JPH03197364A - Production of silicon carbide nitride-based molded article - Google Patents

Production of silicon carbide nitride-based molded article

Info

Publication number
JPH03197364A
JPH03197364A JP1332833A JP33283389A JPH03197364A JP H03197364 A JPH03197364 A JP H03197364A JP 1332833 A JP1332833 A JP 1332833A JP 33283389 A JP33283389 A JP 33283389A JP H03197364 A JPH03197364 A JP H03197364A
Authority
JP
Japan
Prior art keywords
nitrogen
molded article
halogen
molded product
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1332833A
Other languages
Japanese (ja)
Inventor
Keizo Shimada
島田 恵造
Toru Sawaki
透 佐脇
Setsu Watanabe
渡辺 節
Akio Nakaishi
昭夫 中石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1332833A priority Critical patent/JPH03197364A/en
Publication of JPH03197364A publication Critical patent/JPH03197364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the subject molded article having a low content of oxygen and excellent strength, etc., by adsorbing and/or affecting a specific amount of halogen to a molded article of a nitrogen-containing organic silicon polymer, affecting a basic substance in a non-oxidative atmosphere, making to infusible and calcining. CONSTITUTION:A nitrogen-containing organic silicon polymer (e.g. polycarbosilazane copolymer) is formed to a shape of fiber, tape, film, sheet or thin film, etc. Next, halogen (e.g. iodine) in an amount of 0.01-150wt.% of resultant molded article is adsorbed in and/or affects on the molded article. Then, a resultant article is affected by a basic substance (e.g. ammonia) in a non-oxidative atmosphere at a temperature of <=200 deg.C to at least partially made to infusible. Thus, the infusibility is accelerated by further heat-treating in an inert gas atmosphere, as necessary, and the calcining is further performed in an inert gas atmosphere to afford the objective silicon carbide nitride-based molded article.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、含窒素有機珪素ポリマーを原料として良好な
物性、耐熱性を有するシリコン・カーバイド・ナイトラ
イド系成形物(繊維、テープ、フィルム、シート、薄葉
体等)を効率的に製造する方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides silicon carbide nitride molded products (fibers, tapes, films, This invention relates to a method for efficiently manufacturing sheets, thin films, etc.).

[従来技術] 従来、シリコン・カーバイド・ナイトライド系セラミッ
クスの製造法としては、米国特許第3.853,567
  (特公昭55−46995)号記載の如き、カルボ
シラザン樹脂を繊維、フィルム等の成形物に成形した後
、空気、酸素、オゾン等の酸化性雰囲気中で加熱処理し
て不敵化させた後、不活性ガス雰囲気中で焼成すること
によってシリコン・カーバイド・ナイトライド系成形物
を製造することが知られている。その他にもスチームま
たはスチームと酸素の混合物で処理して不融化し焼成す
る方法(特開昭61−295273号)が知られている
[Prior Art] Conventionally, as a method for manufacturing silicon carbide nitride ceramics, US Pat. No. 3,853,567
After molding the carbosilazane resin into a molded article such as a fiber or film as described in Japanese Patent Publication No. 55-46995, the resin is heat-treated in an oxidizing atmosphere such as air, oxygen, or ozone to make it invincible. It is known to produce silicon carbide nitride molded products by firing in an inert gas atmosphere. In addition, a method is known in which the material is treated with steam or a mixture of steam and oxygen to make it infusible and then fired (Japanese Patent Laid-Open No. 295273/1983).

これらは、いずれも前駆体ポリマーからなる成形物を空
気中で約100〜200℃に加熱して、熱酸化させ不敵
化する工程を含むため、得られるシリコン・カーバイド
・ナイトライド系成形物はかなりの量の酸素を含有し、
その結果成形物の物性が不充分となる。
All of these involve the step of heating a molded product made of a precursor polymer to about 100 to 200°C in the air to thermally oxidize it and make it invulnerable, so the resulting silicon carbide nitride molded product is Contains a significant amount of oxygen
As a result, the physical properties of the molded product become insufficient.

