈従来の技術及び発明が解決しようとする課題〉第4図
は、二次の非線形光学効果を有する有機非線形光学結晶
からなるコア11と、二次の非線形光学効果を有しない
ガラスのクラッド12とから構成されるファイバー型波
長変換素子を示す。
<Prior art and problems to be solved by the invention> FIG. 4 shows a core 11 made of an organic nonlinear optical crystal having a second-order nonlinear optical effect, and a glass cladding 12 having no second-order nonlinear optical effect. This shows a fiber-type wavelength conversion element composed of.

このファイバー型波長変換素子は、式:(ただし、n 
  (2ω)は第二高調波におけるlad クラッドの屈折率、n  (ω)は基本波におけore るコアの実効屈折率、n  (ω)は基本波におlad けるクラッドの屈折率である) の条件を満足するとき、第二高調波(矢印A)がコア1
1からクラッド12へ放射される、チェレンコフ放射が
発生する。
This fiber type wavelength conversion element has the formula: (where n
(2ω) is the refractive index of the lad cladding at the second harmonic, n (ω) is the effective refractive index of the core at the fundamental wave, n (ω) is the refractive index of the cladding at the fundamental wave) When the following conditions are satisfied, the second harmonic (arrow A)
1 to the cladding 12, Cerenkov radiation is generated.

このとき、基本波(矢印B)から第二高調波(矢印A)
への変換効率を向上させるためには、基本波の偏光方向
と、コア11を形成する有機結晶の持つ最大の非線形光
学定数の方向とを一致させる必要がある。
At this time, from the fundamental wave (arrow B) to the second harmonic (arrow A)
In order to improve the conversion efficiency, it is necessary to match the polarization direction of the fundamental wave with the direction of the maximum nonlinear optical constant of the organic crystal forming the core 11.

しかし、前記従来の方法で、クラッドとなる細管内にコ
アとなる二次の非線形光学効果を示す有機結晶が、2−
メチル−4−二トロアニリン、(以下、MNAという、
G、P、 Llpscosb et、al、、 J、 
Chem、、 75.1509(1981)) 、4’
 −二トロペンジリチン−4−メチルアニリン(0,S
、 Flllpenko et。
However, in the conventional method, an organic crystal exhibiting a second-order nonlinear optical effect becomes a core in a thin tube that becomes a cladding.
Methyl-4-nitroaniline (hereinafter referred to as MNA)
G.P. Llpscosb et al., J.
Chem, 75.1509 (1981)), 4'
-nitropendiritin-4-methylaniline (0,S
, Flllpenko et.

al、、Sov、Phys、Crystallogra
phy、22.805(1977))、2−(α−メチ
ルベンジルアミノ)−5−二トロビリジン(T、 Ko
ndo et、al、、 5PIE Proc、。
al,,Sov,Phys,Crystallogra
phy, 22.805 (1977)), 2-(α-methylbenzylamino)-5-nitroviridine (T, Ko
ndo et, al., 5PIE Proc.

971、83 (198g) )等の結晶内での分子配
向がよく、二次の非線形光学テンソルの成分のうちdi
iが大きいものである場合、得られる有機結晶のdii
の方向がガラス毛細管の長軸方向と一致し、入射する基
本波の偏光方向と結晶の持つ最大の非線形光学定数の方
向とを一致させることができないという問題があった。
971, 83 (198g)) have good molecular orientation within the crystal, and di among the components of the second-order nonlinear optical tensor
When i is large, dii of the resulting organic crystal
There was a problem in that the direction of the crystal coincided with the long axis direction of the glass capillary, and the polarization direction of the incident fundamental wave could not be made to coincide with the direction of the maximum nonlinear optical constant of the crystal.

これは、第5図に示すように、MNA等のように水素結
合し易い材料では、ガラス毛細管20の内壁表面の水酸
基との水素結合を行っているためと考えられる。
This is considered to be because, as shown in FIG. 5, a material that easily forms hydrogen bonds, such as MNA, forms hydrogen bonds with the hydroxyl groups on the inner wall surface of the glass capillary tube 20.

