JPH0319701A - Cutting method for work - Google Patents

Cutting method for work

Info

Publication number
JPH0319701A
JPH0319701A JP15299889A JP15299889A JPH0319701A JP H0319701 A JPH0319701 A JP H0319701A JP 15299889 A JP15299889 A JP 15299889A JP 15299889 A JP15299889 A JP 15299889A JP H0319701 A JPH0319701 A JP H0319701A
Authority
JP
Japan
Prior art keywords
work
cutting
feed
surface roughness
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15299889A
Other languages
Japanese (ja)
Inventor
Isao Matsumoto
勲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP15299889A priority Critical patent/JPH0319701A/en
Publication of JPH0319701A publication Critical patent/JPH0319701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PURPOSE:To machine a work in a short time with high accuracy and to prolong the service life of a tool by increasing feeding when the sharpness of a cutting tool becomes worse, changing the position of the wear part of a blade for the work, and grinding the work by the new part of the blade. CONSTITUTION:The surface roughness Rmax is restrained less than a required roughness Rg by being worked with a feeding f1 satisfying the required roughness Rg at the beginning of the working start, the apex part 22 of the cutting residual part 21 of a work 2 abuts on the B point of a side cutting edge 13, a boundary wear 34 is formed, the sharpness is worsened by the increase in the number of works and the surface roughness Rmax approaches the required roughness Rg. In the case that the number of pieces N1 found in advance experientially has been machined, the feeding is increased to f2, the apex 22 of the cutting residual part 21 having been abutted on the B point is made to abut on a C point part and the sharpness is restored by using a new edge part C point. The work is continued with the feedings of f3...fn by increasing the feeding whenever the working piece number of the work 2 reaches the specific piece numbers N2, N3...Nn and when the surface roughness Rmax is not restrained less than the required roughness Rg with the number of pieces reaching Nn and becoming too large even if the feeding is increased more than fn, the work is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、旋盤、中ぐり盤等によってワークを高精度に
加工するワークの切削加工方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a workpiece cutting method for processing a workpiece with high precision using a lathe, a boring machine, or the like.

〔従来の技術] 最近、CBNバイトやダイヤモンドバイトの開発に伴い
、焼入鋼や粉末合金等のワークを高精度(嵌め合い公差
口7以上、表面粗さ68以下、真円度5μm以下、真直
度5μm以下等)に加工するため、研削加工に代って切
削加工が使われてぃる(特開昭63−1 27801号
公報参照〉。このように研削加工の代りに切削加工を用
いれば、加工時間を短縮でき、かつ、加工装置として安
価なものが使用でき、ワーク1個当たりの加工費用を低
く抑えることができる。
[Conventional technology] Recently, with the development of CBN bits and diamond bits, workpieces made of hardened steel and powder alloys can be manufactured with high precision (fitting tolerance of 7 or more, surface roughness of 68 or less, roundness of 5 μm or less, straightness). Cutting is used instead of grinding (see JP-A-63-1 27801).In this way, if cutting is used instead of grinding, , machining time can be shortened, inexpensive machining equipment can be used, and machining cost per work piece can be kept low.

第4図は、旋盤で精密切削加工を行った場合のワークの
加工面の状態を示している。図において、1はバイト〈
切削工具〉、2はワーク、Aは送り方向、口は切り込み
深さであって、ワーク2には、1ピッチ毎(ワーク2が
1回転する毎)に凸状の削り残し部21が形威されてい
る。この削り残し部21の大きさ、すなわち表面相さR
 maxは、送りfとバイト1のノーズ半径「とに応じ
て理論的に決定され、これらの関係はRmax 一f2
 /8 rとなっている。したがって、理論上、切削加
工では、送りfとバイト1のノーズ半径「とを適宜設定
することによって、表面相さR maxを要求する粗さ
Rg以下に抑えることができる。
FIG. 4 shows the condition of the machined surface of a workpiece when precision cutting is performed using a lathe. In the figure, 1 is a byte
Cutting tool〉, 2 is the workpiece, A is the feeding direction, and the opening is the cutting depth. has been done. The size of this uncut portion 21, that is, the surface texture R
max is theoretically determined according to the feed f and the nose radius of the cutting tool 1, and the relationship between these is Rmax - f2
/8 r. Therefore, in theory, in cutting, by appropriately setting the feed f and the nose radius of the cutting tool 1, the surface roughness Rmax can be suppressed to the required roughness Rg or less.