本発明者らは、シリコン・カーバイド系成型物において
、上述のような問題を解決すべく研究の結果、先に、前
駆体ポリマーの成形物にハロゲンと塩基性物質とを逐次
的に作用させることにより、完全に非酸素雰囲気下で不
融化を行なわせ、次いで焼成することにより、酸素含有
量の少ない、物性の向上したシリコン・カーバイド系成
形物を得る方法を提案した(特願昭63−200133
号)。
As a result of research to solve the above-mentioned problems in silicon carbide molded products, the present inventors first applied halogen and a basic substance to sequentially act on the precursor polymer molded product. proposed a method for obtaining silicon carbide-based molded products with low oxygen content and improved physical properties by making them infusible in a completely oxygen-free atmosphere and then firing them (Japanese Patent Application No. 63-200133).
issue).

[発明の目的] 本発明の目的は、含窒素有機珪素ポリマーからシリコン
・カーバイド・ナイトライド系成形物を製造する方法に
おいて、本発明者らが先に提案した新規な不融化方法で
ある前駆体ポリマー成形物に対しハロゲンと塩基性物質
とを逐次的に作用させる方法によって得られるシリコン
・カーバイド系成形物の製造方法を応用して、酸素含有
量が低く物性の良好なシリコン・カーバイド・ナイトラ
イド系成形物を製造しうる方法を提供することにある。
[Object of the Invention] The object of the present invention is to use a novel infusible method previously proposed by the present inventors in a method for producing a silicon carbide nitride molded product from a nitrogen-containing organosilicon polymer. Silicon carbide nitride with low oxygen content and good physical properties is produced by applying a method for manufacturing silicon carbide molded products obtained by sequentially applying halogen and basic substances to polymer molded products. The object of the present invention is to provide a method for producing a molded product based on the above-mentioned system.

[発明の構成] 上述の如き本発明の目的は、含窒素有機珪素ポリマーを
繊維、テープ、フィルム、シート、薄葉体等の形状に成
形後この成形物に対し、次の工程を行なう本発明の方法
によって達成される。
[Structure of the Invention] The object of the present invention as described above is to form a nitrogen-containing organosilicon polymer into the shape of a fiber, tape, film, sheet, thin film, etc., and then perform the following steps on the molded product. achieved by the method.

(A+含窒素有機珪素ポリマー成形物に、該成形物の重
量当り0.01〜150(重量)%のハロゲンを吸着及
び/又は作用させる工程、 (B)ハロゲンを吸着及び/又は作用させた成形物に塩
基性物質を作用させる工程、 (C1必要により、塩基性物質処理後の成形物を不活性
ガス雰囲気中200℃以下の温度で加熱処理して不融化
を完結させる工程、 (D)不活性ガス雰囲気中で焼成を行なう工程。
(A+ Step of adsorbing and/or acting on a nitrogen-containing organosilicon polymer molding with halogen in an amount of 0.01 to 150% (by weight) based on the weight of the molding; (B) Molding with halogen adsorbed and/or acting on the molded product; (C1) If necessary, the molded product treated with a basic substance is heat-treated at a temperature of 200°C or less in an inert gas atmosphere to complete infusibility; (D) A process of firing in an active gas atmosphere.

以下、本発明の各構成要件を詳細に説明する。Hereinafter, each component of the present invention will be explained in detail.

本発明の方法において、原料となる含窒素有機珪素ポリ
マーとしては、シリコン・カーバイド・ナイトライド系
成形物の前駆体となる含窒素有機珪素ポリマーが用いら
れ、例えば次のようにして合成される。
In the method of the present invention, the nitrogen-containing organosilicon polymer used as a raw material is a nitrogen-containing organosilicon polymer that is a precursor of a silicon carbide nitride molded product, and is synthesized, for example, as follows.

即ち、本発明において使用される含窒素有機珪素ポリマ
ーは、珪素−炭素結合と珪素−窒素結合と珪素−珪素結
合を主な骨格成分とするポリカルボシラザン共重合体で
あり、これらのポリマーは、ポリフェニルアルキルシラ
ン例えばポリシラスチレン(米国特許第4.324.9
01号参照)とサイクックシラザンとの共熱分解重合方
法によって製造される。
That is, the nitrogen-containing organosilicon polymer used in the present invention is a polycarbosilazane copolymer whose main skeleton components are a silicon-carbon bond, a silicon-nitrogen bond, and a silicon-silicon bond. Polyphenylalkylsilanes such as polysilastyrene (U.S. Pat. No. 4.324.9)
01) and Cycook silazane by a co-thermal decomposition polymerization method.

