JPH0319647B2 - - Google Patents

Info

Publication number
JPH0319647B2
JPH0319647B2 JP61106995A JP10699586A JPH0319647B2 JP H0319647 B2 JPH0319647 B2 JP H0319647B2 JP 61106995 A JP61106995 A JP 61106995A JP 10699586 A JP10699586 A JP 10699586A JP H0319647 B2 JPH0319647 B2 JP H0319647B2
Authority
JP
Japan
Prior art keywords
discharge
lightning
power transmission
lightning arrester
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61106995A
Other languages
Japanese (ja)
Other versions
JPS62264512A (en
Inventor
Tetsuya Nakayama
Takashi Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10699586A priority Critical patent/JPS62264512A/en
Publication of JPS62264512A publication Critical patent/JPS62264512A/en
Publication of JPH0319647B2 publication Critical patent/JPH0319647B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 (産業上の利用分野) 本発明は架空送電線用耐雷碍子装置に関するも
のである。 (従来の技術) 従来、送電線路に雷サージ電圧が加わつたと
き、これを速やかに放電するとともに、その後生
じる続流を遮断し地絡事故を防止する耐雷碍子装
置が提案されている。この耐雷碍子装置として鉄
塔の支持アームに支持碍子を介して送電線を支持
するとともに、避雷碍子を吊下固定し、同避雷碍
子の下端部に取着した放電電極と前記送電線側に
取着した放電電極との間に所定の放電間隙を設け
る方式と、又鉄塔の支持アームに支持碍子を介し
て送電線を支持するとともに、非直線性抵抗素子
を内蔵した避雷碍子を吊下固定して同避雷碍子の
下端部に送電線を接続する方式とがある。 (発明が解決しようとする問題点) 前者の耐雷碍子装置においては、雷サージ電圧
が送電線に加わるとその異常高電圧は避雷碍子の
下端部に設けられた放電間隙を経由し避雷碍子内
の非直線性抵抗素子を通して放電される。想定し
た雷サージを処理する場合、避雷碍子の上下両端
部に取着した一対のアーキングホーンの間隙で閃
絡を生じないことはもちろん、想定を上廻る雷撃
をうけても閃絡を避雷碍子アーキングホーン間に
とどめ二次的に損傷を防止するため前記支持碍子
課電側のアーキングホーンと鉄塔との間の絶縁ク
リアランスでは絶対に閃絡が生じないようにする
ことが要求される。 一方、後者の耐雷碍子装置においては、異常高
電圧が避雷碍子の非直線性抵抗素子を通つて放電
される。想定をこえる雷撃をうけた場合前者と同
様の対応が必要であつた。これらの耐雷碍子装置
を送電線に適用し、耐雷碍子装置の雷サージ処理
に対する信頼性をより高め、かつ合理的な設計に
よつて鉄塔の小型化を図るためにはアーキングホ
ーン間隙長や絶縁クリアランスの間の寸法比を最
適な関係に設定する必要があつた。 発明の構成 (問題点を解決するための手段) 第1発明は前記問題点を解消するため、鉄塔の
支持アームに支持碍子を介して送電線を支持する
とともに、避雷碍子を吊下固定し、同避雷碍子の
下端部に取着した放電電極と前記送電線側に取着
した放電電極との間に所定の放電間隙長G2を設
け、前記避雷碍子の上下両端部に取着した一対の
アーキングホーンの間隙長G3と、前記支持碍子
の両端部に取着した一対のアーキングホーンの間
隙長G1と、支持碍子の下端部に取着したアーキ
ングホーンと鉄塔との間の絶縁クリアランスCと
の間に、 放電間隙G2の放電前において、 G1、C≧G2×(1.18〜2.0) 放電間〓G2の放電後において、 C≧G3×(1.08〜1.53) G1≧G3 となるように間隙長G1〜G3及び絶縁クリアラ
ンスCを設定するという手段を採つている。 第2発明は前記問題点を解消するため、鉄塔の
支持アームに支持碍子を介して送電線を支持する
とともに、非直線性抵抗素子を内蔵した避雷碍子
を吊下固定した同避雷碍子の下端部に送電線を接
続し、前記支持碍子の両端部に取着したアーキン
グホーンの間隙長をG1とし、前記避雷碍子の上
下両端部に対向配置した一対のアーキングホーン
の間隙長をG3とし、前記避雷碍子の下端部に取
着したアーキングホーンと鉄塔との間の絶縁クリ
アランスをCとすると、 C≧G3×(1.08〜1.53) G1≧G3 になるように前記間隙長G1,G3及び絶縁クリ
アランスCを設定するという手段を採つている。 (作用) 第1発明は送電線又は鉄塔部に雷サージが印加
され、放電間隙G2に放電が生じるまでは、間隙
G1,G3、及び送電線と鉄塔との間の絶縁クリ
アランスCの間に電圧が加わるが、雷サージが放
電間隙G2の放電開始電圧以上になると、この部
分が放電し、避雷碍子の非直線性抵抗素子を経て
支持アームへ放電され雷サージ電圧が抑制される
ことから、前記間隙G1,G3及び絶縁クリアラ
ンスCで閃絡を生じることはない。又、想定を上
廻る雷撃をうけても各間隙と絶縁クリアランスに
絶縁隔差を設けていることから、避雷碍子アーキ
ングホーン間隙G3以外で閃絡を生じることはな
い。 第2発明は送電線に雷サージが加わると、避雷
碍子に内蔵した非直線性抵抗素子で放電が生じる
までは、間隙G3及び送電線と鉄塔との間の絶縁
クリアランスCの間に電圧が加わるが、雷サージ
が非直線性抵抗素子の放電開始電圧以上になる
と、同非直線性抵抗素子で放電が始まり、雷サー
ジ電圧が抑制されることから、間隙G3、絶縁ク
リアランスCの間で閃絡を生じることはない。ま
た想定を上廻る雷撃をうけて非直線性抵抗素子部
の制限電圧が高くなつても間隙G3と絶縁クリア
ランスCとの間に絶縁隔差を設けてあることか
ら、絶縁クリアランスCで閃絡が生じることはな
い。 (実施例) 以下、第1発明を具体化した第1実施例を第1
図及び第2図に基づいて説明する。 鉄塔1に装着した支持アーム2の中間部には長
幹碍子よりなる支持碍子3の上部キヤツプ金具4
がボルトにより固定され、同支持碍子3の下端部
に嵌合固定した下部キヤツプ金具5には把持金具
6を介して送電線7が支持されている。 前記上下両キヤツプ金具4,5には前記支持碍
子3の沿面閃絡による損傷を防止するためのアー
キングホーン8,9が所定の間隙G1をもつて対
向配置されている。前記把持金具6には課電側の
放電電極としてのアーキングホーン10が支持さ
れている。 一方、前記支持アーム2の先端部には電圧−電
流特性が非直線性の抵抗素子11(以下単に非直
線性抵抗素子という)を内蔵した避雷碍子12の
上部電極金具13がボルトにより固定され、同避
雷碍子12の下部電極金具14には放電電極とし
てのアーキングホーン15が前記アーキングホー
ン10と所定の放電間隙G2をもつて対向するよ
うに、かつ水平方向の位置調節可能に支持されて
いる。同避雷碍子12の上下両電極金具13,1
4には避雷碍子12の沿面閃絡あるいは放圧時の
損傷を防止するためのアーキングホーン16,1
7が所定の間隙G3をもつて対向配置されてい
る。前記アーキングホーン9と鉄塔1との間には
所定の絶縁クリアランスCが設けられ、雷サージ
が加わつたときアーキングホーン9から鉄塔1に
放電が生じないようにしている。 まず、雷サージが印加され放電間隙G2が放電
するまでの絶縁設計について考える。この方式の
装置では万一、非直線抵抗素子が想定を上廻る雷
撃により導通状態となつても再投入による強行送
電が可能なように、放電間隙G2の絶縁強度は開
閉サージ電圧に耐えるよう設定される。この放電
間隙G2に対して間隙G1,G3と、絶縁クリア
ランスCとの寸法比を適正値に設定することによ
り、放電間隙G2で雷サージを確実に放電させる
ことが可能となる。これらの各間隙G1〜G3及
び絶縁クリアランスCの寸法比はこの実施例にお
いては次のようにして設定される。 予め設定された放電間隙G2の放電開始電圧と
して平均値V50に2σ〜3σを加えた値をとり、間隙
G1,G3及び絶縁クリアランスCにおいてはそ
の部分の閃絡電圧平均値から2σ〜3σを差し引い
た値をとるものとし、両者が同一値より隔たるよ
う両者の絶縁強度比率を設定するものとした。 なお、各間〓G1,G2,G3と絶縁クリアラ
ンスCの雷サージに対する閃絡電圧のバラツキは
試験によつて調査した結果、アーキングホーンの
形状、鉄塔1との相対位置、気象条件あるいはア
ーキングホーン9の素材径等に、又、絶縁クリア
ランスCの構成によつて左右されるが、標準偏差
σで2〜7%を考慮するものとした。 すなわち、絶縁間〓G2の放電開始電圧をV、
間〓G1,G3及び絶縁クリアランスCの閃絡電
圧をV0として、両者がバラツキを考慮した最悪
条件においても同一値より隔たるようにするた
め、次の式を満足させるものとした。 (バラツキが2σの場合) V0×(1−2σ)/V×(1+2σ)≧1∴V0≧V× (1+2σ/1−2σ) (バラツキが3σの場合) V0×(1−3σ)/V×(1+3σ)≧1∴V0≧V× (1+3σ/1−3σ) ここで、(1+2σ)/(1−2σ)あるいは(1
+3σ)/(1−3σ)を絶縁強度比率(K)とすれば、
その比率は表−1のように求めることができる。