〔発明が解決しようとする課題] しかしながら、実際は、加工当初、表面粗さRmaxが
要求粗さRc+以下となるように切削条件〈送りf、ノ
ーズ半径r〉を設定しても、加工を長時間続けていると
、次のような理由によって、表面粗さR maxが大き
くなり要求粗さRGを越えてしまうということが起こっ
ていた。
[Problem to be solved by the invention] However, in reality, even if the cutting conditions (feed f, nose radius r) are set so that the surface roughness Rmax is equal to or less than the required roughness Rc+ at the beginning of machining, machining is not continued for a long time. As the process continued, the surface roughness R max increased to exceed the required roughness RG due to the following reasons.

すなわち、切削加工で加工を長時間続けると、第3図に
示すように、バイト1の逃げ面11、すくい面12等に
逃げ面摩耗31、すくい面摩耗32、ノーズ摩耗33、
境界摩耗34等の各種の摩耗が生じる。なお、図におい
て、13は横切刃、14は前切刃を示す。
That is, when cutting continues for a long time, as shown in FIG. 3, flank wear 31, rake face wear 32, nose wear 33,
Various types of wear such as boundary wear 34 occur. In addition, in the figure, 13 indicates a side edge, and 14 indicates a front cutting edge.

上記各種の摩耗のうち境界摩耗34は、第4図に示すよ
うに、削り残し部21の頂点部分22に対応した位置に
発生する。このため、加工を長時間続けてバイト1の摩
耗が進行すると、境界摩耗34の影響によってパイ1−
1の切れ味が悪くなり、削り残し部21の頂点部分22
が極端に盛り上がって、この結果、表面粗さR maX
が増大するということが起こる。
Among the various types of wear described above, boundary wear 34 occurs at a position corresponding to the apex portion 22 of the uncut portion 21, as shown in FIG. For this reason, if machining continues for a long time and the wear of the tool bit 1 progresses, the influence of the boundary wear 34 will cause the pie 1-
1 becomes dull and the apex portion 22 of the uncut portion 21
is extremely raised, and as a result, the surface roughness R maX
What happens is that .

このような問題に対し、従来は、パイ1−1の摩耗があ
る程度進行すれば、バイト1を交換する、あるいは送り
fを小さくするという方法で幻処していた。しかしなが
ら、これらの方法では、それぞれ工具寿ぐが短くなる、
あるいは加工時間が長くなるという欠点があった。
To solve this problem, conventional methods have been unsuccessful, such as replacing the cutting tool 1 or reducing the feed f once the wear of the piezo 1-1 has progressed to a certain extent. However, these methods each shorten the tool life.
Another disadvantage is that the processing time becomes longer.

以上の事情に鑑みて、本発明は、短い加工時間でワーク
を高精度に加工することができるとともに、工具寿命を
延ばすことができるワークの切削加工方法を提供しよう
とするものである。
In view of the above circumstances, it is an object of the present invention to provide a workpiece cutting method that can process a workpiece with high precision in a short machining time and can extend tool life.

(課題を解決するための手段) 本発明にかかるワークの切削加工方法は、ワークの表面
粗さが所定値以下となるように送りを制御して切削する
ワークの切削加工方法において、切削工具の切れ味が悪
化する毎に、送りを順次増大させるようにしたものであ
る。
(Means for Solving the Problems) A method for cutting a workpiece according to the present invention is a method for cutting a workpiece by controlling the feed so that the surface roughness of the workpiece is below a predetermined value. The feed is increased sequentially each time the sharpness deteriorates.

〔作用〕[Effect]

以上の構成によれば、切削工具の切れ味が悪くなった場
合、送りを増大させることによって、ワークに対する切
削工具の刃の摩耗部分の位置が変り、切削工具の刃の新
しい部分でワークが削れることとなり、切削工具の切れ
味が回復する。このため、切削工具を交換しなくとも、
同じ工具で加工を続けることができる。
According to the above configuration, when the cutting tool becomes dull, increasing the feed changes the position of the worn part of the cutting tool's blade relative to the workpiece, and the workpiece can be cut with the new part of the cutting tool's blade. This will restore the sharpness of the cutting tool. Therefore, there is no need to replace cutting tools.
Machining can be continued with the same tool.