ポリフェニルアルキルシランは、通常フェニルアルキル
ジクロロシランとジメチルジクロロシランをナトリウム
金属分散触媒を用いて、脱ハロゲン縮重合により製造さ
れるが、他の方法によって製造されたものでも差支えな
い。
Polyphenylalkylsilane is usually produced by dehalogenation condensation of phenylalkyldichlorosilane and dimethyldichlorosilane using a sodium metal dispersed catalyst, but polyphenylalkylsilane may be produced by other methods.

(ただし、R1は水素またはメチル基、職はメチル基ま
たはフェニル基を表わし、X及びyはX/y = 2/
8〜7/3となる正の整数、口は5以上、好ましくは1
0〜1000の整数である。)このポリシラスチレンの
うち、R1及び川がメチル基、x/y=3/7〜6/4
、平均分子量1ooo〜50000の範囲のものが特に
好ましい。
(However, R1 represents hydrogen or a methyl group, the position represents a methyl group or a phenyl group, and X and y are X/y = 2/
Positive integer from 8 to 7/3, number is 5 or more, preferably 1
It is an integer from 0 to 1000. ) Of this polysilastyrene, R1 and river are methyl groups, x/y = 3/7 to 6/4
, those having an average molecular weight of 100 to 50,000 are particularly preferred.

一方、好適なシラザンとしては、サイクリックシラザン
、ヘキサメチルジシラザン等がある。サイクリックシラ
ザンはジクロルジメチルシランとアンモニアとの反応に
より容易に製造され、通常は、次に示すような3〜41
体である。
On the other hand, suitable silazane includes cyclic silazane, hexamethyldisilazane, and the like. Cyclic silazane is easily produced by the reaction of dichlorodimethylsilane and ammonia, and is usually produced from 3-41 as shown below.
It is the body.

ヘキサメチルジシラザンは下記の分子構造を有し、トリ
メチルクロロシランとアンモニアとの反応により容易に
製造される。
Hexamethyldisilazane has the following molecular structure and is easily produced by reaction of trimethylchlorosilane and ammonia.

また、シラザンとしてポリシラザンを使用することもで
きる。
Moreover, polysilazane can also be used as the silazane.

本発明方法における好適な含窒素有機珪素ポリマーは、
上述の如きポリシラスチレンとサイクリックシラザンの
如きシラザンとを共熱分解重縮合反応させることにより
製造される。
Preferred nitrogen-containing organosilicon polymers in the method of the present invention are:
It is produced by co-thermal decomposition polycondensation reaction of polysilastyrene as described above and silazane such as cyclic silazane.

共熱分解重縮合反応を実施するには、上記両成分を所定
割合でオートクレーブ等の反応容器に仕込み、真空(脱
酸素)下又は窒素等の不活性ガス雰囲気下で加熱する方
法が採用される。
In order to carry out the co-thermal decomposition polycondensation reaction, a method is adopted in which both of the above components are charged in a predetermined ratio into a reaction vessel such as an autoclave and heated under vacuum (deoxygenation) or under an inert gas atmosphere such as nitrogen. .

ポリシラスチレンとシラザンの配合割合は、ポリシラス
チレン/シラザンの重量比にして9/1〜1/9にする
ことが必要で9/1〜2/1の範囲内が好ましい。配合
割合がこの範囲外では本発明方法の効果が乏しく目的を
達成することが困難である。
The blending ratio of polysilastyrene and silazane needs to be in the range of 9/1 to 1/9 in terms of weight ratio of polysilastyrene/silazane, and is preferably in the range of 9/1 to 2/1. If the blending ratio is outside this range, the effect of the method of the present invention will be poor and it will be difficult to achieve the objective.

加熱温度は300〜600℃、好ましくは350〜55
0℃の範囲が採用され、加熱時間は温度に応じて2分〜
20時間の範囲内で適宜選択される。例えば、350℃
で加熱反応させる場合は10〜20時間必要とする。ま
た550℃で熱反応する場合は5〜60分で十分である
Heating temperature is 300-600℃, preferably 350-55℃
The temperature range is 0℃, and the heating time is 2 minutes or more depending on the temperature.
The time period is appropriately selected within the range of 20 hours. For example, 350℃
When the reaction is carried out by heating, 10 to 20 hours are required. Further, when performing a thermal reaction at 550°C, 5 to 60 minutes is sufficient.