こうした、有機結晶材料の配向の制御方法としては、特
公昭61−208038号公報に示されるようなものが
あった。すなわち、ガラス基板21の表面を、(4−ニ
トロフェニル)ジメチルクロロシランで処理し、第6図
に示すようにガラス毛細管20の内壁表面を改質した後
に、イオンビームを照射しながら、有機結晶材料を真空
蒸着し、薄膜を堆積させ、配向性の良好な薄膜を作ると
いった技術がある。
As a method for controlling the orientation of an organic crystal material, there is a method as disclosed in Japanese Patent Publication No. 61-208038. That is, after treating the surface of the glass substrate 21 with (4-nitrophenyl)dimethylchlorosilane and modifying the inner wall surface of the glass capillary 20 as shown in FIG. 6, the organic crystal material is treated with ion beam irradiation. There is a technique to vacuum evaporate and deposit a thin film to create a thin film with good orientation.

これは、同図に示すように、表面処理剤である(4−ニ
トロフェニル)ジメチルクロロシラン分子が基板面に立
ち並ぶために、これと同様な構造を持つ材料分子も主軸
を基板面と垂直にする配向を取り昌くなり、これと異な
る方向で付着した分子もイオンビームから受は取るエネ
ルギーのために、安定な状態へと移動しうろことによる
This is because, as shown in the figure, (4-nitrophenyl)dimethylchlorosilane molecules, which are surface treatment agents, line up on the substrate surface, and material molecules with a similar structure also have their principal axes perpendicular to the substrate surface. This is because the orientation changes, and molecules attached in a different direction will move to a stable state due to the energy received from the ion beam.

しかし、上述のような表面処理剤では当該表面処理剤の
立体構造(すなわち嵩高な4−ニトロフェニル基の存在
など)や水酸基との反応性などのために、ガラス毛細管
の内壁表面の親水性から疎水性への改質が十分でなく、
入射する基本波の偏光力″向と結晶の持つ最大の非線形
光学定数の方向とを一致させるという課題が依然として
残されていた。
However, with the above-mentioned surface treatment agents, the hydrophilicity of the inner wall surface of the glass capillary tube may be affected due to the three-dimensional structure of the surface treatment agent (i.e., the presence of a bulky 4-nitrophenyl group, etc.) and its reactivity with hydroxyl groups. The modification to hydrophobicity is not sufficient,
The problem of matching the polarization power direction of the incident fundamental wave with the direction of the maximum nonlinear optical constant of the crystal remained.

本発明は、ガラス毛細管内壁の表面改質効果をより顕著
なものにするべくなされたものであって、種々の有機結
晶材料を用いて非線形光学効果、特に高い二次の非線形
光学効果を示す波長変換素子として用いられる有機結晶
を製造することができる有機結晶の製造方法を提供する
ことを目的とする。
The present invention has been made to make the surface modification effect of the inner wall of a glass capillary more remarkable, and uses various organic crystal materials to improve wavelengths that exhibit nonlinear optical effects, particularly high second-order nonlinear optical effects. An object of the present invention is to provide a method for producing an organic crystal that can produce an organic crystal used as a conversion element.

く課題を解決するための手段および作用〉上記課題を解
決するために、本発明の有機結晶の製造方法は、ガラス
毛細管の内壁をトリメチルクロロシランにより表面処理
した後、このガラス毛細管内に有機結晶材料の結晶を成
長させることを特徴としている。
Means and Effects for Solving the Problems> In order to solve the above problems, the method for producing an organic crystal of the present invention includes surface-treating the inner wall of a glass capillary with trimethylchlorosilane, and then adding an organic crystal material into the glass capillary. It is characterized by growing crystals.

すなわち、本発明の有機結晶の製造方法においては、ガ
ラス毛細管の内壁を以下のような特徴を有するトリメチ
ルクロロシランにより表面処理するものである。
That is, in the method for producing organic crystals of the present invention, the inner wall of the glass capillary is surface-treated with trimethylchlorosilane having the following characteristics.

(1)水酸基との反応性が高い。(1) High reactivity with hydroxyl groups.

■ガラス毛細管の内壁と反応しうる官能基(ハロゲン原
子)を1つしか持たないので複雑な反応は行わない。
■Since it has only one functional group (halogen atom) that can react with the inner wall of the glass capillary, no complicated reactions occur.

[3)it換基が全てメチル基であるため、分子自体が
小さく、したがって基板上に多く充填される。
[3) Since all the it substituents are methyl groups, the molecules themselves are small, and therefore a large amount can be packed onto the substrate.

