JPH03197300A - Expanding structure for space - Google Patents

Expanding structure for space

Info

Publication number
JPH03197300A
JPH03197300A JP1337937A JP33793789A JPH03197300A JP H03197300 A JPH03197300 A JP H03197300A JP 1337937 A JP1337937 A JP 1337937A JP 33793789 A JP33793789 A JP 33793789A JP H03197300 A JPH03197300 A JP H03197300A
Authority
JP
Japan
Prior art keywords
deployable
expanding
space
members
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337937A
Other languages
Japanese (ja)
Inventor
Yutaka Kuribayashi
豊 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1337937A priority Critical patent/JPH03197300A/en
Publication of JPH03197300A publication Critical patent/JPH03197300A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the expansion mechanism of an expanding structure by inserting several cylindrical expanding members of different diameter in each ether freely expandable successively, keeping respective space between them airtight, and expanding the expanding structure with an expansive force propor tional to the pressure difference between sealed-in gas and the space. CONSTITUTION:When an expanding structure is helded in an enclosed state, expanding members are arranged concentric to each other in the order of inner- most 1a, 1b-1d, and airtight seals 2 are provided between respective expanding member 1a-1d, and distance between them are kept constant by means of guides 9 respectively. The enclosed state is maintained with a releasing mechanism 4 locked to a receiving portion 5 on the expanding member. When the expanding structure held in the enclosed state is loaded on an artificial satellite or the like and launched in the space, locking of the releasing mechanism 4 is released to expand the expanding members by means of guides 9 along a guide rail 10 with an expansive force proportional to the difference between the pressure of air 3 sealed in the spaces between the expanding members 1a-1d (atmospheric pressure) and the environmental pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は9例えば人工衛星や宇宙基地に用いられる大
型アンテナの副反射鏡の支持構造のように、宇宙空間に
おいて展開される展開構造物に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a deployable structure deployed in outer space, such as a support structure for a sub-reflector of a large antenna used in an artificial satellite or a space base. It is something.

〔従来の技術〕[Conventional technology]

人工衛星や宇宙基地に用いられるアンテナ等の構造物は
、そのミッション要求の高度化から、大型化する傾向に
ある。一方9人工衛星等を打ち上げるロケットも大型化
しつつあるが、アンテナ等の構造物の大型化に比べてそ
の進みかたは遅く。
Structures such as antennas used in artificial satellites and space bases tend to become larger due to increasingly sophisticated mission requirements. On the other hand, rockets used to launch satellites and other satellites are also becoming larger, but this progress is slower than the increase in the size of structures such as antennas.

大型アンテナ等の構造物を搭載した人工衛星等を打ち上
げる場合には、アンテナ等の構造物を折シ畳んでロケッ
トに収納する必要がある。さらに。
When launching an artificial satellite carrying a structure such as a large antenna, it is necessary to fold the structure such as the antenna and store it in a rocket. moreover.

宇宙空間においては、折り畳んだアンテナ等の構造物を
展開し、所望の形状・水沫に保つ必要がある。
In space, it is necessary to unfold structures such as folded antennas and maintain them in the desired shape and shape.

第5図は従来の宇宙用展開構造物の一実施例を示す斜視
図であ92図において(1a)〜(1d)はそれぞれの
径が異なる展開部材であ!7.  (6a)は各展開部
材の上部に固定されたプーリー(6b)は各展開部材の
下部に固定されたプーリー、+7+は最も内側の展開部
材(1a)に固定され、 各展開部材に固定されたプー
リーを通シトラム+81に接続されたケーブル、(8)
は動力によ多回転しケーブル(7)を巻き取るためのド
ラム、(9)は隣接した展開部材の間隔を一定に保ち、
展開運動を滑らかにするために放射線状に取り付けられ
たガイド、 Qlは展開部材の展開方向に取り付けられ
、ガイド(9)の展開運動を導くためのガイドレールで
ある。
FIG. 5 is a perspective view showing an example of a conventional space deployable structure. In FIG. 92, (1a) to (1d) are deployable members with different diameters! 7. (6a) is a pulley fixed to the top of each deployable member (6b) is a pulley fixed to the bottom of each deployable member, +7+ is fixed to the innermost deployable member (1a), and is fixed to each deployable member. Cable connected to Citram+81 through pulley, (8)
(9) is a drum that rotates multiple times by power to wind up the cable (7); (9) maintains a constant interval between adjacent deployment members;
Guides Ql are installed in a radial manner in order to smooth the deployment movement. Ql is a guide rail that is attached in the deployment direction of the deployment member and guides the deployment movement of the guide (9).