Object of the Invention (Field of Industrial Application) The present invention relates to a lightning insulator device for overhead power transmission lines. (Prior Art) Conventionally, a lightning insulator device has been proposed that promptly discharges lightning surge voltage when it is applied to a power transmission line, and blocks the subsequent follow-on current to prevent ground faults. As this lightning insulator device, the power transmission line is supported on the support arm of the steel tower via the support insulator, and the lightning arrester is suspended and fixed, and the discharge electrode attached to the lower end of the lightning arrester is attached to the power transmission line side. In addition, the power transmission line is supported via a support insulator on the support arm of the steel tower, and a lightning arrester with a built-in nonlinear resistance element is suspended and fixed to the support arm of the steel tower. There is a method in which the power transmission line is connected to the lower end of the lightning arrester. (Problem to be Solved by the Invention) In the former lightning insulator device, when lightning surge voltage is applied to the power transmission line, the abnormally high voltage flows through the discharge gap provided at the lower end of the lightning arrester and is discharged into the lightning arrester. It is discharged through a non-linear resistance element. When dealing with anticipated lightning surges, it is important to not only prevent flash faults from occurring in the gap between the pair of arcing horns attached to the upper and lower ends of the lightning arrester, but also to prevent flash faults from occurring even if the lightning strikes exceed expectations. In order to prevent secondary damage between the horns, the insulation clearance between the arcing horn on the supporting insulator energized side and the steel tower must be absolutely free from flash faults. On the other hand, in the latter lightning protection insulator device, an abnormally high voltage is discharged through the nonlinear resistance element of the lightning protection insulator. In the event of a lightning strike that exceeded expectations, a similar response would have been required. In order to apply these lightning insulators to power transmission lines, improve the reliability of the lightning insulators in handling lightning surges, and downsize towers through rational design, the arcing horn gap length and insulation clearance must be adjusted. It was necessary to set the dimensional ratio between them to an optimal relationship. Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the first invention supports a power transmission line via a support insulator on a support arm of a steel tower, and suspends and fixes a lightning arrester insulator, A predetermined discharge gap length G2 is provided between the discharge electrode attached to the lower end of the lightning arrester and the discharge electrode attached to the power transmission line side, and a pair of arcing electrodes attached to both the upper and lower ends of the lightning arrester are provided. Between the gap length G3 of the horns, the gap length G1 between the pair of arcing horns attached to both ends of the support insulator, and the insulation clearance C between the arcing horns attached to the lower ends of the support insulator and the steel tower. Then, before discharge in discharge gap G2, G1, C≧G2×(1.18 to 2.0) During discharge = After discharge in G2, C≧G3×(1.08 to 1.53) G1≧G3 Gap length G1 to The method is to set G3 and insulation clearance C. In order to solve the above-mentioned problems, the second invention supports a power transmission line via a support insulator on a support arm of a steel tower, and also suspends and fixes a lightning arrester insulator with a built-in non-linear resistance element at the lower end of the lightning arrester. A transmission line is connected to the support insulator, the gap length of the arcing horns attached to both ends of the support insulator is set as G1, the gap length of the pair of arcing horns disposed opposite to each other at both the upper and lower ends of the lightning arrester is set as G3, and the gap length of the arcing horns is set as G3. If the insulation clearance between the arcing horn attached to the lower end of the insulator and the steel tower is C, then the gap lengths G1 and G3 and the insulation clearance C are set so that C≧G3×(1.08~1.53) G1≧G3. I am using the method of setting. (Function) In the first invention, when a lightning surge is applied to a power transmission line or a steel tower, a voltage is applied between gaps G1 and G3 and the insulation clearance C between the power transmission line and the steel tower until a discharge occurs in the discharge gap G2. However, when the lightning surge exceeds the discharge starting voltage of the discharge gap G2, this portion is discharged and is discharged to the support arm via the nonlinear resistance element of the lightning arrester, suppressing the lightning surge voltage. No flashover occurs in the gaps G1, G3 and the insulation clearance C. Furthermore, even if the lightning strike exceeds expectations, flash shorting will not occur in areas other than the arcing horn gap G3 of the lightning arrester because the insulation gap is provided between each gap and the insulation clearance. The second invention