このように、共熱分解垂縮合反応させることにより、ポ
リマー主鎖中に、珪素−炭素の結合(−8i−C−)と
、珪素−珪素結合(−8i−Si−)と珪素−窒素結合
(−Si−N−)とを有する含窒素有機珪素ポリマーが
形成される。該ポリマーの重合度は原料の重合度に応じ
て、共分解重縮合反応の条件(温度9時間1組酸比)を
選択することによって調整することができる。
In this way, by carrying out a co-thermal decomposition polycondensation reaction, silicon-carbon bonds (-8i-C-), silicon-silicon bonds (-8i-Si-), and silicon-nitrogen bonds are formed in the polymer main chain. (-Si-N-) is formed. The degree of polymerization of the polymer can be adjusted depending on the degree of polymerization of the raw materials by selecting the conditions for the colysis polycondensation reaction (temperature, 9 hours, 1 set acid ratio).

シリコン・カーバイド・ナイトライド繊維製造用の前駆
体ポリマーを製造する場合には、生成ポリマーの軟化点
が150〜300℃となるよう調整するのがよい。
When producing a precursor polymer for producing silicon carbide nitride fibers, it is preferable to adjust the softening point of the produced polymer to 150 to 300°C.

本発明方法では、上述の如くして調製した含窒素有機珪
素ポリマーの繊維、テープ、フィルム。
In the method of the present invention, fibers, tapes, and films of nitrogen-containing organosilicon polymers prepared as described above are used.

シート、薄葉体等への成形方法は、溶融法、乾式法(溶
液法)のいずれでもよい。一般に繊維化するときは溶融
紡糸法が好ましく、フィルム、シート類を成形すること
は溶液キャスト又は流延する方法が好ましい。
The method for forming sheets, thin sheets, etc. may be either a melting method or a dry method (solution method). Generally, when forming fibers, melt spinning is preferred, and when forming films and sheets, solution casting or casting is preferred.

このようにして、例えば繊維、フィルム等の成形物とし
た後、該成形物を不融化する為、まずハロゲンを吸着及
び/又は作用せしめる〈A工程)。
After forming a molded product such as a fiber or film in this way, in order to make the molded product infusible, halogen is first adsorbed and/or acted upon (Step A).

A工程において使用するハロゲンとしては、例えば塩素
、臭素、沃素があげられるが、就中、沃素が最も好まし
い。
Examples of the halogen used in Step A include chlorine, bromine, and iodine, and among these, iodine is most preferred.

吸着/作用させるハロゲンの量は、成形物(例えば紡糸
直後の繊維)の重量を基準にして0.01〜150(重
量)%の範囲内に選択されるが、特に0.1〜50(重
量)%が好ましい。吸着/作用の方法としては、ハロゲ
ンのガス中に有機珪素ポリマ−成形物を置く方法、ハロ
ゲンを溶解した溶液中に有機珪素ポリマー成形物を浸漬
する方法等、任意の手段を採ることができるが、工業的
には、ハロゲンのガス中に成形物を置く方法が好ましく
使用される。ハロゲンを吸着/作用させる雰囲気として
は、実質的に酸素を含まない雰囲気、例えば不活性ガス
雰囲気、真空雰囲気等が好ましい。
The amount of halogen to be adsorbed/acted on is selected within the range of 0.01 to 150% (by weight) based on the weight of the molded product (for example, fibers immediately after spinning), and particularly 0.1 to 50% (by weight). )% is preferred. Any method of adsorption/action can be used, such as placing an organosilicon polymer molding in a halogen gas or immersing an organosilicon polymer molding in a solution in which a halogen is dissolved. Industrially, a method in which the molded product is placed in a halogen gas is preferably used. The atmosphere in which the halogen is adsorbed/acted on is preferably an atmosphere that does not substantially contain oxygen, such as an inert gas atmosphere or a vacuum atmosphere.

本発明方法において、ハロゲンを成形物に吸着/作用さ
せる温度としては、処理効率を上げるため通常50℃以
上の温度でかつ融着の生じない温度、好ましくは100
℃〜(ポリマー融点−10℃)の温度が採用される。
In the method of the present invention, the temperature at which halogen is adsorbed/acted on the molded product is usually 50°C or higher and a temperature at which no fusion occurs, preferably 100°C or higher, in order to increase processing efficiency.
Temperatures from 0.degree. C. to (polymer melting point -10.degree. C.) are employed.

