JPH03195953A - Optical reaction measurement - Google Patents

Optical reaction measurement

Info

Publication number
JPH03195953A
JPH03195953A JP33607089A JP33607089A JPH03195953A JP H03195953 A JPH03195953 A JP H03195953A JP 33607089 A JP33607089 A JP 33607089A JP 33607089 A JP33607089 A JP 33607089A JP H03195953 A JPH03195953 A JP H03195953A
Authority
JP
Japan
Prior art keywords
reaction
optical component
optical
measurement
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33607089A
Other languages
Japanese (ja)
Other versions
JP2938485B2 (en
Inventor
Kyuji Mutsukawa
六川 玖治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33607089A priority Critical patent/JP2938485B2/en
Publication of JPH03195953A publication Critical patent/JPH03195953A/en
Application granted granted Critical
Publication of JP2938485B2 publication Critical patent/JP2938485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To eliminate an excess of means and time while enabling expansion of use of measurement by measuring an optical component derived from a reaction and an optical component derived from the scattering of fine particles simultaneously to subtract the latter optical component from the former optical component. CONSTITUTION:An optical component derived from a reaction and an optical component derived from the scattering of fine particles are measured simultaneously, for example, by a different wavelength and the latter optical component is subtracted from the former optical component to measure a reaction. As a result, effect of the fine particles can be removed to allow the tracing of an optical change derived from material pertaining to the reaction. This eliminates the need for an excess of means and time while enabling expansion of the use of measurement.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、免疫測定や生化学分析等で反応によって最終
的に得られた物を光学的に測定する光学的反応測定法に
関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is an optical reaction measurement method for optically measuring a product finally obtained by a reaction in immunoassay, biochemical analysis, etc. Regarding the law.

(従来の技術) 最近EIA(エンザイムイムノアッセイ)法によって免
疫測定を行う場合や生化学反応を行う場合、反応を促進
するために分離を目的とした抗体又は酵素を担体である
微粒子上に固定化することが行われている。第4図(a
)、(b)はこのような各反応を示すもので、第4図(
a)は固定化酵素反応、第4図(b)は免疫測定反応を
示すものである。
(Prior art) Recently, when performing immunoassays or biochemical reactions using the EIA (enzyme immunoassay) method, antibodies or enzymes for the purpose of separation are immobilized on microparticles that are carriers to promote the reaction. things are being done. Figure 4 (a
) and (b) show these reactions, and Figure 4 (
Figure 4(a) shows the immobilized enzyme reaction, and Figure 4(b) shows the immunoassay reaction.

第4図(a)では先ず磁性材料等の微粒子担体1上に酵
素2を固定した後、基質3を反応させることにより酵素
反応で生じた分解産物(プロダクト)4を光学的に測定
して抗原、酵素、基質等の定量を行うようにしたもので
ある。また第4図(b)は微粒子担体1上に抗体5を固
定した後、抗原6を反応させさらに酵素標識抗体7を反
応させ、続いて基質3を反応させることにより生じたプ
ロダクト4を光学的に測定して同様な定量を行うように
したものである。この光学的測定は例えば吸光度測定、
蛍光度測定1発光度測定等によって行うことができる。
In FIG. 4(a), first, an enzyme 2 is immobilized on a particulate carrier 1 such as a magnetic material, and then a substrate 3 is reacted to optically measure the decomposition products (products) 4 generated in the enzymatic reaction. , enzymes, substrates, etc. FIG. 4(b) shows a product 4 produced by immobilizing an antibody 5 on a microparticle carrier 1, reacting with an antigen 6, further reacting with an enzyme-labeled antibody 7, and then reacting with a substrate 3. It was designed to perform a similar quantitative determination. This optical measurement is, for example, absorbance measurement,
Fluorescence measurement 1 This can be carried out by measuring luminescence intensity or the like.