ガラス毛細管の内壁表面は一般に水酸基で覆われている
が、トリメチルクロロシランで表面処理すると、第1図
に示すように、ガラス毛細管20の内壁表面の水酸基に
トリメチルクロロシランが結合し、トリメチルクロロシ
ランの分子層が形成され、ガラス毛細管20の内壁表面
は親水性から疎水性へと改質される。
The inner wall surface of the glass capillary tube is generally covered with hydroxyl groups, but when the surface is treated with trimethylchlorosilane, as shown in FIG. is formed, and the inner wall surface of the glass capillary tube 20 is modified from hydrophilic to hydrophobic.

ガラス毛細管の内壁表面がこのように親水性から疎水性
に改質されることにより、有機結晶とガラス毛細管の内
壁表面との界面の相互作用に変化が生じる。すなわち、
MNA等のように水素結合し易い材料を使用した場合に
生じていた、ガラス内壁表面との水素結合がなくなる。
This modification of the inner wall surface of the glass capillary from hydrophilic to hydrophobic causes a change in the interaction at the interface between the organic crystal and the inner wall surface of the glass capillary. That is,
Hydrogen bonding with the glass inner wall surface that occurs when a material that easily forms hydrogen bonds, such as MNA, is used is eliminated.

このことを利用して、ガラス内壁表面との水素結合の程
度により結晶方位を自由に変化させることが可能となる
Utilizing this fact, it becomes possible to freely change the crystal orientation depending on the degree of hydrogen bonding with the glass inner wall surface.

また、上記表面処理されたガラス細管内に、結晶のdi
iが大きい有機結晶材料、すなわち、diiの方向と分
子主軸の方向とが近い有機結晶材料の単結晶を結晶成長
させた場合、diiの方向とファイバーの長軸がなす角
度が90°に近くなるような処理を施せば、最大の非線
形光学定数を利用できる単結晶を得ることができる。
In addition, in the surface-treated glass tube, the crystal di
When growing a single crystal of an organic crystal material with a large i, that is, the direction of dii and the direction of the main axis of the molecule are close to each other, the angle between the direction of dii and the long axis of the fiber approaches 90°. By performing such treatment, it is possible to obtain a single crystal that can utilize the maximum nonlinear optical constant.

以下、本発明の有機結晶の製造方法を詳細に説明する。Hereinafter, the method for producing organic crystals of the present invention will be explained in detail.

ガラス毛細管の内壁の表面処理の方法としては、トリメ
チルクロロシランの溶液をガラス毛細管の内壁に所定時
間接触させたり、ガラス毛細管をトリメチルクロロシラ
ンの溶液中に所定時間浸漬させる方法がある。
As a method for surface treatment of the inner wall of a glass capillary, there is a method of contacting the inner wall of the glass capillary with a solution of trimethylchlorosilane for a predetermined period of time, or a method of immersing the glass capillary in a solution of trimethylchlorosilane for a predetermined period of time.

ガラス毛細管は、非線形光学効果を示さない耐熱性の石
英ガラス、鉛ガラス、ソーダガラス等により形成されて
おり、その内径が1〜3μmのものが通常用いられる。
The glass capillary tube is made of heat-resistant quartz glass, lead glass, soda glass, etc. that does not exhibit nonlinear optical effects, and those having an inner diameter of 1 to 3 μm are usually used.

有機結晶のの製造方法としては、毛細管現象等により、
毛細管中に上記有機結晶材料の融液を充填し、−度冷却
し結晶化させ、毛細管中の結晶を再度融解させた後、該
毛細管の一端部から順次他端部側に向けて冷却し、毛細
管中に単結晶を成長させる融液法、あるいは加熱状態に
あるガラス毛細管内に収容された有機結晶材料を含む溶
液の一端の温度を急速に下げることにより種子結晶とし
ての多結晶を析出させ、次いで他端側に向けて順次徐冷
することにより前記種子結晶をもとに単結晶を成長させ
る、いわゆる溶液法を用いることができる。
The method for producing organic crystals is by capillary phenomenon, etc.
A capillary tube is filled with a melt of the organic crystal material, and the capillary tube is cooled to crystallize it, and the crystals in the capillary tube are melted again, and then the capillary tube is sequentially cooled from one end toward the other end. Precipitating polycrystals as seed crystals by a melt method in which a single crystal is grown in a capillary tube, or by rapidly lowering the temperature of one end of a solution containing an organic crystal material contained in a heated glass capillary tube, Then, a so-called solution method can be used in which a single crystal is grown based on the seed crystal by sequentially cooling slowly toward the other end.