次に、このようにしてハロゲンを吸着/作用せしめた含
窒素有機珪素ポリマー成形物に対し、非酸化性雰囲気中
で、塩基性物質を作用させる(B工程)。
Next, a basic substance is made to act on the nitrogen-containing organosilicon polymer molded article on which the halogen has been adsorbed/acted on in a non-oxidizing atmosphere (Step B).

13工程において使用する塩基性物質としては、例えば
アンモニアメチルアミン、エチレンジアミン等があげら
れるが、就中アンモニアが最も好ましい。
Examples of the basic substance used in step 13 include ammonia methylamine, ethylene diamine, and the like, with ammonia being the most preferred.

これらの塩基性物質を作用させる具体的方法としては、
種々の方法があるが、通常は、塩基性物質をガス状とな
し、不活性ガスとの共存/非共存下で作用させるのが好
ましい。いずれの場合も、実質的に酸素の存在しない条
件で行なう必要がある。このB工程において、塩基性物
質を作用させる量は、前工程で成形物に吸着/作用させ
たハロゲンの量によって異なるが、該ハロゲン量に対し
充分過剰に作用させることが好ましい。一般に作用した
ハロゲンに対し等当量〜400当量の範囲が好適に採用
される。塩基性物質を作用させる温度は、室温〜200
℃までとする。この温度が余りに高いと成形物の融着が
発生するので好ましくない。
The specific method of making these basic substances act is as follows:
Although there are various methods, it is usually preferable to make the basic substance into a gaseous state and to make it work in the presence/absence of an inert gas. In either case, it is necessary to carry out the process under conditions substantially free of oxygen. In this step B, the amount of the basic substance applied varies depending on the amount of halogen adsorbed/acted on the molded article in the previous step, but it is preferable to apply the basic substance in sufficient excess to the amount of halogen. Generally, a range of equivalents to 400 equivalents to the acting halogen is preferably employed. The temperature at which the basic substance is applied is room temperature to 200℃.
up to ℃. If this temperature is too high, fusion of the molded products will occur, which is not preferable.

このようにして、ハロゲンで、次いで塩基性物質で処理
した成形物はすでにかなり不敵化しており、通常は、不
活性ガス中で加熱処理し不融化をより完全に進行させる
(C工程)。
In this way, the molded article treated with a halogen and then with a basic substance has already become considerably invulnerable, and is usually heat-treated in an inert gas to more completely make it infusible (Step C).

このための加熱処理は200〜700℃、好ましくは2
00〜600℃の温度の不活性ガス(窒素等)雰囲気中
で、1分〜3時間処理する方法が、操作性の観点より好
ましく使用される。この不活性雰囲気中での加熱処理(
C工程)は必ずしも必須ではなく、塩基性物質処理(B
工程)後の不融化状態によっては直ちに後述のE工程に
供してもよい。
The heat treatment for this is 200-700℃, preferably 2
A method of processing in an inert gas (nitrogen, etc.) atmosphere at a temperature of 00 to 600° C. for 1 minute to 3 hours is preferably used from the viewpoint of operability. This heat treatment in an inert atmosphere (
Step C) is not necessarily essential, and basic substance treatment (B
Depending on the infusible state after step), it may be immediately subjected to step E described below.

B工程、所望によりさらにC工程を実施し、非酸素雰囲
気下で不敵化された有機珪素ポリマー成形物は、次いで
、不活性ガス(窒素、アルゴンガス等)雰囲気中、80
0〜1400℃の温度で約1分〜2時間焼成を実施しく
D工程〉、目的とするシリコン・カーバイド・ナイトラ
イド系成形物にする。
The organosilicon polymer molded product, which has been rendered invulnerable in a non-oxygen atmosphere by further carrying out Step B and Step C if desired, is then heated for 80 minutes in an inert gas (nitrogen, argon gas, etc.) atmosphere.
Firing is carried out at a temperature of 0 to 1400° C. for about 1 minute to 2 hours to form the desired silicon carbide nitride molded product.