ここで各反応は微粒子存在下で進行するが、基質3又は
プロダクト4を光学的に測定する場合、微粒子担体1に
よって光の散乱が生じるという問題がある。従って従来
においてはこの散乱の影響を除(ために、遠心分離、濾
過、磁力吸着等の対策を施して微粒子を除いた状態で測
定が行われていた。これによれば微粒子担体が除かれる
ことにより、光学的に反応を測定する場合清澄な状態で
測定を行うことができる。
Here, each reaction proceeds in the presence of fine particles, but when the substrate 3 or product 4 is optically measured, there is a problem in that the fine particle carrier 1 causes light scattering. Therefore, in the past, in order to eliminate the influence of this scattering, measurements were performed after removing fine particles by taking measures such as centrifugation, filtration, and magnetic adsorption. According to this method, the fine particle carriers were removed. Therefore, when measuring a reaction optically, the measurement can be carried out in a clear state.

(発明が解決しようとする課題) ところで従来の光学的反応測定法では、微粒子を除くた
めの手段及び時間を余分に必要とすると共に、連続的な
反応経過を追求することができないので測定効率が低下
するという問題がある。
(Problems to be Solved by the Invention) However, the conventional optical reaction measurement method requires extra means and time to remove fine particles, and it is not possible to pursue a continuous reaction progress, so the measurement efficiency is low. There is a problem with the decline.

例えばエンド法のように反応経過の一点を測定する場合
は可能であるが、レイト法のように連続的な反応経過を
測定する場合には微粒子が残ってないため適用できない
ので用途が制約されることになる。
For example, it is possible to measure a single point in the reaction process as in the end method, but it cannot be applied to measure a continuous reaction process as in the late method because there are no particles left, which limits its application. It turns out.

本発明は以上のような問題に対処してなされたもので、
余分な手段及び時間を不要にすると共に測定用途を拡大
することができる光学的反応測定法を提供することを目
的とするものである。
The present invention has been made in response to the above-mentioned problems.
It is an object of the present invention to provide an optical reaction measurement method that eliminates the need for extra means and time and can expand measurement applications.

[発明の構成コ (課題を解決するための手段) 上記目的を達成するために本発明は、微粒子上又は微粒
子共存下での反応を光学的に追跡する光学的反応測定法
において、反応由来の光学的成分と微粒子散乱由来の光
学的成分を同時に測定し、前者の光学的成分から後者の
光学的成分を差引くことにより微粒子共存下で反応を光
学的に測定することを特徴とするものである。
[Configuration of the Invention (Means for Solving the Problems)] In order to achieve the above object, the present invention provides an optical reaction measurement method for optically tracking reactions on microparticles or in the coexistence of microparticles. This method is characterized by simultaneously measuring the optical component and the optical component derived from particle scattering, and subtracting the latter optical component from the former optical component to optically measure the reaction in the presence of particles. be.

(作 用) 反応由来の光学的成分と微粒子散乱由来の光学的成分を
例えば異なる波長によって同時に測定し、前者の光学的
成分から後者の光学的成分を差引くことにより反応を測
定する。これによって微粒子の影響を除去して反応に関
係する物質由来の光学的変化を追跡することができる。
(Function) The reaction is measured by simultaneously measuring the optical component derived from the reaction and the optical component derived from particle scattering, for example using different wavelengths, and subtracting the latter optical component from the former optical component. This makes it possible to remove the influence of fine particles and track optical changes originating from substances involved in the reaction.

(実施例) 以下本発明の光学的反応測定法の実施例について説明す
る。
(Example) Examples of the optical reaction measurement method of the present invention will be described below.

1、材料 先ず酵素としてPOD (パーオキシダーゼ)を0.1
■/ml用い、これを0.IMPB (リン酸バッファ
、PH7,0)で4.5X10−5倍に希釈した基準液
Aを用意する。またこのA液を各々0、IMPB (P
H7,0)で3倍に希釈したB液。
1. Materials First, use POD (peroxidase) as an enzyme at 0.1
■/ml, and add this to 0. Prepare standard solution A diluted 4.5×10 −5 times with IMPB (phosphate buffer, pH 7,0). In addition, this A liquid was added to 0, IMPB (P
Solution B diluted 3 times with H7,0).