次に動作について説明する。第6図は従来の宇宙用展開
構造物の収納状態の断面図を示したものであるが、展開
部材は(1a)を最も内側にし、以下(1b)〜(1d
)の順に同心円状に配置されており。
Next, the operation will be explained. Fig. 6 shows a cross-sectional view of the conventional space deployable structure in its stored state, with the deployable member (1a) being the innermost, and the following (1b) to (1d).
) are arranged concentrically in this order.

それぞれの間隔はガイド(9)により一定に保たれ。The respective intervals are kept constant by a guide (9).

ケーブル(7)は伸びきった状態になっている。The cable (7) is in a fully extended state.

展開時の動作は第1図に示すごとく、ドラム(8)を動
力によシ回転軸+Illの回りに回転させ、ケーブル(
7)をドラム(8)に巻き取る。ケーブル(7)はプー
リー(6a) (6b)を介して各展開部材と結ばれて
いるため、ケーブル(7)をドラム(8)に巻き取るこ
とにより、隣接した展開部材に固定されたプーリー(6
a)(6b)を通るケーブル(7)の長さは第6図のL
から第1図のL′と短くなシ、ガイド(9)がガイドレ
ールαGに導かれながら各展開部材がせシ上がることに
よシ展開動作が可能となる。
As shown in Fig. 1, the operation when unfolding is to rotate the drum (8) around the rotation axis +Ill by power, and connect the cable (
7) onto the drum (8). Since the cable (7) is connected to each deployment member via pulleys (6a) (6b), by winding the cable (7) around the drum (8), the pulley ( 6
a) The length of the cable (7) passing through (6b) is L in Figure 6.
1. The guide (9), which is short as L' in FIG. 1, is guided by the guide rail αG while each deploying member rises, thereby enabling the deploying operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の宇宙用展開構造物は以上のように構成されている
ため、展開させるためのドラム(8)、ケーブル(7)
、プーリー(6a)(6b)が必要であるので。
Conventional space deployable structures are configured as described above, so a drum (8) and a cable (7) are used for deployment.
, since pulleys (6a) (6b) are required.

重量が重くなってしまい、また、展開構造物全体を展開
させるだけのエネルギーが必要であるなどの課題があっ
た。
There were problems in that it was heavy and required energy to deploy the entire deployable structure.

この発明は上記のような課題を解消するため罠なされた
もので、構造物を展開させるための装置を省いて重量を
軽くできるとともに、わずかなエネルギーだけで構造物
を展開させることができる装置を得ることを目的とする
This invention was made to solve the above-mentioned problems, and it is possible to reduce the weight by omitting a device for deploying a structure, and to create a device that can deploy a structure with only a small amount of energy. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る宇宙用展開構造物は、各展開部材に気密
用のシールを有し、展開部材内部に気体を封入するとと
もに、必要な時期には展開を可能とする保持解放機構を
有するものである。
The space deployable structure according to the present invention has an airtight seal on each deployable member, seals gas inside the deployable member, and has a holding/releasing mechanism that enables deployment when necessary. be.

〔作用〕[Effect]

この発明における展開構造物は展開部材に気密用のシー
ルを有し、展開部材内部に気体を封入することにより、
真空状態である宇宙空間において展開部材内部と宇宙空
間との圧力差によって展開を可能とし、また保持解放機
構によシ展開時期を制御する。
The deployable structure according to the present invention has an airtight seal on the deployable member, and by sealing gas inside the deployable member,
Deployment is made possible in the vacuum state of outer space by the pressure difference between the inside of the deployable member and outer space, and the deployment timing is controlled by a holding and releasing mechanism.

〔実施例〕〔Example〕

以下この発明による一実施例を図について説明する。第
1図において(1a)〜(1b)はそれぞれの径が異な
る展開部材であり、(2)は各展開部材に設置された気
密用のシール、(3)は展開部材(1a)〜(1b)と
気密用シール(2)によって展開部材内に封入された気
体、(4)は展開構造物の展開時期を制御するための保
持解放機構、(5)は展開部材に固定され保持解放機構
と接する保持解放機構の受け部である。
An embodiment according to the present invention will be described below with reference to the drawings. In Fig. 1, (1a) to (1b) are deployable members with different diameters, (2) is an airtight seal installed on each deployable member, and (3) is a deployable member (1a) to (1b). ) and the gas sealed in the deployable member by the airtight seal (2), (4) is a holding and releasing mechanism for controlling the deployment timing of the deployable structure, and (5) is a holding and releasing mechanism fixed to the deployable member. This is the receiving part of the holding/releasing mechanism that comes in contact with the holding/releasing mechanism.