[発明の効果] かくして得られるシリコン・カーバイド・ナイトライド
系成形物は、その中に、ごく僅かの酸素しか含まないな
め、空気中での耐熱性及び機械物性が顕著に改善される
。このため、本発明の方法は、高品質のシリコン・カー
バイド・ナイトライド系繊維、テープ、フィルム等を工
業的に製造する方法としてきわめて有用である。そして
、かくして得られたシリコン・カーバイド・ナイトライ
ド成形物は、耐熱繊維材料、プラスチックス、金属、セ
ラミックス等の補強材等として好適である。
[Effects of the Invention] The silicon carbide nitride molded product thus obtained contains only a small amount of oxygen, and therefore has significantly improved heat resistance and mechanical properties in air. Therefore, the method of the present invention is extremely useful as a method for industrially producing high quality silicon carbide nitride fibers, tapes, films, etc. The silicon carbide nitride molded product thus obtained is suitable as a reinforcing material for heat-resistant fiber materials, plastics, metals, ceramics, and the like.

[実施例] 次に本発明の実施例及び比較例を掲げ、さらに詳細に説
明するが、本発明は、これにより何ら限定されるもので
はない。
[Examples] Next, Examples and Comparative Examples of the present invention will be described in more detail, but the present invention is not limited thereto.

実施例1 (ポリシラスチレンの製造) ジクロロジメチルシランとジクロロ・フェニルメチルシ
ランとの0.45 : 0.55モル当量の混合物を用
いて、トルエン溶媒中で原料シランに対して2.1モル
当量のナトリウム分散触媒を用いて100〜110℃の
重合反応を行なった。反応終了後、この反応混合物を室
温まで冷却し、メタノールを加えて未反応のナトリウム
触媒を分解し、数回水洗してメタノール及びNaelを
溶解除去し、白濁した混合物を得た。この混合物を濾過
し沈澱物を除去した後、超遠心分離器にかけて透明なト
ルエン溶液を得た。このトルエン溶液からトルエンを留
去し、軟化点96〜104℃のポリシラスチレン(PP
S)が得られた。
Example 1 (Manufacture of polysilastyrene) Using a 0.45:0.55 molar equivalent mixture of dichlorodimethylsilane and dichlorophenylmethylsilane, 2.1 molar equivalent relative to the raw material silane was prepared in a toluene solvent. A polymerization reaction was carried out at 100 to 110°C using a sodium-dispersed catalyst. After the reaction was completed, the reaction mixture was cooled to room temperature, methanol was added to decompose the unreacted sodium catalyst, and the mixture was washed with water several times to dissolve and remove methanol and Nael to obtain a cloudy mixture. This mixture was filtered to remove the precipitate, and then applied to an ultracentrifuge to obtain a clear toluene solution. Toluene was distilled off from this toluene solution, and polysilastyrene (PP) with a softening point of 96 to 104°C was
S) was obtained.

(サイクリックシラザンの入手) 市販の東芝シリコン■製、商品No、 TSL−881
0を入手して使用した。
(Obtaining cyclic silazane) Commercially available Toshiba Silicon ■, product No. TSL-881
0 was obtained and used.

(ハチ解重縮合反応〉 上記ポリシラスチレン(PSS)とサイクリックシラザ
ン(TSL−88101とを3/1の重量割合でオート
クレーブ中に仕込み420℃で窒素雰囲気中で3時間加
熱し、続いて300℃、3〜10mmHgの減圧下で1
0分間処理することにより、ハチ解熱重縮合反応を行な
わせな。
(Hachi depolycondensation reaction) The above polysilastyrene (PSS) and cyclic silazane (TSL-88101) were charged into an autoclave at a weight ratio of 3/1, heated at 420°C for 3 hours in a nitrogen atmosphere, and then heated at 300°C for 3 hours in a nitrogen atmosphere. ℃, 1 under reduced pressure of 3-10 mmHg
By treating for 0 minutes, the bee dethermal polycondensation reaction is not performed.

得られたポリカルボシラザン共重合体の軟化点は230
℃で重合収率は45%であった。
The softening point of the obtained polycarbosilazane copolymer was 230
The polymerization yield was 45% at ℃.