is that when a lightning surge is applied to a power transmission line, a voltage is applied between the gap G3 and the insulation clearance C between the power transmission line and the steel tower until discharge occurs in the nonlinear resistance element built into the lightning arrester. However, when the lightning surge exceeds the discharge starting voltage of the nonlinear resistance element, discharge begins in the nonlinear resistance element and the lightning surge voltage is suppressed, so a flashover occurs between the gap G3 and the insulation clearance C. will not occur. In addition, even if the limiting voltage of the non-linear resistance element increases due to a lightning strike that exceeds expectations, a flashover will occur in the insulation clearance C because there is an insulation difference between the gap G3 and the insulation clearance C. Never. (Example) Hereinafter, a first example embodying the first invention will be described as a first example.
This will be explained based on the diagram and FIG. At the middle part of the support arm 2 attached to the steel tower 1, there is an upper cap metal fitting 4 of a support insulator 3 made of a long insulator.
is fixed with bolts, and a power transmission line 7 is supported via a gripping fitting 6 on a lower cap fitting 5 which is fitted and fixed to the lower end of the support insulator 3. Arcing horns 8 and 9 are disposed on both the upper and lower cap fittings 4 and 5 to face each other with a predetermined gap G1 in order to prevent damage to the supporting insulator 3 due to creeping flash. An arcing horn 10 serving as a discharge electrode on the power supply side is supported on the gripping metal fitting 6. On the other hand, an upper electrode fitting 13 of a lightning arrester 12 having a built-in resistance element 11 having non-linear voltage-current characteristics (hereinafter simply referred to as a non-linear resistance element) is fixed to the tip of the support arm 2 with a bolt. An arcing horn 15 serving as a discharge electrode is supported on the lower electrode fitting 14 of the lightning arrester 12 so as to face the arcing horn 10 with a predetermined discharge gap G2 and to be adjustable in position in the horizontal direction. Both upper and lower electrode fittings 13, 1 of the same lightning arrester 12
4 is an arcing horn 16, 1 for preventing damage to the lightning arrester 12 during creeping flash or pressure release.
7 are arranged facing each other with a predetermined gap G3. A predetermined insulation clearance C is provided between the arcing horn 9 and the steel tower 1 to prevent discharge from occurring from the arcing horn 9 to the steel tower 1 when a lightning surge is applied. First, consider the insulation design from when a lightning surge is applied until the discharge gap G2 is discharged. In this type of equipment, the insulation strength of the discharge gap G2 is set to withstand the switching surge voltage so that even if the nonlinear resistance element becomes conductive due to a lightning strike that exceeds expectations, forced power transmission can be performed by reinsertion. be done. By setting the dimensional ratio of the gaps G1, G3 and the insulation clearance C to the discharge gap G2 to an appropriate value, it becomes possible to reliably discharge lightning surges in the discharge gap G2. In this embodiment, the dimensional ratios of these gaps G1 to G3 and the insulation clearance C are set as follows. As the discharge starting voltage for the preset discharge gap G2, take the average value V50 plus 2σ to 3σ, and for gaps G1, G3 and insulation clearance C, subtract 2σ to 3σ from the average value of the flash voltage in those areas. The dielectric strength ratio of the two was set so that the two values differed from each other by the same value. In addition, as a result of testing, it was found that the variation in flash fault voltage due to lightning surge between G1, G2, G3 and insulation clearance C was determined by the shape of the arcing horn, the relative position with respect to the tower 1, weather conditions, or the arcing horn 9. Although it depends on the diameter of the material and the configuration of the insulation clearance C, a standard deviation σ of 2 to 7% is considered. That is, the discharge starting voltage of G2 between insulations is set to V,
The flash voltage between G1, G3 and the insulation clearance C is set as V0, and in order to ensure that they are separated from each other by the same value even under the worst conditions considering variations, the following equation is satisfied. (When the variation is 2σ) V0×(1-2σ)/V×(1+2σ)≧1∴V0≧V× (1+2σ/1-2σ) (When the variation is 3σ) V0×(1-3σ)/V ×(1+3σ)≧1∴V0≧V× (1+3σ/1-3σ) Here, (1+2σ)/(1-2σ) or (1
+3σ)/(1-3σ) is the insulation strength ratio (K),
The ratio can be determined as shown in Table-1.