(実施例) 本発明にかかるワークの切削加工方法を、この方法を用
いて複数個のワークを旋盤で加工した場合について、第
1図<a).(b)に基づいて説明する。これらの図に
おいて、1はバイト(切削工具)、2はワーク、21は
削り残し部、Aは送り方向、目は切り込み深さである。
(Example) Fig. 1<a) shows a case where a plurality of workpieces are machined using a lathe using the workpiece cutting method according to the present invention. The explanation will be based on (b). In these figures, 1 is a cutting tool (cutting tool), 2 is a workpiece, 21 is an uncut portion, A is a feeding direction, and the mesh is a cutting depth.

この切削加工方法は、加工開始当初、第1図(a)に示
すように、f1の送りで加工する。この送りの量f1は
、表面粗さR waxが要求粗さRQよりも30〜40
%程度小さくなるように、理論式Rmax = f2 
/8 rに基づいて設定する。
In this cutting method, at the beginning of machining, as shown in FIG. 1(a), machining is performed with a feed rate of f1. This feed amount f1 is such that the surface roughness Rwax is 30 to 40 lower than the required roughness RQ.
%, the theoretical formula Rmax = f2
/8 Set based on r.

その後、加工を続けてワーク2を複数個加工し終わりバ
イト1が第4図のように摩耗しバイト1の切れ味が悪く
なってくると、第1図(b)に示すように、送りをf1
よりも大きい値f2に増大させて加工する。
After that, after machining a plurality of workpieces 2, the cutting tool 1 wears out as shown in Fig. 4 and becomes dull, and as shown in Fig. 1 (b), the feed is changed to f1.
Processing is performed by increasing the value f2 to a value larger than .

5 そして、f2の送りで加工を続けてワーク2を複数個加
工し終わりバイト1の切れ味が悪くなってくると、送り
をf2よりもさらに大きい値f3に増大させて加工する
。以下、加工開始当初の送りf1より30%増の値fn
を限界としてその限界に達するまで、バイト1の切れ味
が悪くなる毎に送りを順次増大させて加工する。なお、
加工中、切削速度は一定とする。
5 Then, machining is continued at the feed rate of f2, and when a plurality of workpieces 2 have been machined and the cutting tool 1 becomes dull, the feed rate is increased to a value f3, which is even larger than f2, and machining is continued. Below, the value fn is 30% more than the feed f1 at the beginning of machining.
Processing is performed by increasing the feed rate each time the cutting tool 1 becomes dull until the limit is reached. In addition,
During machining, the cutting speed is kept constant.

バイト1の切れ味の良悪の判断は、加工後に測定したワ
ーク2の表面粗さRIllaxによって判断し、表面粗
さR maxが要求粗さRg近くになれば、バイト1の
切れ味が悪くなったと判断する。ただし、加工後に逐次
表面相さR maxを測定して判断するのではなく、送
りを順次増大させて加工したときに各送り条件でバイト
1の切れ味が悪くなるワーク2の加工個数を予め経験的
に求めておき、その加工個数になったか否かで判断する
。すなわち、送りをf1からfnへ順次増大させて加工
したとき、各送り条件f1〜fnでそれぞれ表面粗さR
maxが要求粗さRQ近くになるときのワーク2の6 加工個数N1〜Nnを予め経験的に求めてあき、各送り
条件f1〜fnでその条件に対応する加工個数N1〜N
nに達すれば、バイト1の切れ味が悪くなったと判断す
る。例えば、f1の送りで加工した場合、ワーク2の加
工個数がN1個に達すれば、バイト1の切れ味が悪くな
ったと判断する。
The cutting quality of the cutting tool 1 is judged by the surface roughness RIllax of the workpiece 2 measured after machining, and if the surface roughness R max approaches the required roughness Rg, it is determined that the cutting tool 1 has deteriorated. do. However, rather than making a judgment by sequentially measuring the surface roughness R max after machining, we empirically determined in advance the number of workpieces 2 to be machined at which the cutting edge of bite 1 becomes dull under each feed condition when machining is performed by sequentially increasing the feed rate. The number of pieces to be machined is determined in advance and the judgment is made based on whether the number of pieces processed has been reached. In other words, when machining is performed by increasing the feed rate from f1 to fn, the surface roughness R is
6 of workpiece 2 when max is close to the required roughness RQ. The number N1 to Nn of workpieces to be machined is determined in advance in advance, and the number of pieces to be machined N1 to Nn corresponding to each feed condition f1 to fn is calculated in advance.
If n is reached, it is determined that the cutting edge of bite 1 has become dull. For example, when machining is performed with a feed rate of f1, if the number of workpieces 2 to be machined reaches N1, it is determined that the cutting tool 1 has become less sharp.