上記有機結晶材料としては、例えば、2−メチル−4−
ニトロアニリン(MNA) 、4.5−ジメチル−1,
3−ジチオール−2−イリデンシアノアセテート、1.
3−ジチオール−2−イリデンシアノアセテ−I’、3
.5−ジメチル−1−(4−ニトロフェニル)ピラゾー
ル、3− (2−シアノ−2−エトキシカルボニルビニ
ル)インドール、2−(2−シアノエトキシ)−5−ニ
トロピリジン−4′−二トロペンジリデン−3−アセト
アミノ−4−メトキシアニリンおよび下記一般式: (式中、Xはメチル基または塩素原子を示す)で表され
る分子塩などがあげられる。
As the organic crystal material, for example, 2-methyl-4-
Nitroaniline (MNA), 4,5-dimethyl-1,
3-dithiol-2-ylidene cyanoacetate, 1.
3-dithiol-2-ylidene cyanoacetate-I', 3
.. 5-dimethyl-1-(4-nitrophenyl)pyrazole, 3-(2-cyano-2-ethoxycarbonylvinyl)indole, 2-(2-cyanoethoxy)-5-nitropyridine-4'-nitropenzylidene-3 Examples include -acetamino-4-methoxyaniline and molecular salts represented by the following general formula: (wherein, X represents a methyl group or a chlorine atom).

また、溶液法において、上記有機結晶材料を含む溶媒と
しては、例えば、水のほか、トルエン、メタノール、ア
セトニトリル、ジメチルホルムアミド、ニトロベンゼン
、ジメチルスルホキシド、ジオキサン、エタノール、ア
セトン、酢酸エチル、クロロホルム、ベンゼン、四塩化
炭素、テトラヒドロフラン、ピリジン等の有機溶媒があ
げられる。
In addition to water, examples of solvents containing the organic crystal material in the solution method include toluene, methanol, acetonitrile, dimethylformamide, nitrobenzene, dimethyl sulfoxide, dioxane, ethanol, acetone, ethyl acetate, chloroform, benzene, Examples include organic solvents such as carbon chloride, tetrahydrofuran, and pyridine.

〈実施例〉 以下本発明の実施例について説明する。<Example> Examples of the present invention will be described below.

実施例 第2図に示すようなセル4の上部液溜まり1にトリメチ
ルクロロシランの5重量%ヘキサン溶液2を入れて封管
し、セル4全体を80℃まで加熱し、ヘキサン蒸気圧を
利用してガラス毛細管3内に処理溶液を注入した。この
状態で3時間処理を続けた後、十分に洗浄し、乾燥させ
て、このセル4を用いてMNAの結晶をガラス毛細管3
内に成長させた。なお、その時の成長条件は、有機結晶
材料0.05gに0.1mJのベンゼンを加え、炉温1
00℃にて溶解させた溶液とし、結晶成長温度0.2m
m/時とした。
Example 2 A 5% by weight hexane solution 2 of trimethylchlorosilane was put into the upper liquid reservoir 1 of a cell 4 as shown in Fig. 2, the tube was sealed, and the entire cell 4 was heated to 80°C. A processing solution was injected into the glass capillary tube 3. After continuing the treatment in this state for 3 hours, the cell 4 was thoroughly washed and dried, and the MNA crystals were transferred to the glass capillary tube 3 using this cell 4.
I let it grow within me. The growth conditions at that time were: 0.1 mJ of benzene was added to 0.05 g of the organic crystal material, and the furnace temperature was 1.
The solution was dissolved at 00℃, and the crystal growth temperature was 0.2m.
m/hour.

比較例1 表面処理を施していないガラス毛細管を用いたほかは実
施例と同様に溶液法を用いて結晶を成長させた。
Comparative Example 1 Crystals were grown using the solution method in the same manner as in Example except that a glass capillary tube without surface treatment was used.

比較例2 ジメチルフェニルクロロシランで表面処理を施したガラ
ス毛細管を用いて融液法で結晶を成長させた。
Comparative Example 2 Crystals were grown by a melt method using a glass capillary tube surface-treated with dimethylphenylchlorosilane.