【表】 なお、放電間〓G2の閃絡電圧は避雷碍子12
を直列に接続した場合には、そうしない場合に比
べ10〜30%上昇するので、放電間〓G2を基準と
した寸法比の設定にあたつては、この点は考慮に
入れておく必要があり、また間〓長で比較すると
間〓長と閃絡電圧がほぼ比例関係にあるので、そ
の比率は(1.08〜1.13)×(1.10〜1.30)〜(1.33〜
1.53)×(1.10〜1.30)、すなわち(1.46〜2.0)とな
る。 したがつて、放電間〓G2の放電前において
は、各間〓G1〜G3及び絶縁クリアランスCの
関係を次のように設定すれば放電間〓G2で雷サ
ージを確実に放電させることが可能となる。 G1、C≧G2×(1.18〜2.0) 一方、放電間〓G2が放電し雷サージ電流が避
雷碍子12の非直線性抵抗素子12に流れた動作
状態においては、第2図に示すように、非直線性
抵抗素子11に加わる雷サージ電圧がほぼ一定値
になり、このときには表1に示すのと同様に間隙
G3側を基準にとつて、間隙G3側では閃絡電圧
平均値V50に標準偏差の2σ〜3σを加えた値と、間
隙G1と絶縁クリアランスC側ではその部分の
V50より2σ〜3σを差し引いた値とを比較し両者が
同一値より隔るよう間隙G1及び絶縁クリアラン
スCの寸法比を設定すればよい。 したがつて、放電間〓G2の放電後において
は、各間〓G1,G3及び絶縁クリアランスCの
関係を次の式のように設定すれば、万一想定を上
廻る雷撃を受けても避雷碍子12のアーキングホ
ーン16,17間に間〓G3で閃絡を発生させ、
間〓G1及び絶縁クリアランスCで閃絡を発生さ
せないため、アークによる電線の溶断あるいは鉄
塔の損傷をなくして安全性を高めることができ
る。 C≧G3×(1.08〜1.53) G1≧G3 以下に、各間隙G1〜G3及び絶縁クリアラン
スCの寸法を具体的数値について例示する。 第1図において、放電間隙G2は開閉サージ電
圧に耐えるという前述のごとき考えにより、例え
ば500mmというように設定される。まず、放電間
隙G2が放電する以前においては絶縁強度比率が
放電間隙G2部に比べ1.18〜2.0に設定されてい
ることから間隙長としておおむね590〜1000mmが
選定される。このような関係にすれば間隙G1,
G3や絶縁クリアランスCで閃絡が最初に生じな
いことになる。 次に、放電間隙G2が放電し避雷碍子内部の非
直線性抵抗素子に雷サージ電流が流れ、その両端
のアーキングホーン間隙G3にサージによる制限
電圧が発生する場合、両アーキングホーン間の間
隙長G3はこの電圧に耐えるよう、例えば750mm
のごとく設定される。この状態においては間隙G
1と絶縁クリアランスCの絶縁強度が間隙G3部
に比べ1.08〜1.53に設定されるので、間〓長とし
ておおむね810〜1150mmが選定される。ただし、
クリアランスをより切りつめた設計が必要なケー
スでは支持碍子3、耐張支持碍子21のアーキン
グホーン8,9の耐アーク性をより向上させた形
とし、万一アーキングホーン間で閃絡を生じ続流
が流れても、碍子の損傷、鉄塔へのアークの移行
による損傷を皆無とするような設計が採用される
場合もある。このようなケースではG1≧G3とし
てもよい。 次に、前記のように構成した架空送電線用耐雷
碍子装置について、その作用を説明する。 今、送電線7に雷サージが印加されると、この
ときのサージ電圧は第2図のグラフに示すように
時間の経過にともなつて増加し、所定電圧つま
り、放電間隙G2の放電開始電圧をこえると放電
が生じ、非直線性抵抗素子11を経て支持アーム
2にサージ電流が放電される。この間避雷碍子の
両端の電圧はほぼ一定は保持される。放電が終了
すると、前記雷サージ電圧は第2図に示すように
低下する。続いて、商用周波電流が流れようとす
るが、前記非直線性抵抗素子11と前記放電間隙
G2で限流され続流が遮断される。 さて、第1発明の実施例では各間隙G1〜G3
及び絶縁クリアランスCの寸法比が放電間隙G2
の放電前において、 G1、C≧G2×(1.18〜2.0) 放電間〓G2の放電後においては、 C≧G3×(1.08〜1.53) G1≧G3 となるように設定したので、雷サージを確実に放
電間隙G2で放電させ、想定をこえる雷撃をうけ
ても間隙G1、絶縁クリアランスCで閃絡を発生
させない等雷サージ処理に対する信頼性をより高
め鉄塔を合理的に設計できる。 次に、第2発明を具体化した第2実施例を第3
図及び第4図に基づいて説明する。 この第2実施例は左右一対の耐張支持碍子21
により送電線7を支持するとともに、送電線7を
接続するジヤンパー線22のほぼ中央部を避雷碍
子12の下端部に把持している。又、前記避雷碍
子12の上下両端部に取着した一対のアーキング
ホーン16,17を所定の間隙G3をもつて対向
させている。又、下部のアーキングホーン17と
鉄塔1との絶縁クリアランスCと、前記間隙G
1,G3との間に、前述した第1実施例で述べた
理由により同様の関係を保つている。すなわち、 C≧G3×(1.08〜1.53) G1≧G3 となるように各間隙G1,G3及び前記クリアラ
ンスCを設定している。 G1≧G3の条件設定の考え方は第1発明で述べ
たものと同一である。 この第2実施例においても、間隙G1,G3及
び絶縁クリアランスCを必要最小限に設定して、
取付スペースを小さくすることができる。 なお、本発明は次のように具体化することもで
きる。 (1) 前記第1実施例において、避雷碍子12と支
持碍子3との位置を入れ換えた装置に実施する
こと。 (2) 第1実施例において、第2実施例で述べた耐
張支持碍子21を使用した装置に実施するこ
と。 発明の効果 以上詳述したように、第1発明は送電線や鉄塔
が雷撃をうけ雷サージ電圧が加わつても、送電線
と避雷碍子との間の放電間隙で確実に放電させて
雷サージを処理し、送電線支持避雷碍子のアーキ
ングホーンと鉄塔との間、すなわち課電側と塔体
間において閃絡が生じるのを防止でき、さらに想
定をこえる雷撃をうけても避雷碍子のアーキング
ホーン間で閃絡を発生させ、アークによる電線の
溶断あるいは鉄塔の損傷をなくして安全性を高め
ることができるばかりでなく、放電間〓長や絶縁
クリアランスを雷サージに対する閃絡電圧のバラ
ツキ及び標準偏差を考慮して最適に設定すること
から、装柱構造を小型化することができる。 又、第2発明においても雷サージ電圧の処理と
想定をこえる雷撃をうけた場合、前述した第1発
明の効果と同様の効果を期待できる。
[Table] In addition, the flash fault voltage of G2 during discharge is
If they are connected in series, the increase will be 10 to 30% compared to when they are not connected, so this must be taken into consideration when setting the dimension ratio based on the discharge interval = G2. Also, when comparing the distance length, the distance length and flash voltage are almost proportional, so the ratio is (1.08~1.13) x (1.10~1.30)~(1.33~
1.53)×(1.10~1.30), that is, (1.46~2.0). Therefore, before the discharge during the discharge period G2, it is possible to reliably discharge the lightning surge during the discharge period G2 by setting the relationship between each period G1 to G3 and the insulation clearance C as follows. Become. G1, C≧G2×(1.18 to 2.0) On the other hand, in the operating state where G2 is discharged and lightning surge current flows through the nonlinear resistance element 12 of the lightning arrester 12, as shown in FIG. The lightning surge voltage applied to the nonlinear resistance element 11 becomes a nearly constant value, and at this time, as shown in Table 1, with the gap G3 side as a reference, the flash voltage average value V50 on the gap G3 side has a standard deviation. The sum of 2σ to 3σ, and the value of that part on the gap G1 and insulation clearance C side.