そして、バイト1の切れ味が悪くなったと判断ずれば、
送りを増大させて加工するが、加工個数がNn個に達し
てバイト1の切れ味が悪くなったと判断した場合は、こ
の場合に限り加工を中止する。
And if you judge that the sharpness of bite 1 has become worse,
Machining is carried out by increasing the feed, but if it is determined that the number of pieces to be machined has reached Nn and the cutting tool 1 has become dull, the machining is stopped only in this case.

以上の構成によると、加工開始当初は、第1図(a)に
示すように、要求粗さRQを満足するf1の送りで加工
される。このため、表面粗さRIIla×が要求粗さR
Q以下に抑えられる。この送りf1で加工を続けると、
バイト1の横切刃13のB点部分にワーク2の削り残し
部21の頂点部分22が当たるため、B点部分に境界摩
耗34が形或され、ワーク2の加工個数が増加するに伴
って境界摩耗34が徐々に発達し、バイト1の切れ味が
悪化して、表面粗さR maxが徐々に要求粗さRCI
に近づくようになる。
According to the above configuration, at the beginning of machining, as shown in FIG. 1(a), machining is performed with a feed of f1 that satisfies the required roughness RQ. Therefore, the surface roughness RIIla× is the required roughness R
It can be kept below Q. If you continue machining with this feed f1,
Since the apex portion 22 of the uncut portion 21 of the workpiece 2 hits the B point portion of the side edge 13 of the cutting tool 1, boundary wear 34 is formed at the B point portion, and as the number of workpieces 2 to be processed increases. The boundary wear 34 gradually develops, the sharpness of the cutting tool 1 deteriorates, and the surface roughness R max gradually decreases to the required roughness RCI.
comes closer to.

そして、ワーク2の加工個数がN1個に達すると、バイ
ト1の切れ味が悪くなったと判断され、第1図(b)に
示すように、送りがf1からf2に増大されるようにな
る。送りがf1からf2に増大されるようになると、バ
イト1の横切刃13のB点部分に当たっていたワーク2
の削り残し部21の頂点部分22がB点部分より根元の
C点部分に当たるようになる。すなわち、ワーク2の削
り残し部21の頂点部分22に当たる部分が、境界摩耗
34が発達したB点部分から今まで使われていなかった
C点部分に変わるようになる。これにより、バイト1の
摩耗されていない新しい刃部(C点部分)が使われるよ
うになり、バイト1の切れ味が回復して、一旦要求粗さ
R(Illに近づいた表面粗さR maxが蘇生される
ようになる。
When the number of workpieces 2 to be machined reaches N1, it is determined that the cutting tool 1 has become less sharp, and the feed is increased from f1 to f2 as shown in FIG. 1(b). When the feed was increased from f1 to f2, the workpiece 2 that was hitting the point B of the side blade 13 of the cutting tool 1
The apex portion 22 of the uncut portion 21 comes to be closer to the root point C than the point B. That is, the portion corresponding to the apex portion 22 of the uncut portion 21 of the workpiece 2 changes from the B point portion where the boundary wear 34 has developed to the C point portion which has not been used until now. As a result, a new, unworn blade part (point C) of bite 1 is used, the sharpness of bite 1 is restored, and the surface roughness R max, which has once approached the required roughness R (Ill), is used. Become revived.