次に上記実施例の動作を、展開部材内の封入気体(3)
の圧力が収納状態において地上での大気圧と等しい場合
を例にとって説明する。
Next, the operation of the above embodiment will be explained as follows:
An example will be explained in which the pressure is equal to the atmospheric pressure on the ground in the stored state.

第2図はこの発明による宇宙用展開構造物の収納状態の
断面図を示したものであるが、展開部材は(1a)を最
も内側にし、以下(1b)〜(1d)の順に同心円状に
配置されておシ、それぞれの間隔はガイド(9)によシ
一定に保たれ、また収納状態は保持解放機構(4)が展
P部材上の受け部(5)に接するととKよ)保たれてい
る。
FIG. 2 shows a cross-sectional view of the space deployable structure according to the present invention in a stored state. The deployable members are arranged concentrically in the order of (1b) to (1d), with (1a) being the innermost part. The distance between the two is kept constant by the guide (9), and the stored state is maintained when the holding and releasing mechanism (4) touches the receiving part (5) on the expansion member (K). It is maintained.

展開構造物が地上にある場合には展開部材内の封入気体
(3)の圧力は大気圧と等しいので展開力は働かないが
、展開部材を搭載した人工衛星等がロケット等によシ打
ち上げられ、高度が上がるにしたがって外気圧は低くな
るため、展開部材内の封入気体+31の圧力と外気圧と
の差に比例した展開力が展開部材全体に働く。展開力が
展開部材に働いても、展開構造物を展開させる時期でな
ければ。
When the deployable structure is on the ground, the pressure of the sealed gas (3) inside the deployable member is equal to atmospheric pressure, so no deployment force is exerted, but when an artificial satellite or the like carrying the deployable member is launched by a rocket, etc. As the altitude increases, the external pressure decreases, so a deployment force proportional to the difference between the pressure of the sealed gas +31 inside the deployment member and the outside pressure acts on the entire deployment member. Even if the deployment force acts on the deployment member, it is not the time to deploy the deployment structure.

保持解放機構(4)を展開部材上の受け部(5)に接触
した状態にしておけば、展開構造物を収納状態のまま維
拉することができる。
By keeping the holding and releasing mechanism (4) in contact with the receiving portion (5) on the deployable member, the deployable structure can be maintained in the stored state.

第3図はこの発明による宇宙用展開構造物の展開状態の
断面図を示したものであるが、保持解放機構(4)を展
開部材上の受け部(5)から例えばバネの力によシ離せ
ば、展開部材内の封入気体(3)の圧力と外気圧との差
に比例した展開力により、ガイド(9)がガイドレール
αGに導かれ、展開構造物が展開する。特に宇宙空間は
ほぼ真空状態であるため。
FIG. 3 shows a cross-sectional view of the deployable space structure according to the present invention in the deployed state. When released, the guide (9) is guided to the guide rail αG by a deployment force proportional to the difference between the pressure of the sealed gas (3) in the deployment member and the outside air pressure, and the deployment structure is deployed. Especially since outer space is almost a vacuum.

展開部材内の封入気体(3)の圧力との圧力差がおおき
く、展開力が大きくなるとともに、無重力状態であるた
め、展開構造物の展開は非常に容易である。
Since there is a large pressure difference with the pressure of the sealed gas (3) in the deployable member, the deploying force is large, and there is no gravity, the deployable structure can be deployed very easily.

なお、上記実施例では展開部材内に封入された気体(3
)の圧力は収納状態において地上での大気圧と等しい場
合を示したが、地上での大気圧よりも高くともよく、そ
の場合には展開構造物の展開力は封入気体(3)の圧力
は収納状態において地上での大気圧と等しい場合よりも
大きくなる。
In addition, in the above embodiment, the gas (3
) is shown to be equal to the atmospheric pressure on the ground in the stowed state, but it may be higher than the atmospheric pressure on the ground, and in that case, the deployment force of the deployable structure is equal to the pressure of the enclosed gas (3). In the stowed state, the pressure is greater than when it is equal to the atmospheric pressure on the ground.

また、上記実施例では展開部材を(1a)〜(1d)の
4個を示したが、展開部材の数は2個以上であれは任意
の数でよく、上記実施例と同様の効果を奏する。
Further, in the above embodiment, four deployable members (1a) to (1d) are shown, but the number of deployable members may be any number as long as it is two or more, and the same effect as in the above embodiment can be achieved. .