It is sufficient to compare the value obtained by subtracting 2σ to 3σ from V50 and set the dimensional ratio of the gap G1 and the insulation clearance C so that the two are separated by the same value. Therefore, after the discharge of the discharge interval G2, if the relationship between the respective intervals G1, G3 and the insulation clearance C is set as shown in the following formula, the lightning protection insulator will remain intact even if it receives a lightning strike that exceeds expectations. 12 arcing horns 16 and 17 generate a flash at G3,
Since flash faults are not generated between the gap G1 and the insulation clearance C, safety can be improved by eliminating melting of electric wires or damage to steel towers due to arcs. C≧G3×(1.08 to 1.53) G1≧G3 Below, the dimensions of each gap G1 to G3 and the insulation clearance C will be illustrated with specific numerical values. In FIG. 1, the discharge gap G2 is set to, for example, 500 mm based on the above-mentioned concept of withstanding switching surge voltage. First, before discharge occurs in the discharge gap G2, the insulation strength ratio is set to 1.18 to 2.0 compared to the discharge gap G2, so the gap length is approximately 590 to 1000 mm. With this relationship, the gap G1,
This means that no flashover occurs at G3 or insulation clearance C in the first place. Next, when the discharge gap G2 is discharged and a lightning surge current flows through the nonlinear resistance element inside the lightning arrester, and a limiting voltage due to the surge is generated in the arcing horn gap G3 at both ends, the gap length G3 between both arcing horns is For example, 750mm to withstand this voltage.
It is set as follows. In this state, the gap G
1 and the insulation strength of the insulation clearance C is set to 1.08 to 1.53 compared to the gap G3, so the gap length is approximately 810 to 1150 mm. however,
In cases where a design with tighter clearance is required, the arcing horns 8 and 9 of the support insulator 3 and the tensile support insulator 21 are designed to have improved arc resistance, so that in the unlikely event that a flash short occurs between the arcing horns and a follow-up current occurs. In some cases, a design is adopted in which there is no damage to the insulator or damage due to arc migration to the steel tower even if arc flows. In such a case, G1≧G3 may be satisfied. Next, the operation of the lightning insulator device for overhead power transmission lines constructed as described above will be explained. Now, when a lightning surge is applied to the power transmission line 7, the surge voltage at this time increases with the passage of time as shown in the graph of Fig. When the current is exceeded, a discharge occurs, and a surge current is discharged to the support arm 2 via the nonlinear resistance element 11. During this time, the voltage across the lightning arrester is maintained approximately constant. When the discharge ends, the lightning surge voltage decreases as shown in FIG. Subsequently, a commercial frequency current attempts to flow, but is limited by the nonlinear resistance element 11 and the discharge gap G2, and subsequent current is blocked. Now, in the embodiment of the first invention, each gap G1 to G3
and the dimensional ratio of the insulation clearance C is the discharge gap G2
Before the discharge of G1, C≧G2×(1.18 to 2.0) During discharge = After the discharge of G2, C≧G3×(1.08 to 1.53) G1≧G3 is set so that the lightning surge can be reliably prevented. The reliability of the lightning surge treatment can be further improved and the steel tower can be designed rationally by causing a discharge to occur in the discharge gap G2 and preventing flash shorting in the gap G1 and the insulation clearance C even if a lightning strike exceeds expectations. Next, the second embodiment embodying the second invention will be described in a third embodiment.