その後、f2の送りで加工を続けると、今度はC点部分
に境界摩耗34が形或され、再びバイト1の切れ味が悪
化して、表面相さR maxが徐々に要求粗さRgに近
づくようになる。そして、ワ−ク2の加工個数がN2個
に達すると、バイト1の切れ味が悪くなったと判断され
、送りがf2からf3に増大されるようになる。このた
め、C点部分より根元部分の新しい刃部が使われるよう
になり、再びバイト1の切れ味が回復して、表面粗さR
 maxが蘇生され要求粗さR0以下に保たれるように
なる。
After that, when machining is continued with a feed of f2, boundary wear 34 is formed at point C, the sharpness of bite 1 deteriorates again, and the surface roughness R max gradually approaches the required roughness Rg. become. When the number of workpieces 2 processed reaches N2, it is determined that the cutting tool 1 has become dull, and the feed is increased from f2 to f3. For this reason, a new blade part at the root part is used rather than the C point part, and the sharpness of bite 1 is restored again, and the surface roughness R
max is revived and maintained below the required roughness R0.

以後、ワーク2の加工個数が所定個数N3.N4,・・
・に達する毎に送りが順次増大され、その度、新しい刃
部が使われるようになってバイト1の切れ味が回復し表
面粗さR maxが蘇生されて要求粗さRQ以下に保た
れるようになる。そして、fnの送りで加工が続けられ
ワーク2の加工個数がNnに達すると、加工が中止され
る。なお、送りをfnよりも増大させても、バイト1の
切れ味は回復するが、送りが大ぎくなり過ぎるため、表
面粗さR maxを要求粗さRg以下に抑えることがで
きなくなる。
Thereafter, the number of workpieces 2 to be processed reaches the predetermined number N3. N4,...
The feed is increased sequentially each time it reaches ・Each time, a new blade part is used, the sharpness of bite 1 is restored, the surface roughness R max is revived, and it is maintained below the required roughness RQ. become. Then, machining is continued at a feed rate of fn, and when the number of workpieces 2 to be machined reaches Nn, the machining is stopped. Note that even if the feed is increased beyond fn, the sharpness of the cutting tool 1 is restored, but the feed becomes too large, making it impossible to suppress the surface roughness R max to the required roughness Rg or less.

第2図に、上記加工方法を用いた場合のワーク2の加工
個数と表面粗さR maxとの関係を示す。
FIG. 2 shows the relationship between the number of workpieces 2 processed and the surface roughness R max when the above processing method is used.

9 なお、比較のため、従来のように一定の送りf1で加工
した場合の関係を二点鎖線で示す。
9. For comparison, the relationship when machining is performed at a constant feed rate f1 as in the prior art is shown by a two-dot chain line.

従来の方法の場合は、加工個数がN+ fJAk:達し
てバイト1の切れ味が悪くなっても、送りを変えずに加
工していたため、加工個数がN111を越えると、表面
粗さR maxが要求粗さR(]を越えてしまっていた
。このため、1個のバイト1ではN1個のワーク2しか
加工することができず、すなわち工具寿命がN1個まで
しかなく、ワーク2をN1個加工すれば、新しいバイh
 1と交換しなければならなかった。
In the case of the conventional method, even if the number of pieces to be machined reached N+ fJAk and the cutting edge of bite 1 became dull, the feed was not changed and the machine was processed, so when the number of pieces to be machined exceeded N111, the surface roughness R max was required. The roughness R(] was exceeded.For this reason, one tool bit 1 can only machine N1 pieces of workpiece 2, which means that the tool life is only up to N1 pieces, and only N1 pieces of workpiece 2 can be machined. Then, a new bih
I had to exchange it for 1.

これに対し、本発明の方法の場合は、加工個数がN1個
に達してバイト1の切れ味が悪くなると、送りをf1か
らf2に増大させることによってバイト1の切れ味が回
復するため、N1個を越えて加工しても、表面粗さR 
maxが要求粗さRgを越えることなく、それ以下に保
たれるようになる。
On the other hand, in the case of the method of the present invention, when the number of pieces processed reaches N1 and the sharpness of bite 1 deteriorates, the sharpness of bit 1 is restored by increasing the feed from f1 to f2. Even if processed beyond the surface roughness R
max does not exceed the required roughness Rg, but is maintained below it.