く繊維の製造) 上記ポリカルボシラザンを250℃で溶融紡糸し、得ら
れたポリカルボシラザン共重合体繊維を、窒素雰囲気に
保たれたガス状沃素供給口を有する沃素処理装置へ連続
的に供給しな。該沃素ガス処理装置内は120℃に保持
され、供給される繊維に対し25wt%に相当する量の
沃素を連続的に供給した。
(Manufacture of fibers) The polycarbosilazane above is melt-spun at 250°C, and the obtained polycarbosilazane copolymer fiber is continuously fed to an iodine treatment device having a gaseous iodine supply port maintained in a nitrogen atmosphere. Shina. The inside of the iodine gas treatment apparatus was maintained at 120° C., and iodine was continuously supplied in an amount equivalent to 25 wt % to the supplied fibers.

該装置から連続的に取り出された沃素処理装置は、次い
で室温に保たれ、沃素に対し3倍当量のアンモニアガス
が連続供給されている塩基性物質処理装置へ導かれ、該
装置内でアンモニアにより処理された。該装置から連続
的に取り出されたアンモニア処理繊維を、次いで窒素雰
囲気下400℃に加熱し、不融化繊維とした。該不敵化
繊維を次いで窒素雰囲気下1200℃で焼成し、シリコ
ン・カーバイド・ナイトライド系繊維を得た。この繊維
の酸素含有量は3.8wt%で、C/Si原子比は1.
2であった。また、この繊維の引張強度は330 Kg
/+am2で、優れた強度を示した。
The iodine treatment device that is continuously taken out from the device is then led to a basic substance treatment device that is kept at room temperature and is continuously supplied with ammonia gas in an amount equivalent to three times the amount of iodine. It has been processed. The ammonia-treated fibers continuously taken out from the apparatus were then heated to 400° C. in a nitrogen atmosphere to obtain infusible fibers. The invulnerable fiber was then fired at 1200° C. in a nitrogen atmosphere to obtain a silicon carbide nitride fiber. The oxygen content of this fiber is 3.8 wt%, and the C/Si atomic ratio is 1.
It was 2. Also, the tensile strength of this fiber is 330 kg
/+am2, showing excellent strength.

この繊維の耐熱性を1200℃で60分間加熱すること
により評価したところ、極めて良好な結果を得た。
When the heat resistance of this fiber was evaluated by heating it at 1200° C. for 60 minutes, very good results were obtained.

Claims (6)

【特許請求の範囲】[Claims] (1)含窒素有機珪素ポリマーを繊維,テープ,フィル
ム,シート,薄葉体等の形状に成形後、該含窒素有機珪
素ポリマー成形物に (A)該成形物の重量当り0.01〜150(重量)%
のハロゲンを吸着及び/又は作用させ、 (B)次いで非酸化性雰囲気中、200℃以下の温度で
塩基性物質を作用させて、少くとも部分的に不融化させ
た後、 (C)必要により、さらに不活性ガス雰囲気中で加熱処
理して不融化を促進させ、 (D)しかる後、不活性ガス雰囲気中で焼成を行う ことを特徴とするシリコン・カーバイド・ナイトライド
系成形物の製造法。
(1) After molding the nitrogen-containing organosilicon polymer into a shape such as a fiber, tape, film, sheet, thin film, etc., the nitrogen-containing organosilicon polymer molded product (A) 0.01 to 150 (per weight of the molded product) weight)%
(B) Then, in a non-oxidizing atmosphere, a basic substance is applied at a temperature of 200°C or less to make it at least partially infusible, and (C) as necessary. , further heat-treated in an inert gas atmosphere to promote infusibility, and (D) followed by firing in an inert gas atmosphere. .
(2)含窒素有機珪素ポリマーが、珪素−炭素結合と珪
素−窒素結合と珪素−珪素結合とを主な骨格成分とする
ポリカルボ−シラザン共重合体である請求項(1)に記
載の製造法。
(2) The production method according to claim (1), wherein the nitrogen-containing organosilicon polymer is a polycarbo-silazane copolymer whose main skeleton components are silicon-carbon bonds, silicon-nitrogen bonds, and silicon-silicon bonds. .
(3)上記(A)の工程で使用するハロゲンが、沃素で
ある請求項(1)又は(2)に記載の製造法。
(3) The manufacturing method according to claim (1) or (2), wherein the halogen used in the step (A) is iodine.
(4)ハロゲンを不活性雰囲気中で有機珪素ポリマー成
形物に吸着及び/又は作用させる請求項(1)〜(3)
のいずれかに記載の製造法。
(4) Claims (1) to (3) in which halogen is adsorbed and/or acted on the organosilicon polymer molded article in an inert atmosphere.
The manufacturing method described in any of the above.
(5)上記(B)の工程で使用する塩基性物質が、アン
モニアである請求項(1)〜(4)のいずれかに記載の
製造法。
(5) The manufacturing method according to any one of claims (1) to (4), wherein the basic substance used in the step (B) is ammonia.
(6)含窒素有機珪素ポリマーの成形物に、ハロゲンを
50℃以上で、且つ融着の生じない温度で吸着及び/又
は作用させ、次いで塩基性物質を、非酸化性雰囲気中で
200℃以下の温度にて作用させた後、不活性ガス中で
200〜500℃の温度で加熱処理し、しかる後不活性
ガス雰囲気中において800℃以上の温度で焼成を行う
ことによりシリコン・カーバイド・ナイトライドに転化
させる請求項(1)〜(5)のいずれかに記載の製造法
(6) Halogen is adsorbed and/or acted on the nitrogen-containing organosilicon polymer molded product at a temperature of 50°C or higher and at a temperature that does not cause fusion, and then a basic substance is added to the molded product at 200°C or lower in a non-oxidizing atmosphere. Silicon Carbide Nitride The manufacturing method according to any one of claims (1) to (5), wherein the method is converted into.
JP1332833A 1989-12-25 1989-12-25 Production of silicon carbide nitride-based molded article Pending JPH03197364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1332833A JPH03197364A (en) 1989-12-25 1989-12-25 Production of silicon carbide nitride-based molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332833A JPH03197364A (en) 1989-12-25 1989-12-25 Production of silicon carbide nitride-based molded article