さらに、保持解放機構は上記実施例に示した形状・形式
に限られるのではなく2例えば第4図のように各展開部
材に保持解放機構04と保持解放機構の受け部α9を設
けても同様の効果が得られることはいうまでもない。
Furthermore, the holding and releasing mechanism is not limited to the shape and form shown in the above embodiments.2For example, the holding and releasing mechanism 04 and the receiving part α9 of the holding and releasing mechanism may be provided on each deployable member as shown in FIG. Needless to say, this effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば展開部材内に封入した
気体の圧力と外気圧との圧力差に比例した展開力によシ
展開構造物が展開するように構成したので、展開用に特
別な装置を必要とせず、軽量化が可能である。また、保
持解放機構を駆動するために要するエネルギーは、展開
構造物全体を展開するために要するエネルギーよシも少
なくてすむため、展開に要するエネルギーが少なくてす
むという効果がある。
As described above, according to the present invention, the deployable structure is configured to be deployed by a deploying force proportional to the pressure difference between the pressure of the gas sealed in the deployable member and the external pressure. It does not require any special equipment and can be lightweight. Furthermore, the energy required to drive the holding and releasing mechanism is less than the energy required to deploy the entire deployable structure, so there is an effect that less energy is required for deployment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による宇宙用展開構造物を
示す斜視図、第2図はその収納状態における断面側面図
、第3図はその展開状態における断面側面図、第4図は
この考案の一実施例の他の実施例を示す展開状態におけ
る断面側面図、第5図は従来の宇宙用展開構造物を示す
斜視図、第6図はその収納状態における断面側面図、第
7図はその展開状態における断面側面図である。 図において、  (Ia)〜(1b)はそれぞれの径が
異なる展開部材であり、(2)は各展開部材に投首され
た気密用のシール、(3)は展開部材(1a)〜(1b
)と気密用シール(2)によって展開部材内に封入され
た気体、(4)は展開構造物の展開時期を制御するため
の保持解放機構、(5)は展開部材に固定され保持解放
機構と接する保持解放機構の受け部、(6a)は各展開
部材の上部に固定されたプーリー (6b)は各展開部
材の下部に固定されたブー’)−mは最も内側の展開部
材(1a)に固定され、 各展開部材に固定されたプー
リーを通りドラム(8)に接続されたケーブル、(8)
は動力により回転しケーブル(7)を巻き取るためのド
ラム、(91は隣接した展開部材の間隔を一定に保ち、
展開動作を滑らかにする九めのガイド、 GGは展開部
材の展開方向に取シ付けられ、ガイド(9)を導くため
のガイドレールである。 なお1図中同一符号は、同一あるいは相当部分を示す。
FIG. 1 is a perspective view showing a deployable space structure according to an embodiment of the present invention, FIG. 2 is a cross-sectional side view of the space deployable structure in its stored state, FIG. FIG. 5 is a perspective view showing a conventional deployable structure for space; FIG. 6 is a cross-sectional side view in the stored state; FIG. 7 is a cross-sectional side view in its unfolded state. In the figure, (Ia) to (1b) are deployable members with different diameters, (2) is an airtight seal attached to each deployable member, and (3) is a deployable member (1a) to (1b).
) and the gas sealed in the deployable member by the airtight seal (2), (4) is a holding and releasing mechanism for controlling the deployment timing of the deployable structure, and (5) is a holding and releasing mechanism fixed to the deployable member. The contacting holding and releasing mechanism receiving parts (6a) are pulleys fixed to the upper part of each deployable member; (6b) are the pulleys fixed to the lower part of each deployable member; and (6b) are the pulleys fixed to the lower part of each deployable member; a cable (8) fixed and connected to the drum (8) through a pulley fixed to each deployment member;
is a drum that rotates by power and winds up the cable (7);
The ninth guide GG, which smoothes the deployment operation, is a guide rail that is attached in the deployment direction of the deployment member and guides the guide (9). Note that the same reference numerals in Figure 1 indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  それぞれ径の異なる内部が空洞の複数の展開部材と、
隣接する展開部材の間に置かれ展開部材の間の気密を確
保する気密シールと、上記複数の展開部材と気密シール
の内側に封入された気体と、隣接する展開部材の間に置
かれ展開部材の間隔を一定に保つガイドと、展開部材の
展開方向に設置され上記ガイドの運動を滑らかにするた
めのガイドレールと、展開部材の展開運動の抑制が可能
であり、また動作させることにより展開部材の展開運動
を導く保持解放機構と、展開部材上に設置され収納状態
においては上記保持解放機構と接し収納状態を保持する
受け部とを備えた宇宙用展開構造物。
a plurality of deployable members each having a hollow interior with a different diameter;
an airtight seal placed between adjacent deployable members to ensure airtightness between the deployable members; a gas sealed inside the plurality of deployable members and the airtight seal; and a deployable member placed between the adjacent deployable members. a guide that maintains a constant interval between the two; a guide rail that is installed in the direction of deployment of the deployable member to smooth the movement of the guide; A space deployable structure comprising: a holding/releasing mechanism that guides the unfolding movement of the spacer; and a receiving part installed on the deploying member and in contact with the holding/releasing mechanism in the stored state to maintain the stored state.
JP1337937A 1989-12-26 1989-12-26 Expanding structure for space Pending JPH03197300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337937A JPH03197300A (en) 1989-12-26 1989-12-26 Expanding structure for space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337937A JPH03197300A (en) 1989-12-26 1989-12-26 Expanding structure for space

Publications (1)

Publication Number Publication Date
JPH03197300A true JPH03197300A (en) 1991-08-28

Family

ID=18313403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337937A Pending JPH03197300A (en) 1989-12-26 1989-12-26 Expanding structure for space

Country Status (1)

Country Link
JP (1) JPH03197300A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295299A (en) * 1995-04-28 1996-11-12 Nec Corp Automatic development contamination preventing cover
CN102501986A (en) * 2011-09-27 2012-06-20 南京航空航天大学 Anchoring and sampling mechanism of planetary probe
CN107061440A (en) * 2016-12-19 2017-08-18 北京航空航天大学 A kind of expandable type locking, unblock, mutual interlocking gear
CN107719703A (en) * 2017-09-26 2018-02-23 北京航空航天大学 The locking of tandem type exhibition receiving apparatus, interlocking, unlocking mechanism
FR3071822A1 (en) * 2017-10-04 2019-04-05 Arianegroup Sas DEPLOYABLE SATELLITE MAT

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295299A (en) * 1995-04-28 1996-11-12 Nec Corp Automatic development contamination preventing cover
CN102501986A (en) * 2011-09-27 2012-06-20 南京航空航天大学 Anchoring and sampling mechanism of planetary probe
CN107061440A (en) * 2016-12-19 2017-08-18 北京航空航天大学 A kind of expandable type locking, unblock, mutual interlocking gear
CN107719703A (en) * 2017-09-26 2018-02-23 北京航空航天大学 The locking of tandem type exhibition receiving apparatus, interlocking, unlocking mechanism
FR3071822A1 (en) * 2017-10-04 2019-04-05 Arianegroup Sas DEPLOYABLE SATELLITE MAT
WO2019068649A1 (en) * 2017-10-04 2019-04-11 Arianegroup Sas Deployable satellite mast
US11772825B2 (en) 2017-10-04 2023-10-03 Arianegroup Sas Deployable satellite mast

Similar Documents

Publication Publication Date Title
US3863870A (en) Spin stabilized vehicle and solar cell arrangement therefor
US6689952B2 (en) Large membrane space structure and method for its deployment and expansion
US4380013A (en) Expandable panel and truss system/antenna/solar panel
US3169725A (en) Erectable modular space station
US8132762B2 (en) Space based rotating film solar battery array
US3144219A (en) Manned space station
US7913953B2 (en) Solar sail launch system and solar sail attitude control system
US3544041A (en) Deployable flexible solar array
US3817481A (en) Deployable solar array for a spin stabilized spacecraft
JP2019512191A (en) Foldable RF membrane antenna
US9884693B2 (en) Enveloping aerodynamic decelerator
US20200231308A1 (en) Deployable System with Flexible Membrane
EP3598576B1 (en) Reflecting systems, such as reflector antenna systems, with tension-stabilized reflector positional apparatus
US20190144139A1 (en) Large aperture unfurlable reflector deployed by a telescopic boom
JPH03197300A (en) Expanding structure for space
CN113309227B (en) Moon cabin body structure system combining mechanical expansion and inflation expansion and method
US3809337A (en) Spin stabilized vehicle and solar cell arrangement therefor
Kaya et al. Crawling robots on large web in rocket experiment on Furoshiki deployment
US3423755A (en) Antenna formed of filamentary material deployed in space by centrifugal force
US3973745A (en) Solar cell arrangement for a spin stabilized vehicle
US3722840A (en) Spin stabilized vehicle and solar cell arrangement therefor
JPH03189296A (en) Developed structure for space
CN111009714B (en) Satellite-borne umbrella-shaped antenna structure with self-unfolding speed regulating device and unfolding method thereof
CN214875671U (en) Moon cabin structure combining mechanical expansion and inflation expansion
JP2005086698A (en) Developable antenna