そして、f2の送りで加工していてバイト1の切れ味が
悪くなると、再び送りを増大させ、以後、バイト1の切
れ味が悪くなる毎に送りを順次増大10 させるようにするため、その度、バイト1の切れ味が回
復し、Nn個のワーク2まで要求粗さRgを越えること
なく加工することができ、工具寿命をNn個まで延ばす
ことができる。しかも、送りを順次増大させるようにす
るため、加工時間を短縮することもできる。
If cutting tool 1 becomes less sharp while machining with a feed of f2, the feed is increased again.From then on, each time cutting tool 1 becomes less sharp, the feed is increased by 10. The sharpness of No. 1 is restored, Nn pieces of workpiece 2 can be machined without exceeding the required roughness Rg, and the tool life can be extended to Nn pieces. Furthermore, since the feed is gradually increased, the machining time can be shortened.

以下に、本発明の具体例と比較例とを示す。Specific examples of the present invention and comparative examples are shown below.

(具体例〉 ワーク;直径1 6+ (0〜0.008)s,長さ3
5#Iの穴を有する鉄系焼結合金(C:0.1%.Cu
:1.0%,「e;残)製のワークバイト: CBNバ
イト パイ1〜形状;6゜ (上すくい角),O’(垂直横す
くい角〉,11゜ (前逃げ角),5゜ (横逃げ角)
,88゜ (前切刃角),58゜ (横切刃角)0.4
m(ノーズ半径) 要求粗さRq;RIlla×3μm 要求精度;直角度6μm、真円度および円筒度5μm 切削速度V;200m7min 11 切込み深さd;0. 2mttr 上記条件で、送りfを0.08sn/rev 〜0.1
 0 5 s/ revの間で順次増大させてワークに
精密中ぐり加工を施した。
(Specific example) Work; diameter 1 6+ (0 to 0.008) s, length 3
Iron-based sintered alloy (C: 0.1%.Cu
: 1.0%, work tool made of "e": CBN tool pie 1 ~ shape; 6° (top rake angle), O' (vertical side rake angle), 11° (front relief angle), 5° ( side clearance angle)
, 88° (front cutting edge angle), 58° (side cutting edge angle) 0.4
m (nose radius) Required roughness Rq; RIlla x 3μm Required accuracy: Squareness 6μm, circularity and cylindricity 5μm Cutting speed V: 200m7min 11 Depth of cut d; 0. 2mttr Under the above conditions, feed f is 0.08sn/rev ~0.1
Precision boring was performed on the workpiece by increasing the speed sequentially between 0.5 s/rev.

(比較例) 送りfを0 . 0 8 m/ reVで一定にした他
は、具体例と同じ条件でワークに精密中ぐり加工を施し
た。
(Comparative example) Feed f is 0. Precision boring was performed on the workpiece under the same conditions as in the specific example except that the voltage was kept constant at 0.8 m/reV.

上記具体例および比較例について、それぞれ加工を続け
て表面粗さR maxが要求粗さRQに達したときの加
工個数を計測した。この結果、比較例の場合は190個
、具体例の場合は40011Bであった。これにより、
本発明の方法によれば、工具寿命が延びることがわかる
For the above-mentioned specific example and comparative example, the number of processed pieces was measured when the surface roughness R max reached the required roughness RQ after continuous processing. As a result, the number was 190 in the case of the comparative example, and 40011B in the case of the specific example. This results in
It can be seen that the method of the invention extends tool life.

なお、本発明は、旋盤による旋削加工、中ぐり盤による
中ぐり加工等、ワークに対して切削工具を相対的に回転
させて加工する切削加工に適用される。
Note that the present invention is applied to cutting processes in which a cutting tool is rotated relative to a workpiece, such as turning with a lathe and boring with a boring machine.