Publications (1)

Publication Number Publication Date
JPH03197364A true JPH03197364A (en) 1991-08-28

Family

ID=18259313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332833A Pending JPH03197364A (en) 1989-12-25 1989-12-25 Production of silicon carbide nitride-based molded article

Country Status (1)

Country Link
JP (1) JPH03197364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106604890A (en) * 2014-08-27 2017-04-26 株式会社丰田自动织机 Method for producing carbon-coated silicon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106604890A (en) * 2014-08-27 2017-04-26 株式会社丰田自动织机 Method for producing carbon-coated silicon material
CN106604890B (en) * 2014-08-27 2019-08-06 株式会社丰田自动织机 Carbon is coated the manufacturing method of silicon materials

Similar Documents

Publication Publication Date Title
US3892583A (en) Production of shaped articles of silicon carbide and silicon nitride
JPH03505607A (en) Hydridosiloxane as a precursor for ceramic products
JPS62290730A (en) Production of organosilazane polymer and production of ceramics using said polymer
CA2025469C (en) Organic amide-modified polysilazane ceramic precursors
JP2511074B2 (en) Pre-ceramic polymer, ceramic material and methods for producing the same
JP2572813B2 (en) Borazine condensate fired product and method for producing the same
JP2511110B2 (en) Method for infusibilizing preceramic polymer and method for producing ceramic products
JPH03197364A (en) Production of silicon carbide nitride-based molded article
JPS62276020A (en) Curing of preceramic article by gaseous thionyl chloride
JPS61295273A (en) Manufacture of ceramic material
US4946713A (en) Poly(alkenylpentaborane) ceramic precursors
JPH0569766B2 (en)
JP3142886B2 (en) Method for producing SiC-based ceramic precursor
JP2609323B2 (en) Method for producing high performance silicon-based ceramic fiber
JP2904501B2 (en) Method for producing high-quality silicon-based ceramic fiber by irradiation
JPH07189039A (en) Production of silicon carbide fiber
US5064915A (en) Production of infusible polycarbosilanes convertible into silicon carbide ceramics
JP2749883B2 (en) Method for producing ceramic material containing silicon nitride from hydride chlorosilazane polymer
JPS60185817A (en) Preparation of inorganic yarn having high strength
JPH04219380A (en) Method for coating of product containing carbon
JPH0542980B2 (en)
EP0361181A2 (en) Infusibilization of organic silazane polymers and preparation of hollow ceramic fibers
US5028571A (en) Conversion of polycarbosilanes into silicon nitride ceramics
JPH0340814A (en) Production of silicon carbide-based fiber excellent in high-temperature characteristic
JPH05310946A (en) Production of cross-linked polycarbosilane