10倍に希釈したC液、30倍に希釈したD液。Solution C diluted 10 times, Solution D diluted 30 times.

55倍に希釈したE液、100倍に希釈したF液を用意
する。
Prepare solution E diluted 55 times and solution F diluted 100 times.

次に基質としてTNBZ(トリニトロペンゼニン)をH
2O2(過酸化水素)で2:1で混合したものを用意し
、また0、IMPB(PH7,0)で置換した磁性微粒
子(マグネチックパーティクル)を2.2■/ml用意
する。
Next, TNBZ (trinitropenzenin) was used as a substrate.
A 2:1 mixture of 2O2 (hydrogen peroxide) was prepared, and 2.2 μ/ml of magnetic particles substituted with 0 and IMPB (PH7,0) were prepared.

さらに分光光度計を用意し前記混合液を37℃に恒温し
た状態で、650nm及び75 [1nmの波長で追跡
するようにする。
Further, a spectrophotometer is prepared, and the mixture is kept at a constant temperature of 37° C., and the mixture is monitored at wavelengths of 650 nm and 75 [1 nm].

2、実験例 前記POD液を450μl用い、5分間インキュベート
した後、基質1350μ!+磁性微粒子450gの計1
800μlを前記POD液に加える。
2. Experimental Example Using 450μl of the above POD solution and incubating for 5 minutes, 1350μl of substrate was added! +Magnetic fine particles 450g total 1
Add 800 μl to the POD solution.

続いてこの混合液を30℃に保存し攪拌した状態で、5
分間タイムコースに移して異なる2波長例えば650n
m及び750nmで吸光度を測定する。
Next, this mixed solution was stored at 30°C and stirred for 5 minutes.
Two different wavelengths, for example 650n, are transferred to a minute time course.
Measure the absorbance at m and 750 nm.

第1図はこのような測定における吸光度の波長依存性を
示しており、波形の異なる波長におけるピーク値とベー
ス値との各吸光度を測定し両者の差を求めることにより
、第2図のように吸光度の時間依存性を求めることがで
きる。例えばピーク値を650nmの波長で測定し、ベ
ース値を750nmの波長で測定する。第3図は各波長
の差に対応した吸光度とPOD (酵素)の濃度との関
係を示しており、PODの濃度を1/100程度(前記
F液に相当し実際にはさらにこれを4.5X10−5倍
に希釈した濃度)までとっても測定が可能であることを
示している。
Figure 1 shows the wavelength dependence of absorbance in such measurements.By measuring the absorbance of the peak value and the base value at different wavelengths of the waveform and finding the difference between the two, as shown in Figure 2, The time dependence of absorbance can be determined. For example, the peak value is measured at a wavelength of 650 nm, and the base value is measured at a wavelength of 750 nm. Figure 3 shows the relationship between the absorbance and the concentration of POD (enzyme) corresponding to the difference in each wavelength. This shows that it is possible to measure up to a concentration of 5x10-5 times diluted.

このような反応測定法によれば、従来のように微粒子を
除去しなくとも測定が可能なので、微粒子を除くための
手段及び時間が不要となる。またこれと共に微粒子の存
在下で測定ができるので、エンド法に限らずレイト法の
ように連続的な反応経過を測定する場合にも適用するこ
とができるようになる。
According to such a reaction measurement method, measurement can be performed without removing particulates as in the conventional method, so there is no need for means and time for removing particulates. In addition, since measurement can be performed in the presence of fine particles, it can be applied not only to the end method but also to the case of measuring a continuous reaction progress, such as the late method.

このような本発明方法によって、反応を促進できるとい
う微粒子担体を用いた場合の利点を損ねることなく反応
の測定を行うことができるようになり、微粒子共存反応
液の比色測定の効率を向上することができる。
According to the method of the present invention, the reaction can be measured without sacrificing the advantage of using a fine particle carrier that can promote the reaction, and the efficiency of colorimetric measurement of a reaction solution in which fine particles coexist can be improved. be able to.