This will be explained based on the diagram and FIG. This second embodiment has a pair of left and right tensile support insulators 21.
The jumper wire 22 that connects the power transmission line 7 is held at the lower end of the lightning arrester 12 at approximately the center thereof. Further, a pair of arcing horns 16 and 17 attached to both upper and lower ends of the lightning arrester 12 are opposed to each other with a predetermined gap G3. In addition, the insulation clearance C between the lower arcing horn 17 and the steel tower 1, and the gap G
1 and G3, the same relationship is maintained for the reason stated in the first embodiment. That is, the gaps G1 and G3 and the clearance C are set so that C≧G3×(1.08 to 1.53) G1≧G3. The concept of setting the condition of G1≧G3 is the same as that described in the first invention. Also in this second embodiment, the gaps G1 and G3 and the insulation clearance C are set to the minimum necessary,
Installation space can be reduced. Note that the present invention can also be embodied as follows. (1) Implementation in a device in which the positions of the lightning arrester 12 and the support insulator 3 are swapped in the first embodiment. (2) In the first embodiment, the present invention is applied to a device using the tensile support insulator 21 described in the second embodiment. Effects of the Invention As detailed above, the first invention prevents lightning surges by reliably discharging electricity in the discharge gap between the power transmission line and the lightning arrester even if a power transmission line or tower is struck by lightning and a lightning surge voltage is applied. It is possible to prevent flash shorts from occurring between the arcing horn of the lightning arrester supporting the power transmission line and the tower, that is, between the power supply side and the tower body, and furthermore, it is possible to prevent flash shorts from occurring between the arcing horn of the lightning arrester insulator supporting the power transmission line and the tower body. This not only improves safety by eliminating wire melting or damage to steel towers due to arcing, but also reduces the variation and standard deviation of flash voltage due to lightning surges by adjusting the discharge interval and insulation clearance. By taking this into consideration and setting it optimally, the pillar structure can be downsized. In addition, in the second invention, the same effects as those of the first invention described above can be expected when dealing with lightning surge voltage and receiving a lightning strike that exceeds expectations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1発明を具体化した一実施
例を示す正面図、第2図は雷サージによる電圧を
示すグラフ、第3図及び第4図は第2発明を具体
化した第2実施例を示し、第3図は正面図、第4
図は第3図のA−A線断面図である。 1……鉄塔、2……支持アーム、3……支持碍
子、4,5……キヤツプ金具、6……把持金具、
7……送電線、8,9……アーキングホーン、1
0,15……放電電極としてのアーキングホー
ン、11……非直線性抵抗素子、12……避雷碍
子、13,14……電極金具、16,17……ア
ーキングホーン、G1……アーキングホーン8,
9の間隙、G2……アーキングホーン10,15
間の放電間隙、G3……アーキングホーン16,
17間の間隙、C……アーキングホーン9と鉄塔
1との間の絶縁クリアランス。
Fig. 1 is a front view showing an embodiment embodying the first invention of the present invention, Fig. 2 is a graph showing voltage due to lightning surge, and Figs. 3 and 4 are an embodiment embodying the second invention. Two embodiments are shown; Fig. 3 is a front view, and Fig. 4 is a front view.
The figure is a sectional view taken along the line A--A in FIG. 3. 1... Steel tower, 2... Support arm, 3... Support insulator, 4, 5... Cap metal fitting, 6... Gripping metal fitting,
7...Power line, 8,9...Arching horn, 1
0, 15... Arcing horn as a discharge electrode, 11... Nonlinear resistance element, 12... Lightning arrester, 13, 14... Electrode fitting, 16, 17... Arcing horn, G1... Arcing horn 8,
9 gap, G2...arching horn 10, 15
The discharge gap between G3... arcing horn 16,
Gap between 17 and C... Insulation clearance between arcing horn 9 and steel tower 1.

Claims (1)

【特許請求の範囲】 1 鉄塔の支持アームに支持碍子を介して送電線
を支持するとともに、避雷碍子を吊下固定し、同
避雷碍子の下端部に取着した放電電極と前記送電
線側に取着した放電電極との間に所定の放電間〓
長G2を設け、前記避雷碍子の上下両端部に取着
した一対のアーキングホーンの間〓長G3と、前
記支持碍子の両端部に取着した一対のアーキング
ホーンの間〓長G1と、支持碍子の下端部に取着
したアーキングホーンと鉄塔との間の絶縁クリア
ランスCとの間に、 放電間〓G2の放電前において、 G1、C≧G2×(1.18〜2.0) 放電間〓G2の放電後において、 C≧G3×(1.08〜1.53) G1≧G3 となるように間〓長G1〜G3及び絶縁クリアラ
ンスCを設定したことを特徴とする架空送電線用
耐雷碍子装置。 2 鉄塔の支持アームに支持碍子を介して送電線
を支持するとともに、非直線性抵抗素子を内蔵し
た避雷碍子を吊下固定して同避雷碍子の下端部に
送電線を接続し、前記支持碍子の両端部に取着し
たアーキングホーンの間〓長をG1とし、前記避
雷碍子の上下両端部に対向配置した一対のアーキ
ングホーンの間〓長をG3とし、前記避雷碍子の
下端部に取着したアーキングホーンと鉄塔との間
の絶縁クリアランスCとすると、 C≧G3×(1.08〜1.53) G1≧G3 となるように前記間〓長G1,G3及び絶縁クリ
アランスCを設定したことを特徴とする架空送電
線用耐雷碍子装置。
[Scope of Claims] 1. A power transmission line is supported on a support arm of a steel tower through a support insulator, and a lightning arrester is suspended and fixed, and a discharge electrode attached to the lower end of the lightning arrester is connected to the power transmission line side. The specified discharge distance between the attached discharge electrode
A length G2 is provided between a pair of arcing horns attached to both upper and lower ends of the lightning arrester; a length G3 is provided between a pair of arcing horns attached to both ends of the support insulator; a length G1 is provided between the pair of arcing horns attached to both ends of the support insulator; Between the insulation clearance C between the arcing horn attached to the lower end of the steel tower and the steel tower, during discharge = before discharge of G2, G1, C ≥ G2 × (1.18 to 2.0) during discharge = after discharge of G2 A lightning insulator device for an overhead power transmission line, characterized in that the distances G1 to G3 and the insulation clearance C are set so that C≧G3×(1.08 to 1.53) and G1≧G3. 2. A power transmission line is supported on the support arm of the steel tower via a support insulator, and a lightning arrester with a built-in non-linear resistance element is suspended and fixed, the power transmission line is connected to the lower end of the lightning arrester, and the power transmission line is connected to the support insulator. The length between the arcing horns attached to both ends of the lightning arrester is G1, and the length between the pair of arcing horns disposed opposite to each other at both the upper and lower ends of the lightning arrester is G3, and the length is G3, which is attached to the lower end of the lightning arrester. If the insulation clearance between the arcing horn and the steel tower is C, then the distances G1 and G3 and the insulation clearance C are set so that C≧G3×(1.08 to 1.53) and G1≧G3. Lightning insulator device for power transmission lines.
JP10699586A 1986-05-10 1986-05-10 Lightningproof insulator for aerial transmission line Granted JPS62264512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10699586A JPS62264512A (en) 1986-05-10 1986-05-10 Lightningproof insulator for aerial transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10699586A JPS62264512A (en) 1986-05-10 1986-05-10 Lightningproof insulator for aerial transmission line

Publications (2)

Publication Number Publication Date
JPS62264512A JPS62264512A (en) 1987-11-17
JPH0319647B2 true JPH0319647B2 (en) 1991-03-15

Family

ID=14447806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10699586A Granted JPS62264512A (en) 1986-05-10 1986-05-10 Lightningproof insulator for aerial transmission line

Country Status (1)

Country Link
JP (1) JPS62264512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535364B2 (en) * 1987-12-18 1996-09-18 日本碍子株式会社 Lightning-proof horn insulator device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119649A (en) * 1978-03-09 1979-09-17 Mitsubishi Electric Corp Arrester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119649A (en) * 1978-03-09 1979-09-17 Mitsubishi Electric Corp Arrester

Also Published As

Publication number Publication date
JPS62264512A (en) 1987-11-17

Similar Documents

Publication Publication Date Title
RU2096882C1 (en) Power transmission line with pulse lightning arrester
CA2338566C (en) Creeping discharge lightning arrestor
JPH0319647B2 (en)
CA2296672C (en) Method of preventing break in insulated wire and instantaneous power failure
RU2661932C1 (en) Insulation arrester
US3117192A (en) Disconnecting switch with surge protection gaps
JP2698445B2 (en) Suspended lightning insulator for power transmission lines
CN115152109A (en) Lightning arrester with protective spark gap
JP2547295B2 (en) Suspended lightning arrester device for power lines
RU171056U1 (en) LOOP MULTI-ELECTRODE DISCHARGE
JP2509741B2 (en) Lightning arrester device for power lines
US2246303A (en) Electrical discharge device
JPH0367291B2 (en)
US3360686A (en) Lightning protection assembly for overhead lines
JP2951046B2 (en) Lightning arrester with air discharge gap
US3328640A (en) Electrical conductor system
JP2509742B2 (en) Lightning arrester device for power lines
RU173089U1 (en) LONG SPARK DISCHARGE
JPS6026484Y2 (en) overhead distribution line
JP4060915B2 (en) Current limiting device
JP2564324B2 (en) Lightning protection horn insulator device
JPH0664956B2 (en) Insulated wire disconnection prevention device
JPH0338901Y2 (en)
JPS6131454Y2 (en)
JP2941974B2 (en) Lightning arrester for two-circuit transmission line

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term