〔発明の効果〕〔Effect of the invention〕

本発明にかかるワークの切削加工方法は、切削12 工具の切れ味が悪化する毎に送りを順次増大させるよう
にしているため、切れ味が悪化しても、送りを増大させ
ることによって、切削工具の刃の新しい部分でワークが
削れることとなり、切削工具の切れ味が回復してさらに
加工を続けることができるようになる。このため、工具
寿命を延ばすことができる。しかも、送りを順次増大さ
せることによって、加工時間を短縮することができる。
In the method for cutting a workpiece according to the present invention, the feed is sequentially increased each time the sharpness of the cutting tool deteriorates. The new part of the workpiece will be able to be cut, and the cutting tool will regain its sharpness and be able to continue machining. Therefore, tool life can be extended. Moreover, by sequentially increasing the feed, the machining time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図<a),(b)は本発明にかかるワークの切削加
工方法の一実施例を用いた場合のワークの加工状態を示
す断面図、第2図は加工個数と表面粗さとの関係を示す
グラフ、第3図はバイトの摩耗状態を示す斜視図、第4
図は従来のワークの切削加工方法を用いた場合のワーク
の加工状態を示す断面図である。 1・・・バイト(切削工具)、2・・・ワーク、f1〜
fn・・・送り、R max・・・表面粗さ。
Fig. 1<a) and (b) are cross-sectional views showing the machining state of a workpiece when an embodiment of the workpiece cutting method according to the present invention is used, and Fig. 2 is a relationship between the number of processed pieces and surface roughness. Figure 3 is a perspective view showing the state of wear of the cutting tool, Figure 4 is a graph showing
The figure is a cross-sectional view showing the state of workpiece machining using a conventional workpiece cutting method. 1...Bite (cutting tool), 2...Work, f1~
fn...Feed, R max...Surface roughness.

Claims (1)

【特許請求の範囲】[Claims] 1、ワークの表面粗さが所定値以下となるように送りを
制御して切削するワークの切削加工方法において、切削
工具の切れ味が悪化する毎に、送りを順次増大させるこ
とを特徴とするワークの切削加工方法。
1. A workpiece cutting method in which the feed is controlled and cut so that the surface roughness of the workpiece is below a predetermined value, the workpiece being characterized in that the feed is sequentially increased each time the sharpness of the cutting tool deteriorates. cutting method.
JP15299889A 1989-06-14 1989-06-14 Cutting method for work Pending JPH0319701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15299889A JPH0319701A (en) 1989-06-14 1989-06-14 Cutting method for work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15299889A JPH0319701A (en) 1989-06-14 1989-06-14 Cutting method for work

Publications (1)

Publication Number Publication Date
JPH0319701A true JPH0319701A (en) 1991-01-28

Family

ID=15552720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15299889A Pending JPH0319701A (en) 1989-06-14 1989-06-14 Cutting method for work

Country Status (1)

Country Link
JP (1) JPH0319701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198871A (en) * 2015-04-14 2016-12-01 新日鐵住金株式会社 Method for turning pipe end part of metal pipe, and method for manufacturing metal pipe
DE102022210231A1 (en) 2021-10-01 2023-04-06 Okuma Corporation Procedure for turning workpieces, machine tool and machining program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198871A (en) * 2015-04-14 2016-12-01 新日鐵住金株式会社 Method for turning pipe end part of metal pipe, and method for manufacturing metal pipe
DE102022210231A1 (en) 2021-10-01 2023-04-06 Okuma Corporation Procedure for turning workpieces, machine tool and machining program

Similar Documents

Publication Publication Date Title
JP3984052B2 (en) Cutting method without twisting of rotationally symmetric surfaces
JP5088678B2 (en) Long neck radius end mill
US20080152438A1 (en) Ballnose end mill
US4539875A (en) High-speed metal cutting method and self-sharpening tool constructions and arrangements implementing same
WO2016002402A1 (en) Cutting tool production method and cutting tool
CA2614514A1 (en) Method of machining crankshafts, and apparatus for carrying out the method
CN107042329A (en) For the milling method of chill product
JP2005111651A (en) Tip, milling cutter, and machining method using the same
JP2015044275A (en) Ball end mill
JP2010162677A (en) Small-diameter cbn ball end mill
JP2010162677A5 (en)
JP2020524086A (en) Turning inserts for metal cutting
CN103111820A (en) Machining technology of tooth profile of milling cutter with wave-shaped cutter edge
JPH0319701A (en) Cutting method for work
KR0148220B1 (en) Electrodeposition reamer tool
JP6212863B2 (en) Radius end mill
JPH09192930A (en) Thread cutter
EP4059642A1 (en) Method for a cnc-lathe
KR102470286B1 (en) Mirror finishing method and mirror finishing tool
JPH06335816A (en) Minimum diameter end mill
JP4618680B2 (en) Broach manufacturing method
JP2013013962A (en) Cbn end mill
JP7250720B2 (en) Cutting tools and cutting methods
CN215468360U (en) Insert welding threaded handle chamfering tool
CN114472944B (en) Finishing insert for reducing tool wear