微粒子は磁性材料に限らずラテックス、各種ビーズ、ガ
ラスビーズ等の他の材料を用いることができる。
The fine particles are not limited to magnetic materials, but other materials such as latex, various beads, and glass beads can be used.

[発明の効果コ 以上述べたように本発明によれば、反応由来の光学的成
分から微粒子散乱由来の光学的成分を差引いて微粒子共
存下で反応を光学的に測定するようにしたので、余分な
手段及び時間を不要にすると共に、連続的な反応経過も
測定できるようになる。
[Effects of the Invention] As described above, according to the present invention, the optical component derived from particle scattering is subtracted from the optical component derived from the reaction to optically measure the reaction in the coexistence of fine particles. In addition to eliminating the need for additional means and time, it also becomes possible to measure the continuous course of the reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学的反応測定法の実施例によって得
られた波長と吸光度の関係を示す特性図、第2図は本実
施例によって得られた時間と吸光度の関係を示す特性図
、第3図は本実施例によって得られた酵素濃度と吸光度
の関係を示す特性図、第4図(a)、  (b)は固定
化酵素反応及び免疫測定反応における反応経過を示す説
明図である。 1・・・微粒子担体、2・・・酵素、4・・・プロダク
ト、5・・・抗体、   6・・・抗原、7・・・酵素
標識抗体。 LOG(A650−A7501/MIN(0)百口1こ
イヒニ畔濁〔g乙沁3 埼繕(分]−
FIG. 1 is a characteristic diagram showing the relationship between wavelength and absorbance obtained by an example of the optical reaction measurement method of the present invention, FIG. 2 is a characteristic diagram showing the relationship between time and absorbance obtained by this example, Figure 3 is a characteristic diagram showing the relationship between enzyme concentration and absorbance obtained in this example, and Figures 4 (a) and (b) are explanatory diagrams showing the reaction progress in the immobilized enzyme reaction and immunoassay reaction. . DESCRIPTION OF SYMBOLS 1... Fine particle carrier, 2... Enzyme, 4... Product, 5... Antibody, 6... Antigen, 7... Enzyme-labeled antibody. LOG (A650-A7501/MIN(0) 1 hundred mouths 1 koihini 畔收〔g 沁沁3 缼繕(minutes) -

Claims (3)

【特許請求の範囲】[Claims] (1)微粒子上又は微粒子共存下での反応を光学的に追
跡する光学的反応測定法において、反応由来の光学的成
分と微粒子散乱由来の光学的成分を同時に測定し、前者
の光学的成分から後者の光学的成分を差引くことにより
微粒子共存下で反応を光学的に測定することを特徴とす
る光学的反応測定法。
(1) In an optical reaction measurement method that optically tracks reactions on microparticles or in the coexistence of microparticles, the optical component derived from the reaction and the optical component derived from microparticle scattering are simultaneously measured, and the optical component derived from the former is An optical reaction measurement method characterized by optically measuring a reaction in the presence of fine particles by subtracting the latter optical component.
(2)光学的測定が吸光度測定、蛍光度測定、発光度測
定のいずれかから成る請求項1記載の光学的反応測定法
(2) The optical reaction measurement method according to claim 1, wherein the optical measurement comprises any one of absorbance measurement, fluorescence measurement, and luminescence measurement.
(3)反応由来の光学的成分を第1の波長によってピー
ク値を検出し、微粒子散乱由来の光学的成分を第2の波
長によってベース値を検出する請求項1記載の光学的反
応測定法。(4)微粒子がラテックス、磁性微粒子、多
種ビーズ、ガラスビーズのいずれかから成る請求項1記
載の光学的反応測定法。
(3) The optical reaction measurement method according to claim 1, wherein the peak value of the optical component derived from the reaction is detected using the first wavelength, and the base value of the optical component derived from particle scattering is detected using the second wavelength. (4) The optical reaction measurement method according to claim 1, wherein the fine particles are made of latex, magnetic fine particles, various types of beads, or glass beads.
JP33607089A 1989-12-25 1989-12-25 Optical response measurement method Expired - Fee Related JP2938485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33607089A JP2938485B2 (en) 1989-12-25 1989-12-25 Optical response measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33607089A JP2938485B2 (en) 1989-12-25 1989-12-25 Optical response measurement method