比較例3 比較例2と同様にメチルフェニルクロロシランで表面処
理を施したガラス毛細管を用いて実施例1と同じ溶液法
で結晶を成長させた。
Comparative Example 3 Crystals were grown using the same solution method as in Example 1 using a glass capillary tube surface-treated with methylphenylchlorosilane in the same manner as in Comparative Example 2.

実施例で得られたMNAファイバーは、光学顕微鏡によ
る暗視野での消光と明視野での二色性で調べたところ第
3図(alに示すように、結晶軸(X軸)がファイバー
長軸から90°立っており、波長変換素子に適している
ことがわかった。これはトリメチルクロロシランがガラ
ス毛細管の内壁を親水性から疎水性に完全に改質し、結
晶方位を完全に制御したためである。
The MNA fiber obtained in the example was examined using an optical microscope for extinction in the dark field and dichroism in the bright field, and as shown in Figure 3 (al), the crystal axis (X axis) It was found that the trimethylchlorosilane was oriented at 90 degrees from the center, making it suitable for wavelength conversion devices.This is because trimethylchlorosilane completely modified the inner wall of the glass capillary from hydrophilic to hydrophobic, and completely controlled the crystal orientation. .

一方、比較例1のMNAファイバーは、第3図+b+に
示すように、dii方向がファイバーの長軸方向に向い
ているため、波長変換素子に適していないものであった
On the other hand, the MNA fiber of Comparative Example 1 was not suitable for a wavelength conversion element because the dii direction was oriented in the long axis direction of the fiber, as shown in FIG. 3+b+.

比較例2は、第3図(C)に示すように、結晶軸がファ
イバー長軸から80°しか立っておらず、実施例に比べ
て効果が低いものであった。これは、嵩高いフェニル基
のためにジメチルフェニルクロロシランが、ガラス毛細
管内壁を完全に覆いきれないために、遊離の水酸基が残
存し、これがMNAと水素結合しているためと推定され
る。
In Comparative Example 2, as shown in FIG. 3(C), the crystal axis was oriented at only 80° from the long axis of the fiber, and the effect was lower than that of the Example. This is presumed to be because dimethylphenylchlorosilane cannot completely cover the inner wall of the glass capillary due to the bulky phenyl group, so free hydroxyl groups remain and these are hydrogen bonded with MNA.

また、溶液法を用いた比較例3は第3口重)に示す比較
例1と同様の結果を示した。このことより、溶液法では
、ジメチルフェニルクロロシランを表面処理剤として用
いた場合に全く効果がないことがわかる。
Furthermore, Comparative Example 3 using the solution method showed the same results as Comparative Example 1 shown in Section 3). This shows that the solution method has no effect at all when dimethylphenylchlorosilane is used as a surface treatment agent.

なお、第3図(お〜(C)において、11.12はそれ
ぞれ第4図と同じコアとクラッドである。
Note that in FIGS. 3A to 3C, 11 and 12 are the same core and cladding as in FIG. 4, respectively.

〈発明の効果〉 以上のように、本発明の有機結晶の製造方法によれば、
得られる単結晶の結晶方位を制御することができるので
、二次の非線形光学効果を示し波長変換素子として好適
に用いられる単結晶を得ることができ、しかも入射する
基本波の偏光方向と結晶の持つ最大の非線形光学定数の
方向とを一致させ、その有機結晶材料の持つ最大の非線
形光学定数を利用しうる単結晶を製造することができる
という優れた効果を奏する。
<Effects of the Invention> As described above, according to the method for producing organic crystals of the present invention,
Since the crystal orientation of the resulting single crystal can be controlled, it is possible to obtain a single crystal that exhibits a second-order nonlinear optical effect and is suitable for use as a wavelength conversion element. This has the excellent effect of making it possible to manufacture a single crystal that can make use of the maximum nonlinear optical constant of the organic crystal material by matching the direction of the maximum nonlinear optical constant of the organic crystal material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は毛細管内壁表面にトリメチルクロロシランが結
合した状態を示す説明図、第2図は本発明の有機結晶の
製造方法の一実施例を示す模式的断面図、第3図(田は
本発明の実施例で得た単結晶の結晶方位を示す説明図、
同口重)および(C)は比較例1および2で得た単結晶
の結晶方位を示す説明図、第4図はチェンコフ放射を示
す説明図、第5図は毛細管内壁表面の水酸基とMNAと
の水素結合を示す説明図、第6図は毛細管内壁表面に(
4ニトロフエニル)ニトロフエニルジメチルクロロシラ
ンが結合した状態を示す説明図である。 1・・・上部液溜まり、 2・・・溶液、3・・・ガラ
ス毛細管、 4・・・セル、11・・・コア、    
 12・・・クラッド、20・・・ガラス。
Fig. 1 is an explanatory diagram showing a state in which trimethylchlorosilane is bonded to the inner wall surface of a capillary, Fig. 2 is a schematic cross-sectional view showing an embodiment of the method for producing organic crystals of the present invention, and Fig. An explanatory diagram showing the crystal orientation of the single crystal obtained in the example of
Figure 4 is an explanatory diagram showing Chenkov radiation, and Figure 5 is an explanatory diagram showing the crystal orientation of the single crystals obtained in Comparative Examples 1 and 2. Figure 6 is an explanatory diagram showing the hydrogen bonding of (
FIG. 4 is an explanatory diagram showing a state in which nitrophenyldimethylchlorosilane (4nitrophenyl) is bonded. DESCRIPTION OF SYMBOLS 1... Upper liquid pool, 2... Solution, 3... Glass capillary, 4... Cell, 11... Core,
12...Clad, 20...Glass.

Claims (1)

【特許請求の範囲】[Claims] 1、ガラス毛細管の内壁をトリメチルクロロシランによ
り表面処理した後、このガラス毛細管内に有機結晶材料
の結晶を成長させることを特徴とする有機結晶の製造方
法。
1. A method for producing organic crystals, which comprises surface-treating the inner wall of a glass capillary with trimethylchlorosilane, and then growing crystals of an organic crystal material inside the glass capillary.
JP33550489A 1989-12-25 1989-12-25 Production of organic crystal Pending JPH03197380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33550489A JPH03197380A (en) 1989-12-25 1989-12-25 Production of organic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33550489A JPH03197380A (en) 1989-12-25 1989-12-25 Production of organic crystal

Publications (1)

Publication Number Publication Date
JPH03197380A true JPH03197380A (en) 1991-08-28

Family

ID=18289317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33550489A Pending JPH03197380A (en) 1989-12-25 1989-12-25 Production of organic crystal

Country Status (1)

Country Link
JP (1) JPH03197380A (en)

Similar Documents

Publication Publication Date Title
Bhat Growth and characterization of some novel crystals for nonlinear optical applications
EP0368169B1 (en) Method for producing organic crystal
JPH03197380A (en) Production of organic crystal
US5097527A (en) Fiber type wavelength converter and module
JP2866924B2 (en) Oxide single crystal and method for producing the same
JPH0488325A (en) Production of fiber type wavelength conversion element
JPH06308549A (en) Molecular crystalline body and wavelength changing device using the same
US5637717A (en) 2-amino-5-nitropyridinium halide crystal structure and process for the preparation of said crystal structures
Jazbinsek et al. Hybrid organic crystal/silicon-on-insulator integrated electro-optic modulators
US5467421A (en) Nonlinear optical material and devices utilizing said material
JPH06306027A (en) Cyclobutenedionyl derivative crystal and production thereof
JP2539840B2 (en) Non-linear optical element
JPH03279928A (en) Wavelength converting element
JPH07234426A (en) Single crystal for nonlinear optical material and nonlinear optical material
Murayama et al. Control of crystal orientation in an organic-crystal-cored fibre
JPH0442216A (en) Production of organic single crystal optical waveguide
JPH03276130A (en) Second harmonic wave generating element
JP2539849B2 (en) Nonlinear optical material and nonlinear optical element using the same
JPH05270993A (en) Scandium-containing lithium niobate controlled in photo-induced refractive index change
JPH01101522A (en) Nonlinear optical material and nonlinear optical element formed by using said material
JPH03109289A (en) Production of optical waveguide
JPH03174388A (en) Production of organic crystal and organic crystal growing vessel used therefore
JPH02201322A (en) Nonlinear optical element and production thereof
JPH03294827A (en) Lamination type organic nonlinear optical crystal body and production thereof
JPH04107509A (en) Formation of thin film on fiber end surface