Publications (2)

Publication Number Publication Date
JPH03195953A true JPH03195953A (en) 1991-08-27
JP2938485B2 JP2938485B2 (en) 1999-08-23

Family

ID=18295384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33607089A Expired - Fee Related JP2938485B2 (en) 1989-12-25 1989-12-25 Optical response measurement method

Country Status (1)

Country Link
JP (1) JP2938485B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029722A1 (en) * 1993-06-08 1994-12-22 Chronomed, Inc. Two-phase optical assay method and apparatus
WO2008090645A1 (en) * 2007-01-23 2008-07-31 Olympus Corporation Analytical method and analytical apparatus
WO2010041736A1 (en) * 2008-10-10 2010-04-15 コニカミノルタホールディングス株式会社 Assay method using surface plasmon
JP2010181323A (en) * 2009-02-06 2010-08-19 Konica Minolta Holdings Inc Assay method using surface plasmon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029722A1 (en) * 1993-06-08 1994-12-22 Chronomed, Inc. Two-phase optical assay method and apparatus
WO2008090645A1 (en) * 2007-01-23 2008-07-31 Olympus Corporation Analytical method and analytical apparatus
JP2008180537A (en) * 2007-01-23 2008-08-07 Olympus Corp Analysis method and analyzer
WO2010041736A1 (en) * 2008-10-10 2010-04-15 コニカミノルタホールディングス株式会社 Assay method using surface plasmon
JP2010181323A (en) * 2009-02-06 2010-08-19 Konica Minolta Holdings Inc Assay method using surface plasmon

Also Published As

Publication number Publication date
JP2938485B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
EP0464120B1 (en) Assay method using surface plasmon resonance spectrometry
EP0137678B1 (en) Ultrasonic enhanced immuno-reactions
JPH0145027B2 (en)
JPS6112224B2 (en)
EP0247796A1 (en) Solid phase immunoassay method
CA1247523A (en) Method for reducing non-specific interferences in agglutination immunoassays
EP0245981B1 (en) Signal enhancement in immunoassay by modulation of chemical catalysis
US4693970A (en) Immunoassay using complement
DE3781643D1 (en) METHOD AND TEST CARRIER FOR DETERMINING AN ANALYT.
JPH03195953A (en) Optical reaction measurement
Ohkuma et al. Detection of luciferase having two kinds of luminescent colour based on optical filter procedure: application to an enzyme immunoassay
JPS62502633A (en) Enzyme assay of body fluids
CA2355294A1 (en) A method of detecting and/or quantifying a specific ige antibody in a liquid sample
US5783455A (en) Regenerable solid phase for carrying out specific binding reactions
JPH0531743B2 (en)
JPS59176675A (en) Reagent for measuring enzyme immune
JPS5847491A (en) Suspension of beta-d-galactosidase action
NO884878L (en) QUALITATIVE AND QUANTITATIVE DETERMINATION OF SPECIAL ANTIGENS, SPECIAL TRACKS OF CLOSTRIDIUM TYROBUTYRICUM.
JPH0694713A (en) Method for measuring antithrombin iii activity and measurement kit of antithrombin iii activity using it
Maggio et al. Immunology: current and future technology assessment
JP5143046B2 (en) Test substance measurement method and kit for carrying out the measurement method
ES2052451A1 (en) Particle agglutination assay
RAYEV et al. Design and Application of Multi-Purpose Test System using Non-Enzymatic Diagnostic Sets for Non-Instrumental Assay of Specific Antibodies
JPH0315759A (en) Immunoassay
ES2004066A6 (en) A kit for qualitative and quantitative analysis of antigens, antibodies and/or microorganisms or other cells

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees