JPH03195751A - Polypropylene composition - Google Patents

Polypropylene composition

Info

Publication number
JPH03195751A
JPH03195751A JP33400089A JP33400089A JPH03195751A JP H03195751 A JPH03195751 A JP H03195751A JP 33400089 A JP33400089 A JP 33400089A JP 33400089 A JP33400089 A JP 33400089A JP H03195751 A JPH03195751 A JP H03195751A
Authority
JP
Japan
Prior art keywords
polypropylene
composition
polymerization
nucleating agent
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33400089A
Other languages
Japanese (ja)
Other versions
JPH0618946B2 (en
Inventor
Jun Saito
純 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP1334000A priority Critical patent/JPH0618946B2/en
Publication of JPH03195751A publication Critical patent/JPH03195751A/en
Publication of JPH0618946B2 publication Critical patent/JPH0618946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polypropylene composition excellent in balance between easy processability and strength without any problems in bleeding, etc., by adding a nucleating agent to specific polypropylene having relatively low stereoregularity. CONSTITUTION:The objective polypropylene composition obtained by adding (A) 0.005-5 pts.wt. nucleating agent (e.g. a metal salt of an aromatic phosphorus compound) to (B) 100 pts.wt. polypropylene having 0.80-0.91 isotactic pentad fraction (P), 80-95wt.% content of a portion insoluble in boiling n-heptane and the relation between the isotactic pentad fraction (Pr) of the portion insoluble in n-heptane and (P) expressed by the formula 0<(Pr)-(P)<=0.08.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリプロピレン組成物に関すル、更に詳しく
は、比較的低い立体規則性を有する特定のポリプロピレ
ンに造核剤を添加してなる、易加工性と強度バランスに
優れたポリプロピレン組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polypropylene composition, more specifically, a polypropylene composition comprising a specific polypropylene having relatively low stereoregularity and a nucleating agent added thereto. This invention relates to a polypropylene composition that has excellent processability and strength balance.

[従来の技術とその課題] 従来、沸騰n−ヘプタン不溶部分が95重量%を超える
、充分に立体規則性の制御されたアイソタクチックポリ
プロピレンは商業的に生産されており、またこのこのに
芳香族カルボン酸のアルミニウム塩やジベンリデンソル
ビトール類等の各種造核剤を添加し、剛性や透明性を向
上させた組成物も成形品の各分野に使用されている。
[Prior art and its problems] Conventionally, isotactic polypropylene with well-controlled stereoregularity and a boiling n-heptane insoluble fraction of more than 95% by weight has been produced commercially, and this is also infused with aromatics. Compositions with improved rigidity and transparency by adding various nucleating agents such as aluminum salts of group carboxylic acids and dibenlidene sorbitols are also used in various fields of molded products.

しかしながら、該ポリプロピレンやその組成物は、ポリ
プロピレンの立体規則性が高い(アイソタクチックペン
タッド分率(P)が0.92〜0.96 )ことにより
、加工時には高いエネルギーや高い成形圧力を必要とす
るなど加工性が不十分であったり、−また得られた成形
品の剛性は高いものの耐?#撃性が低いといった課題を
有していた。
However, polypropylene and its compositions require high energy and high molding pressure during processing due to the high stereoregularity of polypropylene (isotactic pentad fraction (P) of 0.92 to 0.96). The processability may be insufficient, such as when the molded product is hardened, or the resulting molded product may have high rigidity but poor durability. # It had the problem of low impact resistance.

一方、上記のアイソタクチックポリプロピレンやその組
成物に対して、沸11n−ヘプタン不溶部分が20Ii
量%〜80重量%程度の低い立体規則性ポリプロピレン
(特公昭32−10596号公報、特公昭39−121
05号公報、特公昭53−46799号公報、特開昭5
2−102214号公報等)が知られている。該ポリプ
ロピレンはアイソタクチックポリプロピレンに比較して
加工時の必要エネルギーも低いことから、通常のアイソ
タクチックポリプロピレンとは異なった用途がフィルム
等の成形分野で期待されている。
On the other hand, for the above isotactic polypropylene and its composition, the insoluble portion in boiling 11n-heptane is 20Ii
Polypropylene with low stereoregularity of about 80% by weight (Japanese Patent Publication No. 32-10596, Japanese Patent Publication No. 39-121
Publication No. 05, Japanese Patent Publication No. 53-46799, Japanese Patent Application Publication No. 1987
2-102214, etc.) are known. Since the polypropylene requires less energy during processing than isotactic polypropylene, it is expected to be used in the field of film molding, which is different from that of ordinary isotactic polypropylene.

しかしながらこれらのポリプロピレンは著しく低い立体
規則性を有する沸11n−ヘプタン可溶部分と比較的高
い立体規則性を有する沸11n−ヘプタン不t11部分
とから構成されているため、成形品とした場合には、著
しく低い立体規則性部分が表面にブリードする結果、特
開昭57−47371号公報に見られるように表面粘着
性のある成形品しか得られない。
However, these polypropylenes are composed of a boiling point 11n-heptane soluble portion with extremely low stereoregularity and a boiling point 11n-heptane insoluble portion having relatively high stereoregularity. As a result of the extremely low stereoregularity bleeding onto the surface, only a molded article with surface tackiness can be obtained as seen in JP-A-57-47371.

この点を改良するために該ポリプロピレンにジベンジリ
デンソルビトール類およびゼオライトを添加した組成物
(特開昭60−1111727号公報)や、該ポリプロ
ピレンにジベンジリデンソルビトール類等を添加した組
成物を用いてフィルムとする際に急冷したり、特定の結
晶構造をとらせたりする技術(特開昭59−33339
号公報、特開昭59−43044号公報)が提案されて
いるが、著しく低い立体規則性を有する沸111n−ヘ
プタン可溶部が木質的に多いことから改良効果は未だ不
十分なものであった。
In order to improve this point, a film is produced using a composition in which dibenzylidene sorbitol and zeolite are added to the polypropylene (Japanese Patent Application Laid-open No. 1111727/1983), or a composition in which dibenzylidene sorbitol and the like are added to the polypropylene. Techniques for rapidly cooling and forming a specific crystal structure when
However, the improvement effect is still insufficient because the wood has a large amount of boiling 111n-heptane soluble parts with extremely low stereoregularity. Ta.

また、該ポリプロピレンや組成物を用いて得られた成形
品はその目的が低い剛性にあるものであフな。
In addition, molded articles obtained using the polypropylene or composition are not intended to have low rigidity.

本発明者等は、上述したアイソタクチックポリプロピレ
ンと低立体規則性ポリプロピレンの長所を兼ね備えた、
易加工性と強度バランスに優れ、しかもブリード等の問
題もないポリプロピレン組成物について鋭意研究した。
The present inventors have created a polypropylene that combines the advantages of isotactic polypropylene and low stereoregularity polypropylene described above.
We have conducted extensive research into polypropylene compositions that have an excellent balance of ease of workability and strength, and are free from problems such as bleeding.

その結果、比較的低い立体規則性を有する特定のポリプ
ロピレンに造核剤を添加してなる組成物を用いる際に、
上記課題が解決されることを見いだし、その知見に基つ
き本発明を完成した。
As a result, when using a composition formed by adding a nucleating agent to a specific polypropylene having relatively low stereoregularity,
The inventors have found that the above problem can be solved, and have completed the present invention based on this knowledge.

以上の記述から明らかなように、本発明の目的は易加工
性と強度バランスに優れたポリプロピレン組成物を提供
することにある。
As is clear from the above description, an object of the present invention is to provide a polypropylene composition that is easy to process and has an excellent balance of strength.

[L!l!gを解決するための手段] 本発明は以下の構成を有する。[L! l! Means to solve g] The present invention has the following configuration.

(1)アイソタクチックペンタッド分率(P)が0.8
0〜0.91.沸騰n−ヘプタン不溶部分が80重量%
〜95重量%であり、かつ該n−ヘプタン不溶部分のア
イソタクチックペンタッド分率(Pr)が前記(P)と
の関係において、O<(Pr)−(P)≦0.08の式
を満足するポリプロピレン10G重量部に対して、造核
剤0.005重量部〜5重量部を添加してなるポリプロ
ピレン組成物。
(1) Isotactic pentad fraction (P) is 0.8
0-0.91. Boiling n-heptane insoluble portion is 80% by weight
~95% by weight, and the isotactic pentad fraction (Pr) of the n-heptane-insoluble portion satisfies the formula O<(Pr)-(P)≦0.08 in relation to the above (P). A polypropylene composition obtained by adding 0.005 parts by weight to 5 parts by weight of a nucleating agent to 10 G parts by weight of polypropylene that satisfies the following.

(2)造核剤が芳香族系燐化合物の金属塩である前記第
1項に記載の組成物。
(2) The composition according to item 1 above, wherein the nucleating agent is a metal salt of an aromatic phosphorus compound.

(3)造核剤がジベンジリデンソルビトール類である前
記第1項に記載の組成物。
(3) The composition according to item 1 above, wherein the nucleating agent is dibenzylidene sorbitol.

(4)造核剤が芳香族系カルボン酸の金属塩である前記
第1項に記載の組成物。
(4) The composition according to item 1 above, wherein the nucleating agent is a metal salt of an aromatic carboxylic acid.

本発明の構成について以下に詳述する。The configuration of the present invention will be explained in detail below.

本発明の組成物を構成する主要な成分であるポリプロピ
レンとしては、ポリプロピレン全体のアイソタクチック
ペンタッド分率(P)が0.80〜0.91であり、か
つ該ポリプロピレンをソックスレー抽出器により沸1l
n−ヘプタン中で6時間抽出した際の不溶部分について
のアイソタクチックペンタッド分率(Pr)とした時、
上記(P)と、0〈(Pr)−(P)≦0.08なる関
係にあり、またこの時の、沸騰1n−ヘプタン不溶部分
がポリプロピレン全体の80重量%〜95重量%である
ポリプロピレンが用いられる。
The polypropylene that is the main component constituting the composition of the present invention has an isotactic pentad fraction (P) of 0.80 to 0.91, and the polypropylene is boiled using a Soxhlet extractor. 1l
When expressed as the isotactic pentad fraction (Pr) for the insoluble portion when extracted in n-heptane for 6 hours,
Polypropylene has a relationship of 0<(Pr)-(P)≦0.08 with the above (P), and in this case, the boiling 1n-heptane insoluble portion is 80% to 95% by weight of the entire polypropylene. used.

なお、本発明におけるアイソタクチックペンタッド分率
とは、A、Xambelll等によってMacrora
In addition, the isotactic pentad fraction in the present invention is defined by Macrora et al.
.

1ecules 6925(+973)に発表されてい
る方法、即ち、”C−NMRを使用して測定されるポリ
プロピレン分子中のペンタッド単位でのアイソタクチッ
ク分率である。言い換えると該分率(P)はプロピレン
単量体単位が5個連続してメソ結合した連鎖の中心にあ
るプロピレン単量体単位の分率を意味する。ただし、上
述のNMR吸収ピークの帰属決定法は、Macroa+
olecules 8687(1975)に基づいた。
1ecules 6925 (+973), that is, the isotactic fraction in pentad units in a polypropylene molecule measured using C-NMR. In other words, the fraction (P) is It means the fraction of the propylene monomer unit at the center of a chain in which five consecutive propylene monomer units are meso-bonded.However, the above-mentioned method for determining the attribution of the NMR absorption peak is
olecules 8687 (1975).

上記の(P)が0.91を超えるか、沸111n−ヘプ
タン不溶部分が95ii量%を超えると記述した従来の
アイソタクチックポリプロピレンとなり、加工性と耐1
!El性に劣るものとなってしまう、(P)が0.80
未満か、沸an−ヘプタン不溶部分が80重量%未満で
あると剛性が低くなり、本発明の目的を達しないばかり
か沸11n−ヘプタン可溶部分のブリードが問題となっ
てくる。また(Pr)が(P)との間に、o<(Prl
−(P)≦0,08の関係を満足しない、即ち(Pr)
−(P)が0.08を超えることは、沸111n−ヘプ
タン可溶部分の立体規則性が極めて低いことであり、該
沸1ain−ヘプタン可溶部分のブリードが激しくなる
他、強度バランスも不良となる。
It is a conventional isotactic polypropylene described as having the above (P) exceeding 0.91 or the 111n-heptane insoluble portion exceeding 95ii mass%, and has excellent processability and resistance to 1.
! (P) is 0.80, resulting in poor El property.
If the content of the 11n-heptane-insoluble portion is less than 80% by weight, the rigidity will be low and the object of the present invention will not be achieved, and bleeding of the 11n-heptane-soluble portion will become a problem. Also, between (Pr) and (P), o<(Prl
- does not satisfy the relationship (P)≦0,08, i.e. (Pr)
-(P) exceeding 0.08 means that the stereoregularity of the boiling point 111n-heptane soluble portion is extremely low, and the bleeding of the boiling point 1ain-heptane soluble portion becomes severe, and the strength balance is also poor. becomes.

以上の物性を満足するポリプロピレンを本発明の組成物
では必須構成成分とするが、このようなポリプロピレン
は、例えば■チタン含有固体触媒成分と、■有機アルミ
ニウム化合物(A1)、および■P=0結合、イソシア
ネート基、アクリロキシ基、およびメタクリロキシ基か
ら選択されたいずれかの結合若しくは基を有する有機ケ
イ素化合物(S)とを組み合せた触媒の存在下に、プロ
ピレンを重合することによって得られる。
Polypropylene that satisfies the above-mentioned physical properties is an essential component in the composition of the present invention, and such polypropylene contains, for example, ■ a titanium-containing solid catalyst component, ■ an organoaluminum compound (A1), and ■ a P=0 bond. It is obtained by polymerizing propylene in the presence of a catalyst in combination with an organosilicon compound (S) having any bond or group selected from , isocyanate group, acryloxy group, and methacryloxy group.

以下にその詳細を述べる。The details are described below.

まず、チタン含有固体触媒成分としては、立体規則性ポ
リプロピレン製造用チタン含有固体触媒成分であれば公
知のどの様なものでも使用可能であるが、工業生産上、
好適には、特公昭59−28,573号公報、特開昭5
8−17,104号公報等に記載の方法で得られる三塩
化チタンを主成分とするチタン触媒成分や、特開昭62
−104.810号公報、特開昭62−104,811
号公報、特開昭62−104,812号公報等に記載の
マグネシウム化合物に四塩化チタンを担持したチタン、
マグネシウム、ハロゲン、および電子供与体を必須成分
とするチタン含有担持型触媒成分が用いられる。
First, as the titanium-containing solid catalyst component, any known titanium-containing solid catalyst component for producing stereoregular polypropylene can be used, but in industrial production,
Suitably, Japanese Patent Publication No. 59-28,573, Japanese Patent Application Laid-open No. 1983
A titanium catalyst component containing titanium trichloride as a main component obtained by the method described in Publication No. 8-17,104, etc., and JP-A-62
-104.810 Publication, JP-A-62-104,811
titanium in which titanium tetrachloride is supported on a magnesium compound described in JP-A No. 62-104,812, etc.;
A titanium-containing supported catalyst component containing magnesium, halogen, and an electron donor as essential components is used.

また、有機アルミニウム化合物(A1)としては、−放
伐が^IR’、R2p*X3−+p*p+1 (式中、
R1、R2はアルキル基、シクロアルキル基、アリール
基で示される炭化水素基またはアルコキシ基を、Xはハ
ロゲンを表わし、またp、p″はO<p+p’≦3の任
意の数を表わす、)で表わされる有機アルミニウム化合
物が用いられる。
In addition, as the organoaluminum compound (A1), -radiation is ^IR', R2p*X3-+p*p+1 (in the formula,
R1 and R2 represent a hydrocarbon group or alkoxy group represented by an alkyl group, cycloalkyl group, or aryl group, X represents a halogen, and p and p″ represent any number in the range O<p+p′≦3. An organoaluminum compound represented by is used.

具体例としては、トリメチルアルミニウム、トリエチル
アルミニウム、トリn−プロピルアルミニウム、トリn
−ブチルアルミニウム、トリニーブチルアルミニウム、
トリn−ヘキシルアルミニウム、!・すi−ヘキシルア
ルミニウム、トリ2−メチルペンチルアルミニウム、ト
リn−オクチルアルミニウム、トリn−デシルアルミニ
ウム等のトリアルキルアルミニウム類、ジエチルアルミ
ニウムモノクロライド、モロ−プロピルアルミニウムモ
ノクロライド、ジi−ブチルアルミニウムモノクロライ
ド、ジエチルアルミニウムモノフルオライド、ジエチル
アルミニウムモノブロマイド、ジエチルアルミニウムそ
ノアイオダイド等のジアルキルアルミニウムモノハライ
ド類、ジエチルアルミニウムハイドライド等のジアルキ
ルアルミニウムハイドライド類、メチルアルミニウムセ
スキクロライド、エチルアルミニウムセスキクロライド
等のアルキルアルミニウムセスキハライド類、エチルア
ルミニウムジクロライド、l−ブチルアルミニウムジク
ロライド等のモノアルキルアルミニウムシバライド類な
どがあげられ、他にモノエトキシジエチルアルミニウム
、ジェトキシモノエチルアルミニウム等のアルコキシア
ルキルアルミニウム類を用いることもできる。これらの
有機アルミニウム化合物はZ fl類以上を混合して用
いることもできる。
Specific examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n
-butylaluminum, trinibutylaluminum,
Tri-n-hexylaluminum!・Trialkylaluminum such as soot-hexylaluminum, tri2-methylpentylaluminum, tri-n-octylaluminum, tri-n-decylaluminum, diethylaluminum monochloride, moro-propylaluminum monochloride, di-i-butylaluminum monochloride dialkyl aluminum monohalides such as diethyl aluminum monofluoride, diethyl aluminum monobromide, and diethyl aluminum sonoiodide; dialkyl aluminum hydrides such as diethyl aluminum hydride; alkyl aluminum sesquihalides such as methyl aluminum sesquichloride and ethyl aluminum sesquichloride; Examples include monoalkylaluminum cibarides such as ethylaluminum dichloride and 1-butylaluminum dichloride, and alkoxyalkylaluminums such as monoethoxydiethylaluminium and jetoxymonoethylaluminum can also be used. These organoaluminum compounds can also be used in combination with Z fl or more.

触媒を構成する第三成分として使用する有機ケイ素化合
物(S)は、P=0結合、イソシアネート基、アクリロ
キシ基、およびメタクリロキシ基から選択されたいずれ
かの結合若しくは基を有する有機ケイ素化合物(S)(
以後、有機ケイ素化合物(S)と省略していうことがあ
る。)である。
The organosilicon compound (S) used as the third component constituting the catalyst is an organosilicon compound (S) having any bond or group selected from a P=0 bond, an isocyanate group, an acryloxy group, and a methacryloxy group. (
Hereinafter, it may be abbreviated as organosilicon compound (S). ).

該有機ケイ素化合物(S)の具体例としては、トリス(
トリメチルシリル)ホスフェート、トリス(エチルジメ
チルシリル)ホスフェート、トリス(トリエチルシリル
)ホスフェート、ビス(トリメチルシリル)メチルホス
フェート、ビス(トリメチルシリル)エチルホスフェー
ト、ビス(トリメチルシリル)1−メチルビニルホスフ
ェート、ジエチル(トリメチルシリルメチル)ホスフェ
ート、ジエチル(トリメチルシリルエチル)ホスホネー
ト、ジエチル(トリメチルシロキシカルボニル)メチル
ホスホネート、ビス(トリメチルシリルメチル)エチル
ホスフィネート、ビス(トリメチルシリルエチル)エチ
ルホスフィネート等のp=o結合を有する有機ケイ素化
合物、トリメチルシリルイソシアネート、トリエチルシ
リルイソシアネート、エチルジメチルシリルイソシアネ
ート、3−イソシアネートプロピルトリメトキシシラン
、3−イソシアネートプロピルトリエトキシシラン、3
−イソシアネートプロピルジメチルクロロシラン等のイ
ソシアネート基を有する有機ケイ素化金物、 3−アクリロキシプロピルトリメトキシシラン、3−ア
クリロキシプロピルメチルジメトキシシラン、3−アク
リロキシプロピルジメチルメトキシシラン、3−アクリ
ロキシプロピルトリエトキシシラン、3−アクリロキシ
プロピルトリス(トリメチルシロキシ)シラン、3−ア
クリロキシプロピルメチルビス(トリメチルシロキシ)
シラン等のアクリロキシ基を有する有機ケイ素化合物、
3−メタクリロキシプロピルトリメトキシシラン、3−
メタクリロキシプロピルメチルジメトキシシラン、3−
メタクリロキシプロピルトリエトキシシラン、3−メタ
クリロキシプロピルメチルジェトキシシラン、3−メタ
クリロキシプロピルジメチルエトキシシラン、2−メタ
クリロキシプロペニルトリメトキシシラン、3−メタク
リロキシプロピルビス(トリメチルシロキシ)メチルシ
ラン、3−メタクリロキシプロピルジメチルジクロロシ
ラン等のメタクリロキシ基を有する有機ケイ素化合物が
あげられ、これらは121以上が用いられる。
Specific examples of the organosilicon compound (S) include tris(
trimethylsilyl) phosphate, tris(ethyldimethylsilyl) phosphate, tris(triethylsilyl) phosphate, bis(trimethylsilyl) methyl phosphate, bis(trimethylsilyl) ethyl phosphate, bis(trimethylsilyl) 1-methylvinyl phosphate, diethyl(trimethylsilylmethyl) phosphate, Organosilicon compounds having a p=o bond such as diethyl(trimethylsilylethyl)phosphonate, diethyl(trimethylsiloxycarbonyl)methylphosphonate, bis(trimethylsilylmethyl)ethylphosphinate, bis(trimethylsilylethyl)ethylphosphinate, trimethylsilyl isocyanate, triethylsilyl Isocyanate, ethyldimethylsilyl isocyanate, 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, 3
-Organosilicate metals having isocyanate groups such as isocyanatepropyldimethylchlorosilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyldimethylmethoxysilane, 3-acryloxypropyltriethoxy Silane, 3-acryloxypropyltris(trimethylsiloxy)silane, 3-acryloxypropylmethylbis(trimethylsiloxy)
Organosilicon compounds having acryloxy groups such as silane,
3-methacryloxypropyltrimethoxysilane, 3-
methacryloxypropylmethyldimethoxysilane, 3-
Methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyljethoxysilane, 3-methacryloxypropyldimethylethoxysilane, 2-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylbis(trimethylsiloxy)methylsilane, 3-methacryloxypropyldimethylethoxysilane Examples include organosilicon compounds having a methacryloxy group such as roxypropyldimethyldichlorosilane, and 121 or more of these are used.

上記のチタン含有固体触媒成分、有機アルミニウム化合
物(^1)および有機ケイ素化合物(S)の使用量につ
いては、チタン含有固体触媒成分中のTj1モルに対し
、有機アルミニウム化合物(At)を0.1〜2000
モル、および有機ケイ素化合物(S)を0.01〜10
0モル使用する。
Regarding the usage amounts of the above titanium-containing solid catalyst component, organoaluminum compound (^1) and organosilicon compound (S), the amount of organoaluminum compound (At) is 0.1 per mol of Tj in the titanium-containing solid catalyst component. ~2000
mol, and organosilicon compound (S) from 0.01 to 10
Use 0 mol.

有機ケイ素化合物(S)の使用量が上記範囲外であると
既述した立体規則性を有するポリプロピレンが得られず
、アイソタクチックポリプロピレンの生成が多くなり、
重合運転上や品質上の問題が生じる。
If the amount of the organosilicon compound (S) used is outside the above range, polypropylene having the stereoregularity described above cannot be obtained, and isotactic polypropylene is produced in large quantities.
Problems arise in polymerization operation and quality.

上記した所定量でもって組み合せた触媒はそのままでも
プロピレンの重合に使用することが可能であるが、プロ
ピレン重合時の運転性の面からチタン含有固体触媒成分
に代えて、チタン含有固体触媒成分と有機アルミニウム
化合物(^2)とを組み合わせてこのものにオレフィン
を反応させて予備活性化した触媒成分を用いることがよ
り望ましい。
The above-mentioned catalysts combined in the prescribed amounts can be used as they are for propylene polymerization, but from the viewpoint of operability during propylene polymerization, titanium-containing solid catalyst components and organic It is more desirable to use a catalyst component that is preactivated by combining it with an aluminum compound (^2) and reacting this with an olefin.

予備活性化は、チタン含有固体触媒成分1gに対し、有
機アルミニウム化合物(^、)0.005g〜500g
、溶媒O〜50j2 、水素0〜1,000mj2、お
よびオレフィン0.01g〜5.QQOg、好ましくは
0.05g〜3.000gを用い、0℃〜100℃で1
分〜20時間、オレフィンを反応させて、チタン含有固
体触媒成分1g当り0.01g〜200gのオレフィン
を反応させることが望ましい。
Pre-activation is performed by adding 0.005g to 500g of organoaluminum compound (^,) per 1g of titanium-containing solid catalyst component.
, solvent O~50j2, hydrogen 0~1,000mj2, and olefin 0.01g~5. Using QQOg, preferably 0.05g to 3.000g, at 0℃ to 100℃
It is desirable to react the olefins for a period of minutes to 20 hours to react 0.01 g to 200 g of olefin per gram of the titanium-containing solid catalyst component.

予備活性化のためのオレフィンの反応は、脂肪族または
芳香族炭化水素溶媒中でも、又、溶媒を用いないで液化
プロピレン、液化ブテン−1等の液化オレフィン中でも
行え、エチレン、プロピレン等のオレフィンを気相で反
応させることもできる。更にまた、予めオレフィン重合
体または水素を共存させて行う事もできる。
The reaction of olefins for preactivation can be carried out in aliphatic or aromatic hydrocarbon solvents or in liquefied olefins such as liquefied propylene and liquefied butene-1 without using a solvent. It is also possible to react in phases. Furthermore, it can also be carried out in the presence of an olefin polymer or hydrogen in advance.

予備活性化に用いるオレフィンとしては、エチレン、プ
ロピレン、ブテン−1、ペンテン−1、ヘキセン−1、
ヘプテン−1、オクテン−1等の直鎖オレフィン類や4
−メチル−ペンテン−1,2−メチルペンテン−1,3
−メチルブテン−1等の枝鎖オレフィンやスチレン等が
あげられる。また、有機アルミニウム化合物(^、)と
しては、既述の(八、)と同様なものがあげられる。
The olefins used for preactivation include ethylene, propylene, butene-1, pentene-1, hexene-1,
Straight chain olefins such as heptene-1, octene-1, etc.
-Methyl-pentene-1,2-methylpentene-1,3
Examples include branched chain olefins such as -methylbutene-1, styrene, and the like. Further, as the organoaluminum compound (^,), the same compounds as mentioned above (8) can be mentioned.

予備活性化終了後は、溶媒、有機アルミニウム化合物(
^2)未反応オレフィンを減圧蒸留等で除き、乾燥した
粉粒体として重合に用いることもできるし、チタン含有
固体触媒成分1g当り、aOj2を超えない範囲の溶媒
に懸濁した状態で用いることもでき、また、溶媒、未反
応のオレフィン、有機アルミニウム化合物(^2)を濾
別若しくはデカンテーションで除いた後、乾燥した粉粒
体として用いることもできる。
After preactivation, the solvent, organoaluminum compound (
^2) Unreacted olefin can be removed by vacuum distillation, etc., and it can be used in the polymerization as a dry powder, or it can be used in a suspended state in a solvent that does not exceed aOj2 per gram of the titanium-containing solid catalyst component. Alternatively, after removing the solvent, unreacted olefin, and organoaluminum compound (^2) by filtration or decantation, it can be used as a dried powder.

かくして組み合わされた触媒、若しくは予備活性化され
た触媒を用いてプロピレンの重合を、実施する。プロピ
レンを重合させる重合形式としては、n−ヘキサン、n
−ヘプタン、ローオクタン、ベンゼン若しくはトルエン
等の炭化水素溶媒中で行うスラリー重合、または液化プ
ロピレン中で行うバルク重合や気相中で行う気相重合が
あ゛げられる。
Polymerization of propylene is carried out using the catalyst thus combined or preactivated. The polymerization format for propylene is n-hexane, n-hexane,
- Slurry polymerization carried out in a hydrocarbon solvent such as heptane, low octane, benzene or toluene; bulk polymerization carried out in liquefied propylene; and gas phase polymerization carried out in the gas phase.

重合温度は20℃〜100℃、好ましくは30℃〜90
℃である0重合圧力は常圧(Okgf/c+a2G) 
〜50kgf/cm’Gで通常30分〜15時間程度の
重合時間で実施される。重合の際、分子量調節のための
適量の水素を添加するなどは従来のプロピレンの重合方
法と同じである。なお重合はバッチ重合、連続重合のい
ずれの方法においても可能である。
Polymerization temperature is 20°C to 100°C, preferably 30°C to 90°C
℃ 0 polymerization pressure is normal pressure (Okgf/c+a2G)
Polymerization is carried out at ~50 kgf/cm'G and usually for a polymerization time of about 30 minutes to 15 hours. During polymerization, adding an appropriate amount of hydrogen to adjust the molecular weight is the same as in conventional propylene polymerization methods. Note that polymerization can be carried out by either batch polymerization or continuous polymerization.

なお、上記の重合条件の範囲内であれば必ず既述した本
発明に用いることのできるポリプロピレンが得られると
は限らず、個々の触媒および重合条件(特に、使用する
(S)の具体的種類とTiに対するモル比や重合温度等
)を確認し、既述の必要な物性要件を満足するように選
択する必要がある。
It should be noted that polypropylene that can be used in the present invention as described above cannot necessarily be obtained within the range of the above polymerization conditions, and may vary depending on the individual catalyst and polymerization conditions (in particular, the specific type of (S) used). It is necessary to check the molar ratio of Ti to Ti, polymerization temperature, etc.) and select it so as to satisfy the necessary physical property requirements described above.

以上のようにして本発明のポリプロピレン組成物を構成
するポリプロピレンが得られるが、本発明に使用するポ
リプロピレンは製造方法については何等限定されず、既
述の物性要件を満足するポリプロピレンであればどのよ
うな製造方法であってもかまわない0例えば、次の方法
によフても製造可能である。
As described above, the polypropylene constituting the polypropylene composition of the present invention is obtained. However, there are no restrictions on the manufacturing method for the polypropylene used in the present invention, and any polypropylene that satisfies the physical property requirements described above may be used. For example, it can also be manufactured by the following method.

該方法は、■三塩化チタン組成物と、■ジアルキルアル
ミニウムモノハライド(^り)あ■有機アルミニウム化
合物と水との反応生成物(^4)、および必要に応じて
電子供与体(B1)とを組み合せた触媒の存在下にプロ
ピレンを重合することによって得られる。
The method consists of: ■ a titanium trichloride composition; ■ a dialkylaluminum monohalide (^); ■ a reaction product of an organoaluminum compound and water (^4); and, if necessary, an electron donor (B1). It is obtained by polymerizing propylene in the presence of a combined catalyst.

上記の三塩化チタン組成物とジアルキルアルミニウムモ
ノハライドとしては、先に述べたチタン含有固体触媒成
分および有機アルミニウム化合物(^1)としてあげた
例中の三塩化チタン組成物およびジアルキルアルミニウ
ムモノハライドが用いられる。
As the titanium trichloride composition and dialkyl aluminum monohalide, the titanium trichloride composition and dialkyl aluminum monohalide in the examples given above as the titanium-containing solid catalyst component and organoaluminum compound (^1) are used. It will be done.

また有機アルミニウム化合物と水との反応生成物(A4
)は既述の(A1)と同様な有機アルミニウム化合と水
との反応生成物であり、主として下記の一般式[1]お
よび一般式[11]で表されるアルキルアルミノキサン
若しくは一般式[1Fまたは一般式[I!]において、
Rが部分的に塩素、臭素などのハロゲン原子で置JAさ
れ、かつハロゲン含有量が40重量%以下、好ましくは
30重量%以下のハロゲン化アルミノキサンである。こ
れらのうちでトリメチルアルミニウムと水との反応生成
物であるメチルアルミノキサンが最も好ましい。
Also, a reaction product of an organoaluminum compound and water (A4
) is a reaction product of an organoaluminum compound and water similar to the above-mentioned (A1), and is mainly an alkylaluminoxane represented by the following general formula [1] and general formula [11] or a general formula [1F or General formula [I! ] In,
A halogenated aluminoxane in which R is partially substituted with a halogen atom such as chlorine or bromine, and the halogen content is 40% by weight or less, preferably 30% by weight or less. Among these, methylaluminoxane, which is a reaction product of trimethylaluminum and water, is most preferred.

R7式14(l  Al→70−^IR2E I ](
OA11n          [+1](式中;Rは
炭素数1〜8のアルキル基であり、nは1〜約20の整
数である。) この際の有機アルミニウム化合物と水との反応方法とし
ては様々な方法があるが、たとえば次の方法を例示する
ことができる。
R7 formula 14 (l Al→70-^IR2E I ](
OA11n [+1] (In the formula; R is an alkyl group having 1 to 8 carbon atoms, and n is an integer of 1 to about 20.) There are various methods for reacting the organoaluminum compound and water at this time. For example, the following method can be exemplified.

(1)吸着水を含有する化合物若しくは結晶水を有する
塩類、たとえば硫酸銅水和物、硫酸アルミニウム水和物
、塩化マグネシウム水和物などの炭化水素媒体懸濁液に
有機アルミニウム化合物を添加して反応させる方法。
(1) Adding an organic aluminum compound to a hydrocarbon medium suspension of a compound containing adsorbed water or a salt having water of crystallization, such as copper sulfate hydrate, aluminum sulfate hydrate, magnesium chloride hydrate, etc. How to react.

(2)ベンゼン、トルエン、エチルエーテルなどの媒体
中で有機アルミニウム化合物に直接水を作用させる方法
(2) A method in which water is directly applied to an organoaluminum compound in a medium such as benzene, toluene, or ethyl ether.

本発明に用いるポリプロピレンの製造においては、上述
の有機アルミニウム化合物と水との反応生成物(A4)
を単独で用いることはもちろん、この生成物【A4)と
未反応の有機アルミニウム化合物(A2)を混合したも
のを用いることも可能である。
In the production of polypropylene used in the present invention, the reaction product (A4) of the above-mentioned organoaluminum compound and water is
Not only can it be used alone, but it is also possible to use a mixture of this product [A4] and unreacted organoaluminum compound (A2).

上記の各触媒成分と共に必要に応じて用いる電子供与体
(B1)は、酸素、窒素、硫黄、燐のいずれかの原子を
有する有機化合物、すなわち、エーテル類、アルコール
類、エステル類、アルデヒド類、脂肪酸類、ケトン類、
ニトリル類、アミン類、アミド類、尿素又はチオ尿素類
、インシアネート類、アゾ化合物、ホスフィン類、ホス
ファイト類、ホスフィナイト類、硫化水素又はチオエー
テル類、チオアルコール類、シラノール類や5i−0−
C結合を有する有機ケイ素化合物などである。
The electron donor (B1) used as necessary with each of the above catalyst components is an organic compound having an atom of oxygen, nitrogen, sulfur, or phosphorus, i.e., ethers, alcohols, esters, aldehydes, fatty acids, ketones,
Nitriles, amines, amides, ureas or thioureas, incyanates, azo compounds, phosphines, phosphites, phosphinites, hydrogen sulfide or thioethers, thioalcohols, silanols and 5i-0-
These include organosilicon compounds having C bonds.

以上の各触媒成分の使用量としては、三塩化チタン組成
物中のチタン原子1モルに対して、o、oosモル〜2
00モルのジアルキルアルミニウムモノハライド(A、
)、電子供与体(at)O〜100モルを用い、かつ有
機アルミニウム化合物と水との反応生成物(A4)をジ
アルキルアルミニウムモノハライド(^、)に対してア
ルミニウムのモル比((A4)/(A3))が0.00
5〜30となる範囲で使用する。特に(A4)/(^、
)のモル比が重要で、上記範囲をはずれると目的とする
比較的低い立体規則性を有するポリプロピレンが得られ
ない。
The usage amount of each of the above catalyst components is from o,oos mol to 2 mol per mol of titanium atom in the titanium trichloride composition.
00 moles of dialkyl aluminum monohalide (A,
), an electron donor (at)O ~ 100 mol, and the reaction product (A4) of an organoaluminum compound and water was adjusted to the molar ratio of aluminum to dialkylaluminum monohalide (^, ) ((A4)/ (A3)) is 0.00
It is used within the range of 5 to 30. Especially (A4)/(^,
) is important; if the molar ratio is outside the above range, the desired polypropylene with relatively low stereoregularity cannot be obtained.

上記した所定量でもって組み合わされた触媒はそのまま
でもプロピレンの重合に用いられるが、プロピレン重合
時の安定運転の面から、三塩化チタン組成物に代えて、
三塩化チタン組成物とジエチルアルミニウムモノクロラ
イド(^、)を組み合わせて、このものにオレフィンを
反応させて予備活性化した触媒成分を用いることがより
好ましい。
The catalysts combined in the above-mentioned predetermined amounts can be used as they are for propylene polymerization, but from the viewpoint of stable operation during propylene polymerization, titanium trichloride compositions are used instead of the titanium trichloride composition.
It is more preferable to use a catalyst component that is preactivated by combining a titanium trichloride composition and diethylaluminium monochloride (^,) and reacting this with an olefin.

予備活性化の条件は先に述べたチタン含有固体触媒成分
の予備活性化と同様である。かくして得られた触媒、若
しくは予備活性化触媒の存在下にオレフィンを重合させ
て本発明に用いるポリプロピレンが得られる。該重合時
の条件も先に述べたポリプロピレンを得る際と同様な重
合条件が採用される。
The conditions for preactivation are the same as those for preactivation of the titanium-containing solid catalyst component described above. The polypropylene used in the present invention is obtained by polymerizing the olefin in the presence of the catalyst thus obtained or the preactivated catalyst. The same polymerization conditions as in the case of obtaining polypropylene described above are also used for the polymerization.

本発明の組成物のもう一方の構成成分は、造核剤である
。該造核剤としては、ポリプロピレン用造核剤として一
般に用いられている公知の造核剤が使用可能である。具
体例としては、ナトリウム−ビス−(p−t−ブチルフ
ェニル)ホスフェート、カリウム−ビス−(p−t−ブ
チルフェニル)ホスフェート、ナトリウム−ビス−(p
−シクロへキシルフェニル)ホスフェート、ナトリウム
p−t−ブチルフェニルホスフェート、ナトリウム−2
,2°−メチレン−ビス−(4,6−ジー(−ブチルフ
ェニル)ホスフェート、ナトリウム−2,2°−エチリ
デン−ビス−(4,6−ジーし一ブチルフェニル)ホス
フェート、リチウム−2,2−メチレン−ビス−(4,
6−ジーt−ブチルフェニル)ホスフェート、ナトリウ
ム−2,2°−エチリデン−ビス−(4−i−プロピル
−6−t−ブチルフェニル)ホスフェート等の芳香族系
燐化合物、 13.2.4−ジベンジリデンソルビトール、1,3,
2,4ジー(p−メチルヘンジリデン)ソルビトール、
1,32.4−ジー(p−エチルベンジリデン)ソルビ
トール、132.4−ジー(p−プロピルベンジリデン
)ソルビトール、1,3,2.4−ジー(2°、4゛−
ジメチルベンジリデン)ソルビトール、 1.3−p−
クロルベンジリデン−2,4−p−メチルベンシリデン
ソリビトール、1,2,3゜4−ジー(p−クロルベン
ジリデン)ソルビトール、l。
Another component of the composition of the invention is a nucleating agent. As the nucleating agent, any known nucleating agent that is generally used as a nucleating agent for polypropylene can be used. Specific examples include sodium bis-(p-t-butylphenyl) phosphate, potassium-bis-(p-t-butylphenyl) phosphate, and sodium-bis-(p-t-butylphenyl) phosphate.
-cyclohexylphenyl) phosphate, sodium pt-butylphenyl phosphate, sodium-2
, 2°-methylene-bis-(4,6-di-butylphenyl) phosphate, sodium-2,2°-ethylidene-bis-(4,6-di-butylphenyl) phosphate, lithium-2,2 -methylene-bis-(4,
Aromatic phosphorus compounds such as 6-di-t-butylphenyl) phosphate, sodium-2,2°-ethylidene-bis-(4-i-propyl-6-t-butylphenyl) phosphate, 13.2.4- Dibenzylidene sorbitol, 1,3,
2,4-di(p-methylhenzylidene) sorbitol,
1,32.4-di(p-ethylbenzylidene) sorbitol, 132.4-di(p-propylbenzylidene) sorbitol, 1,3,2.4-di(2°, 4゛-
dimethylbenzylidene) sorbitol, 1.3-p-
Chlorbenzylidene-2,4-p-methylbensylidene sorbitol, 1,2,3°4-di(p-chlorobenzylidene) sorbitol, l.

2.3.4−ジー(p−メトキシベンジリデン)ソルビ
トール、1,3,2.4−ジー(p−エトキシベンジリ
デン)ソルビトール等のベンジリデンソルビトール類、
安息香酸ナトリウム、安息香酸カリウム、安息香酸アル
ミニウム、p−t−ブチル安息香酸アルミニウム、ジ−
p−t−ブチル安息香酸アルミニウム等の芳香族カルボ
ン酸の金属塩、更にはタルク、カオリン等があげられる
2.3.Benzylidene sorbitols such as 4-di (p-methoxybenzylidene) sorbitol, 1,3,2,4-di (p-ethoxybenzylidene) sorbitol,
Sodium benzoate, potassium benzoate, aluminum benzoate, pt-butyl aluminum benzoate, di-
Examples include metal salts of aromatic carboxylic acids such as aluminum pt-butylbenzoate, as well as talc and kaolin.

本発明のポリプロピレン組成物は、既述の物性要件を満
足するポリプロピレンに上記した造核剤を添加してなる
。造核剤の添加量は、ポリプロピレン 100重量部に
対してo、oos重量重量部型5重量部る。造核剤の添
加量が0.005fi量部より少ないと得られた組成物
を用いて製造された成形品の剛性が低く、また5重量部
を超えても本発明の効果の向上が期待できず経済的でな
い。
The polypropylene composition of the present invention is made by adding the above-described nucleating agent to polypropylene that satisfies the physical property requirements described above. The amount of the nucleating agent added is 5 parts by weight of o, oos based on 100 parts by weight of polypropylene. If the amount of the nucleating agent added is less than 0.005 parts by weight, the rigidity of molded products manufactured using the resulting composition will be low, and if the amount exceeds 5 parts by weight, the effects of the present invention cannot be expected to improve. It is not economical.

本発明の組成物の製造にあたっては、上記ポリプロピレ
ンおよび造核剤の所定量を混合し、引き続いて混練すれ
ばよい、混合装置としては、ヘンセルミキサー(商品名
)、スーパーミキサーなどの高速攪拌装置をもちいれば
よく、また混練装置としては、パンバリミキサー、ロー
ル、コニダー、車軸若しくは二軸の押出機などを用いれ
ばよい。
In producing the composition of the present invention, predetermined amounts of the above-mentioned polypropylene and nucleating agent may be mixed and then kneaded. As a mixing device, a high-speed stirring device such as a Hensel mixer (trade name) or a super mixer is used. As the kneading device, a Pan Bali mixer, a roll, a conider, an axle-shaft or a twin-shaft extruder, etc. may be used.

混合条件は限定されないが、室温〜100℃、好ましく
は室温〜60℃で30秒ないし1時間、好ましくは1分
〜30分である。また混線条件も限定されないが、混練
時間としては押出機内の滞留時間として10秒〜IO分
、好ましくは20秒〜5分である。
Mixing conditions are not limited, but are from room temperature to 100°C, preferably from room temperature to 60°C, for 30 seconds to 1 hour, preferably 1 minute to 30 minutes. The mixing conditions are also not limited, but the kneading time is 10 seconds to IO minutes, preferably 20 seconds to 5 minutes, as residence time in the extruder.

混練温度としては150℃〜300℃、好ましくは16
0℃〜260℃である。混練後は、冷却、カットし粒状
の組成物として用いるのが望ましい。
The kneading temperature is 150°C to 300°C, preferably 16°C.
It is 0°C to 260°C. After kneading, it is desirable to cool and cut the mixture and use it as a granular composition.

なお、本発明の組成物には上記のポリプロピレンおよび
造核剤のほかに、必要に応じて通常ポリプロピレンに添
加される各種の安定剤や添加剤、紫外線吸収剤、光安定
剖、帯電防止剤、中和剤、滑剤、アンチブロッキング剤
、銅害防止剤、難燃剤、顔料等を適宜併用することがで
きる。
In addition to the above-mentioned polypropylene and nucleating agent, the composition of the present invention may contain various stabilizers and additives that are normally added to polypropylene as necessary, ultraviolet absorbers, light stabilizers, antistatic agents, A neutralizing agent, a lubricant, an anti-blocking agent, a copper damage inhibitor, a flame retardant, a pigment, etc. can be used in combination as appropriate.

更に本発明の組成物には、本発明の目的を著しく損なわ
ない範囲において、ポリエチレン、ポリブテン、エチレ
ン−プロピレンラバー等の重合体や任意の充填剤を含む
ことができる。充填剤としては、例えばマイカ、ゼオラ
イト、炭酸カルシウム、ガラス繊維、炭素繊維等の無機
充填剤や、シラン化合物、チタン化合物、アルミニウム
化合物等のカップリング剤で処理された上述の無機充填
剤または木粉、バルブ、故紙、合成繊維、天然繊維等の
有機充填剤があげられる。
Furthermore, the composition of the present invention may contain polymers such as polyethylene, polybutene, ethylene-propylene rubber, etc., and arbitrary fillers within a range that does not significantly impair the object of the present invention. Examples of the filler include inorganic fillers such as mica, zeolite, calcium carbonate, glass fiber, and carbon fiber, the above-mentioned inorganic fillers treated with coupling agents such as silane compounds, titanium compounds, and aluminum compounds, or wood powder. , valves, waste paper, synthetic fibers, natural fibers, and other organic fillers.

かくして得られた本発明のポリプロピレン組成物は、射
出成形、真空成形、押し出し成形、ブロー成形、延伸等
の公知の成形技術によって、射出成形品、無延伸フィル
ム、延伸フィルム、シート等の成形品の用に供される。
The thus obtained polypropylene composition of the present invention can be used to form molded products such as injection molded products, unstretched films, stretched films, and sheets by known molding techniques such as injection molding, vacuum forming, extrusion molding, blow molding, and stretching. provided for use.

[実施例] 以下、実施例によって本発明を説明する。実施例、比較
例において用いられる用語の定義、および測定方法は次
の通りである。
[Example] The present invention will be explained below with reference to Examples. Definitions of terms used in Examples and Comparative Examples and measurement methods are as follows.

(1)MFR:メルトフローレートJISに721O表
1の条件14による。 (単位:8710分)(2)ア
イソタクチックペンタッド分率:前述した方法に基づき
、日本電子社製JEOL GX−270を用いて測定し
た。
(1) MFR: Melt flow rate according to JIS 721O condition 14 in Table 1. (Unit: 8710 minutes) (2) Isotactic pentad fraction: Measured using JEOL GX-270 manufactured by JEOL based on the method described above.

(3)沸111n−ヘプタン不溶部分:前述した方法に
基づき、ポリプロピレンを沸H1n−ヘプタンで抽出し
た後の固形残分を表わす。
(3) Boiling H111n-heptane insoluble portion: represents the solid residue after polypropylene is extracted with boiling H1n-heptane based on the method described above.

(4)スパイラルフロー:ポリプロピレン組成物を射出
成形機により、溶融樹脂温度220℃で、断市が半径3
mmの半円形をなし、長さ方向に^rchimedes
のスパイラルをなしている、50℃の金型に射出圧力が
600kgf/cm”で15秒間射出した際の金型内の
樹脂長を測定した。該樹脂長が長い程、樹脂の溶融流動
性が良好で加工性が良いことを示す。
(4) Spiral flow: The polypropylene composition is molded by an injection molding machine at a melt resin temperature of 220°C, with a radius of 3
mm semicircular shape, ^rchimedes in the length direction
The length of the resin inside the mold was measured when the resin was injected for 15 seconds at an injection pressure of 600 kgf/cm'' into a spiral mold at 50°C.The longer the resin length, the better the melt fluidity of the resin. It shows good workability.

(5)曲げ弾性率、ポリプロピレン組成物を射出成形機
により、溶融樹脂温度220℃、金型温度50℃でJI
S形の試験片を作成した。該試験片を湿度50%、室温
23℃の室内で96時間放置後、JISに7230に準
拠して23℃にて曲げ弾性率を測定した。 (単位’ 
kgf/c+n2)(6)アイゾツト衝撃強度:(5)
と同様にして試験片を調製し、JIS K 7203に
準拠して23℃にてアイゾツト衝撃強度を測定した。
(5) Flexural modulus: JI of the polypropylene composition using an injection molding machine at a molten resin temperature of 220°C and a mold temperature of 50°C.
An S-shaped test piece was prepared. The test piece was left in a room with a humidity of 50% and a room temperature of 23°C for 96 hours, and then the flexural modulus was measured at 23°C in accordance with JIS 7230. (unit'
kgf/c+n2) (6) Izotsu impact strength: (5)
A test piece was prepared in the same manner as above, and the Izod impact strength was measured at 23°C in accordance with JIS K 7203.

(単位: kgLcm/cm) (7)内部ヘーズ:(5)と同様にして得た1mmの試
験片について、該試験片の両面に流動パラフィンを塗っ
た後、JIS K 7105に準拠してヘーズを測定し
、表面の影響を除いた試験片内部の透明性を評価した。
(Unit: kgLcm/cm) (7) Internal haze: For a 1 mm test piece obtained in the same manner as in (5), after applying liquid paraffin to both sides of the test piece, haze was removed in accordance with JIS K 7105. The transparency inside the test piece was evaluated excluding the influence of the surface.

  (JIL位:%)(8)プロツキングカ:ボリブロ
ビレン組成物をT−ダイ式製膜機により、溶融樹脂温度
230℃で押し出し、20℃の冷却ロールで厚さ1 m
a+のシートとした後、該シートを140℃の熱風で6
0秒間熱し、二軸延伸機を用いて、縦横両方向に7倍ず
つ延伸し、厚み20μの二軸延伸フィルムを得た。2c
++(幅)x7c+a(長さ)該フィルムの同一面同士
を長さ2cmにわたり重ね、250gf/co+’の荷
重下で温度40℃、相対湿度90%の雰囲気下に72時
間放置した後、引張試験機を用いて300mm/分の速
度で試料のせん断剥踏に要する力を測定した。該数値が
低い程、沸111n−ヘプタン可溶分やその他の成分の
ブリードが少なく、耐ブロッキング性が良い。
(JIL rank: %) (8) Blocking force: The polypropylene composition was extruded using a T-die type film forming machine at a molten resin temperature of 230°C, and then rolled to a thickness of 1 m using a cooling roll at 20°C.
After forming an a+ sheet, the sheet was heated with hot air at 140°C for 6 days.
The film was heated for 0 seconds, and then stretched 7 times in both length and width directions using a biaxial stretching machine to obtain a biaxially stretched film with a thickness of 20 μm. 2c
++(width) The force required for shearing the sample was measured using a machine at a speed of 300 mm/min. The lower the numerical value is, the less the bleed of 111n-heptane solubles and other components is, and the better the blocking resistance is.

(JI−位: kgf/cm’) 実施例1 (1)ポリプロピレンの製造 ■ チタン含有固体触媒成分の調製 攪拌機付きステンレス製反応器中において、デカン31
、無水塩化マグネシウム480g、オルトチタン酸n−
ブチル1.7にgおよび2−エチル−1−ヘキサノール
1.95にgを混合し、攪拌しながら 130℃に1時
間加熱して溶解させ均一な溶液とした。該均一溶液を7
0℃とし、攪拌しなからフタル酸ジイソブチル180g
を加え1時間経過後四塩化ケイ素5.2Kgを 25時
間かけて滴下し固体を析出させ、更に70℃に1時間加
熱した。固体を溶液から分離し、ヘキサンで洗浄して固
体生成物を得た。
(JI-position: kgf/cm') Example 1 (1) Production of polypropylene ■ Preparation of titanium-containing solid catalyst component In a stainless steel reactor equipped with a stirrer, decane 31
, anhydrous magnesium chloride 480g, orthotitanic acid n-
1.7 grams of butyl and 1.95 grams of 2-ethyl-1-hexanol were mixed and heated to 130° C. for 1 hour with stirring to dissolve and form a homogeneous solution. The homogeneous solution was
180 g of diisobutyl phthalate at 0°C and without stirring.
After 1 hour had passed, 5.2 kg of silicon tetrachloride was added dropwise over 25 hours to precipitate a solid, and the mixture was further heated to 70°C for 1 hour. The solid was separated from the solution and washed with hexane to give a solid product.

該固体生成物全量を1.2−ジクロルエタン+5j2に
゛溶かした四塩化チタン15ILと混合し、続いて、フ
タル酸ジイソブチル360g加え、攪拌しながら100
℃に2時間反応させた後、同温度においてデカンテーシ
ョンに上り液相部を除き、再び、1.2−ジクロルエタ
ンIiおよび四塩化チタン151を加え、 100℃に
2時間攪拌し、ヘキサンで洗浄し乾燥しチタン含有担持
型触媒成分を得た。
The total amount of the solid product was mixed with 15 IL of titanium tetrachloride dissolved in 1,2-dichloroethane + 5j2, and then 360 g of diisobutyl phthalate was added and the mixture was heated to 100 g with stirring.
After reacting at 100°C for 2 hours, decantation was performed at the same temperature to remove the liquid phase, 1,2-dichloroethane Ii and titanium tetrachloride 151 were added again, the mixture was stirred at 100°C for 2 hours, and washed with hexane. After drying, a titanium-containing supported catalyst component was obtained.

該チタン含有担持型触媒成分のTI含量は3.0重量%
であった。
The TI content of the titanium-containing supported catalyst component is 3.0% by weight.
Met.

■予備活性化触媒成分の調製 内容積301の攪拌機付きステンレス製反応器を窒素ガ
スで置換した後、n−ヘキサン20It、トリエチルア
ルミニウム15(Ig、ジフェニルジメトキシシラン4
5gおよび上記■で得たチタン含有相持型触媒成分10
0gを加えた後、プロピレン150gを供給し、30℃
で2時間、予備活性化反応を行った(チタン含有担持型
触媒成分1g当り、プロピレン1.0g反応)0反応時
間経過後、固体部分を0−ヘキサンで洗浄し、さらに乾
燥して予備活性化触媒成分を得た。
■ Preparation of preactivated catalyst components After purging a stainless steel reactor with a stirrer with an internal volume of 301 kg with nitrogen gas, 20 It of n-hexane, 15 Ig of triethylaluminum, 4 g of diphenyldimethoxysilane,
5g and titanium-containing supported catalyst component 10 obtained in step ① above
After adding 0g, feed 150g of propylene and heat at 30°C.
After 0 reaction time, the solid part was washed with 0-hexane and further dried for preactivation. A catalyst component was obtained.

■プロピレンの重合 窒素置換をした内容積80℃の攪拌機のついたL/D=
3の横型重合器にMFR3,0の公知の方法で得たポリ
プロピレンパウダー20kgを投入後、上記(2)で得
た予備活性化触媒成分にn−ヘキサンを添加し、4.0
重量%のn−ヘキサン懸濁液とした後該懸濁液をT1原
子換算で 0.423ミリグラム原子/hr、トリエチ
ルアルミニウムおよび3−イソシアネートプロピルトリ
エトキシシランの30重量%n−ヘキサン溶液をTI原
子に対してモル比がそれぞれ200および50となるよ
うに連続的に供給した。
■ Propylene polymerization L/D with nitrogen displacement and internal volume of 80°C and a stirrer =
After charging 20 kg of polypropylene powder obtained by a known method with an MFR of 3.0 into the horizontal polymerization vessel of step 3, n-hexane was added to the preactivated catalyst component obtained in step (2) above, and a polymerization vessel of 4.0
After making a suspension in n-hexane of 30% by weight, the suspension was converted to 0.423 milligram atoms/hr in terms of T1 atoms, and a 30% by weight n-hexane solution of triethylaluminum and 3-isocyanatepropyltriethoxysilane was converted to TI atoms. were continuously supplied so that the molar ratio was 200 and 50, respectively.

また重合器内の気相中の濃度が0.2容積%を保つよう
に水素を、全圧力が23kg/cm’Gを保つようにプ
ロピレンをそれぞれ重合器に供給してプロピレンの気相
重合を70℃において72時間連続して行った。該重合
期間中は、重合器内の重合体の保有レベルが60容積%
となるように重合器から重合体を連続的に10kg/h
rで抜ぎ出した。
In addition, hydrogen was supplied to the polymerization vessel so that the concentration in the gas phase in the polymerization vessel was kept at 0.2% by volume, and propylene was supplied to the polymerization vessel so that the total pressure was maintained at 23kg/cm'G to carry out gas phase polymerization of propylene. The test was carried out continuously for 72 hours at 70°C. During the polymerization period, the polymer retention level in the polymerization vessel is 60% by volume.
Continuously feed 10 kg/h of polymer from the polymerization vessel so that
I extracted it with r.

抜ぎ出した重合体を続いてプロピレンオキサイドを0.
2容積%含む窒素ガスにより85℃にて30分間接触処
理した後、ポリプロピレンパウダーとして得た。Z亥ポ
リプロピレンのアイソタクチックペンタッド分率(P)
は0.840、沸騰n−ヘプタン不溶部分87.61i
量%であり、該沸騰ローへブタン不溶部分のアイソタク
チックペンタッド分率(Pr)は0.872であった。
The extracted polymer was then treated with 0.0% propylene oxide.
After contact treatment with nitrogen gas containing 2% by volume at 85° C. for 30 minutes, a polypropylene powder was obtained. Isotactic pentad fraction (P) of Zhai polypropylene
is 0.840, boiling n-heptane insoluble portion 87.61i
%, and the isotactic pentad fraction (Pr) of the boiling rheobutane-insoluble portion was 0.872.

(2)ポリプロピレン組成物の製造 内容1N toojLのヘンセルミキサー(商品名)に
(1)で得たポリプロピレン20にg、テトラキス〔メ
チレン−3−(3°、5°−ジ−t−ブチル−4°−ヒ
ドロキシフェニル)プロピオネートコメタン10g、ス
テアリン酸カルシウムlogおよび造核剤としてナトリ
ウム22°−メチレンビス−(4,6−ジーt−ブチル
フェニル)ホスフェート10gを没入し、3分間攪拌混
合した。
(2) Production details of polypropylene composition In a 1N toojL Hensel mixer (trade name), 20 g of the polypropylene obtained in (1) was added to tetrakis[methylene-3-(3°, 5°-di-t-butyl- 10 g of 4°-hydroxyphenyl)propionate comethane, log calcium stearate, and 10 g of sodium 22°-methylenebis-(4,6-di-t-butylphenyl)phosphate as a nucleating agent were added and mixed with stirring for 3 minutes.

引き続いて、内径40mmの単軸押出機を用いて230
℃下で混合物を溶融混練して押し出し、水冷後、カット
し、粒状のポリプロピレン組成物を得た。
Subsequently, using a single screw extruder with an inner diameter of 40 mm, 230
The mixture was melt-kneaded and extruded at 0.degree. C., cooled with water, and then cut to obtain a granular polypropylene composition.

比較例1 実施例1の(2)においてナトリウム−2,2°−メチ
レン−ビス−(4,6−ジーt−ブチルフェニル)ホス
フェートを添加しないこと以外は同様にしてポリプロピ
レン組成物を得た。
Comparative Example 1 A polypropylene composition was obtained in the same manner as in Example 1 (2) except that sodium-2,2°-methylene-bis-(4,6-di-t-butylphenyl) phosphate was not added.

比較例2 (1)実施例1の(1)の■において、3−イソシアネ
ートプロピルトリエトキシシランを使用しないこと、ま
た重合器内の気相中の水素濃度を0.1容積%とするこ
と以外は同様にしてプロピレンの重合を行ったところ、
生成する重合体の流動性が悪化し、重合熱の除熱不良や
重合体の重合器からの抜ぎ出し不良が生じたため、重合
開始後24時間でプロピレンの重合を停止した。
Comparative Example 2 (1) In (1) (■) of Example 1, except that 3-isocyanatepropyltriethoxysilane was not used and the hydrogen concentration in the gas phase in the polymerization vessel was 0.1% by volume. conducted polymerization of propylene in the same manner,
The polymerization of propylene was stopped 24 hours after the start of polymerization because the fluidity of the produced polymer deteriorated, resulting in failure in removing the polymerization heat and failure in extracting the polymer from the polymerization vessel.

(2)実施例1の(2)において、ポリプロピレンとし
て上記(1)で得たポリプロピレンを用いること以外は
同線にしてポリプロピレン組成物を得た。
(2) A polypropylene composition was obtained in the same manner as in (2) of Example 1 except that the polypropylene obtained in (1) above was used as the polypropylene.

以外は同様にしてプロピレンの重合を行い、ポリプロピ
レンを得た。
Polypropylene was obtained by polymerizing propylene in the same manner as above.

(2)比較例1の(2)において、ポリプロピレンとし
て上記(1) で得たポリプロピレンを用いること以外
は同様にしてポリプロピレン組成物を得た。
(2) A polypropylene composition was obtained in the same manner as in (2) of Comparative Example 1, except that the polypropylene obtained in (1) above was used as the polypropylene.

実施例2.3 実施例1の(2)において、ナトリウム−2,2−メチ
レン−ビス−(4,6−ジーし一ブチルフェニル)ホス
フェートの添加量を2g(実施例2) 、 60g(実
施例3)とそれぞれ変化させること以外は同様にしてポ
リプロピレン組成物を得た。
Example 2.3 In (2) of Example 1, the amount of sodium-2,2-methylene-bis-(4,6-di-butylphenyl)phosphate added was 2 g (Example 2) and 60 g (Example 2). A polypropylene composition was obtained in the same manner as in Example 3) except for making the following changes.

比較例3 (1)実施例1の(1)の■において、3−イソシアネ
ートプロピルトリエトキシシランの代わりにジフェニル
ジメトキシシランをTiに対するモル比が20となるよ
うに用い、また各触媒成分を重合器内の全圧力が23k
g/c+e2Gを保つように供給すること実施例4 (1)実施例1の(1)の■において、3−イソシアネ
ートプロピルトリエトキシシランの代わりに3−アクリ
ロキシプロピルトリメトキシシランをTIに対するモル
比が30となるように用い、また各触媒成分を重合器内
の全圧力が23kg/ci’Gを保つように供給するこ
と以外は同様にしてプロピレンの重合を行い、ポリプロ
ピレンを得た。
Comparative Example 3 (1) In (1) (1) of Example 1, diphenyldimethoxysilane was used instead of 3-isocyanatepropyltriethoxysilane so that the molar ratio to Ti was 20, and each catalyst component was added to the polymerization vessel. The total pressure inside is 23k
Example 4 (1) In (1) (■) of Example 1, the molar ratio of 3-acryloxypropyltrimethoxysilane to TI was changed in place of 3-isocyanatepropyltriethoxysilane. Polypropylene was obtained by polymerizing propylene in the same manner except that the catalyst components were used in such a manner that the total pressure in the polymerization vessel was maintained at 23 kg/ci'G.

(2)実施例1の(2)において、ポリプロピレンとし
て上記(1)で得たポリプロピレン20kg、また造核
剤としてナトリウム−2,2−メチレン−ビス−(4゜
6−ジーし一ブチルフェニル)ホスフェートに代えて1
.3,2.4−ジー(p−メチルベンジリデン)ソルビ
トール20gを用いること以外は同様にしてポリプロピ
レン組成物を得た。
(2) In (2) of Example 1, 20 kg of the polypropylene obtained in (1) above was used as the polypropylene, and sodium-2,2-methylene-bis-(4°6-di-butylphenyl) was used as the nucleating agent. 1 instead of phosphate
.. A polypropylene composition was obtained in the same manner except that 20 g of 3,2,4-di(p-methylbenzylidene) sorbitol was used.

比較例4 実施例4の(2)において、IJ、2.4−ジー(p−
メチルベンジリデン)ソルビトールを添加しないこと以
外は同様にしてポリプロピレン組成物を得た。
Comparative Example 4 In (2) of Example 4, IJ, 2.4-G (p-
A polypropylene composition was obtained in the same manner except that methylbenzylidene) sorbitol was not added.

実施例5 (1)ポリプロピレンの製造 ■チタン含有固体触媒成分の調製 n−ヘキサン61、ジエチルアルミニウムモノクロライ
ド(DEAC) 5.0モル、ジイソアミルエーテル1
2.0モルを25℃で1分間で混合し5分間同温度で反
応させて反応生成液(I) (ジイソアミルエーテル/
DEACのモル比2.4)を得た。窒素置換された反応
器に四塩化チタン40モルを入れ、35℃に加熱し、こ
れに上記反応生成液(1)の全量を30分間で滴下した
後、同温度に30分間保ち、75℃に昇温して更に1時
間反応させ、室温迄冷却し上澄液を除籾、n−ヘキサン
20互を加えてデカンテーションで上澄液を除く操作を
4回繰り返して、固体生成物(+1)を得た。
Example 5 (1) Production of polypropylene ■ Preparation of titanium-containing solid catalyst component n-hexane 61, diethylaluminum monochloride (DEAC) 5.0 mol, diisoamyl ether 1
2.0 mol was mixed at 25°C for 1 minute and reacted at the same temperature for 5 minutes to form reaction product liquid (I) (diisoamyl ether/
A DEAC molar ratio of 2.4) was obtained. 40 mol of titanium tetrachloride was placed in a reactor purged with nitrogen, heated to 35°C, and the entire amount of the reaction product liquid (1) was added dropwise over 30 minutes, kept at the same temperature for 30 minutes, and heated to 75°C. The temperature was raised and the reaction was further carried out for 1 hour, cooled to room temperature, the supernatant liquid was removed, n-hexane was added 20 times, and the supernatant liquid was removed by decantation, which was repeated 4 times to obtain a solid product (+1). I got it.

この(1■)の全量をn−ヘキサン31中に懸濁させ、
ジエチルアルミニウムモノクロライド200gを加え、
30℃でプロピレン1.okgを加え1時間反応させ、
重合処理を施した固体生成物(II −A )を得た(
プロピレン反応量aoog)。反応後、上澄液を除いた
後、n−ヘキサン300mJZを加えてデカンテーショ
ンで除く操作を2回繰り返し、上記の重合処理を施した
固体生成物(o −A ) 2.5kgをn−へキサン
6j2中に懸濁させて、四塩化チタン3.5kgを室温
にて約10分間で加え、80℃にて30分間反応させた
後、更に、ジイソアミルエーテル1.6kgを加え、8
0℃で1時間反応させた0反応終了後、上澄液をデカン
テーションで除いた後、40℃のn−ヘキサンを加え、
10分間攪拌し、静置して上澄液を除く操作を5回繰り
返した後、減圧で乾燥させ、三塩化チタン組成物を得た
。三塩化チタン組成物1g中のチタン含量は192mg
であった。
Suspend the entire amount of this (1■) in n-hexane 31,
Add 200g of diethylaluminum monochloride,
Propylene 1. at 30°C. Add okg and react for 1 hour.
A polymerized solid product (II-A) was obtained (
Propylene reaction amount aoog). After the reaction, after removing the supernatant liquid, adding 300 mJZ of n-hexane and removing by decantation was repeated twice, and 2.5 kg of the solid product (o-A) subjected to the above polymerization treatment was transferred to n- Suspended in xane 6j2, 3.5 kg of titanium tetrachloride was added at room temperature for about 10 minutes, and after reacting at 80°C for 30 minutes, 1.6 kg of diisoamyl ether was added.
After the reaction was completed at 0°C for 1 hour, the supernatant was removed by decantation, and n-hexane at 40°C was added.
After repeating the operation of stirring for 10 minutes, standing still, and removing the supernatant liquid five times, the mixture was dried under reduced pressure to obtain a titanium trichloride composition. Titanium content in 1g of titanium trichloride composition is 192mg
Met.

■予備活性化触媒成分の調製 内容積1502の傾斜羽根付ぎステンレス製反応器を窒
素ガスで置換した後、n−ヘキサン 100℃、ジエチ
ルアルミニウムモノクロライト114g、■で得た三塩
化チタン組成物1.8kgを室温で加えた後、30℃で
2時間かけてエチレンを1.8N+113供給し、反応
させた(三塩化チタン組成物1g当り、エチレン1.0
8反応)後、未反応エチレンを除去し、nヘキサンで洗
浄してから、濾過、乾燥して予備活性化触媒成分を得た
■ Preparation of preactivated catalyst component After purging a stainless steel reactor with inclined blades with an internal volume of 1502 cm with nitrogen gas, using n-hexane at 100°C, 114 g of diethylaluminium monochlorite, and titanium trichloride composition 1 obtained in ■. After adding .8 kg at room temperature, 1.8N+113 ethylene was supplied at 30°C for 2 hours to cause a reaction (1.0 kg of ethylene was added per 1 g of titanium trichloride composition).
8), unreacted ethylene was removed, washed with n-hexane, filtered and dried to obtain a preactivated catalyst component.

■プロピレンの重合 実施例1の(1)において、予備活性化触媒成分として
、上記■で得た予備活性化触媒成分をTi原子換算で5
.8ミリグラム原子/hrで、またトリエチルアルミニ
ウムおよび3−イソシアネートプロピルトリエトキシシ
ランに代えてジエチルアルミニウムモノクロライドおよ
びトリス(トリメチルシリル)ホスフェートをTi原子
に対してモル比がそれぞれ7.0および2.0となるよ
うに用いること、更に重合器内の気相中の水素濃度を0
.7容積%とすること以外は同様にしてポリプロピレン
を得た。該ポリプロピレンのアイソタクチックペンタッ
ド分率(P)は0.820、沸!tin−ヘプタン不溶
部分は85.51互量%、該沸騰ローへブタン不溶部分
のアイソタクチックペンタッド分率(Pr)は0.86
5であった。
■ Polymerization of propylene In (1) of Example 1, as the preactivated catalyst component, the preactivated catalyst component obtained in the above
.. 8 milligram atoms/hr, and diethylaluminum monochloride and tris(trimethylsilyl) phosphate in place of triethylaluminum and 3-isocyanatepropyltriethoxysilane in molar ratios to Ti atoms of 7.0 and 2.0, respectively. Furthermore, the hydrogen concentration in the gas phase in the polymerization vessel can be reduced to 0.
.. Polypropylene was obtained in the same manner except that the content was 7% by volume. The isotactic pentad fraction (P) of the polypropylene is 0.820, boiling! The tin-heptane insoluble portion is 85.51% by weight, and the isotactic pentad fraction (Pr) of the boiling raw butane insoluble portion is 0.86.
It was 5.

(2)ポリプロピレン組成物の製造 実施例1の(2)において、ポリプロピレンとして上記
(1)で得たポリプロピレンを、また造核剤としてナト
リウム−2,2°−メチレン−ビス−(4,6−ジー1
−ブチルフェニル)ホスフェートに代えてp−t−ブチ
ル安息香酸アルミニウム20gを用いること以外は同様
にしてポリプロピレン組成物を得た。
(2) Production of polypropylene composition In (2) of Example 1, the polypropylene obtained in (1) above was used as the polypropylene, and the sodium-2,2°-methylene-bis-(4,6- G1
A polypropylene composition was obtained in the same manner except that 20 g of aluminum pt-butylbenzoate was used in place of (-butylphenyl) phosphate.

比較例5 実施例5の(2)において、p−t−ブチル安息香酸ア
ルミニウムを添加しないこと以外は同様にしてポリプロ
ピレン組成物を得た。
Comparative Example 5 A polypropylene composition was obtained in the same manner as in Example 5 (2) except that aluminum pt-butylbenzoate was not added.

比較例6 (1)実施例1の(1)の■において、トリス(トリメ
チルシリル)ホスフェートを使用せずに、また、その他
の触媒成分を重合器内の全圧力が23kg/cm”Gを
保つように供給すること以外は同様にしてプロピレンの
重合を行い、ポリプロピレンを得た。
Comparative Example 6 (1) In (1) (■) of Example 1, tris(trimethylsilyl) phosphate was not used and other catalyst components were used to maintain the total pressure in the polymerization vessel at 23 kg/cm"G. Propylene was polymerized in the same manner except that it was supplied to obtain polypropylene.

(2)実施例5の(2)において、ポリプロピレンとし
て上記(1)で得たポリプロピレンを用いること以外は
同様にしてポリプロピレン組成物を得た。
(2) A polypropylene composition was obtained in the same manner as in (2) of Example 5, except that the polypropylene obtained in (1) above was used as the polypropylene.

実施例6 (1)ポリプロピレンの製造 ■チタン含有固体触媒成分の調製 実施例5の(11の■と同様にして三塩化チタン組成物
を得た。
Example 6 (1) Production of polypropylene (1) Preparation of titanium-containing solid catalyst component A titanium trichloride composition was obtained in the same manner as in (11) of Example 5.

■予備活性化触媒成分の調製 内容積801の傾斜羽根付かステンレス製反応器を窒素
ガスで置換した後、n−ヘキサン40J2、ジエチルア
ルミニウムモノクロライド43g、および■で得た三塩
化チタン組成物450gを室温で加えた後、反応器内の
温度を40℃にし、プロピレン300gを加え、40で
1時間、予備活性化処理を行った。(三塩化チタン組成
物1g当り、プロピレン0.5g反応)反応終了後、n
−ヘキサンで洗浄してから、濾過、乾燥して予備活性化
触媒成分を得た。
■ Preparation of preactivated catalyst components After purging a stainless steel reactor with inclined blades with an internal volume of 801 cm with nitrogen gas, 40 J2 of n-hexane, 43 g of diethylaluminium monochloride, and 450 g of the titanium trichloride composition obtained in (2) were added. After the addition at room temperature, the temperature inside the reactor was raised to 40°C, 300g of propylene was added, and preactivation treatment was performed at 40°C for 1 hour. (0.5 g of propylene reacted per 1 g of titanium trichloride composition) After the reaction, n
- After washing with hexane, filtration and drying were performed to obtain a preactivated catalyst component.

■有機アルミニウム化合物と水との反応生成物(^4)
の調製 内容積300ρの攪拌機を備えたステンレス製反応器を
窒素置換した後、硫酸銅・5水和物37kgと脱水した
トルエン50ρを装入し、10℃まで冷却後、内温が1
5℃を保つようにコントロースしながら攪拌下にトルエ
ン50J2で希釈したトリメチルアルミニウム500モ
ルを4時間かけて添加した。
■Reaction product between organoaluminum compound and water (^4)
After purging a stainless steel reactor equipped with a stirrer with an internal volume of 300 ρ with nitrogen, 37 kg of copper sulfate pentahydrate and 50 ρ of dehydrated toluene were charged, and after cooling to 10°C, the internal temperature reached 1.
500 mol of trimethylaluminum diluted with 50 J2 of toluene was added over 4 hours while stirring to maintain the temperature at 5°C.

添加後、15℃で48時間反応を続けた後、固体を除去
し、更に室温下でトルエンを一部減圧留去してメチルア
ルミノキサンを含むトルエン溶液40フを得た。
After the addition, the reaction was continued at 15° C. for 48 hours, and then the solids were removed, and a portion of the toluene was distilled off under reduced pressure at room temperature to obtain 40 volumes of a toluene solution containing methylaluminoxane.

■プロピレンの重合 実施例5の(1)の■において、予備活性化触媒成分と
して上記■で得た予備活性化触媒成分にトルエンを添加
し、4.0重量%のトルエン懸濁液とした予備活性化触
媒成分を用い、ジエチルアルミニウムモノクロライドに
加えて上記■で得たメチルアルミノキサンのトルエン懸
濁液をアルミニウム原子IAIでジエチルアルミニウム
モノクロライドに対してそル比が0.13となるように
供給し、またトリス(トリメチルシリル)ホスフェート
に代えてメタクリル酸メチルをチタン原子に対するモル
比が0.05となるように供給すること、更に重合器の
気相中の水素濃度を0.8容積%とし、かつ重合器内の
全圧力が23kg/cm2Gを保つように各触媒成分を
供給すること以外は同様にしてプロピレンの重合を行い
、ポリプロピレンを得た。
■Polymerization of propylene In Example 5 (1) (■), toluene was added to the preactivated catalyst component obtained in (■) above to prepare a 4.0% by weight toluene suspension. Using an activated catalyst component, in addition to diethylaluminium monochloride, feed a toluene suspension of methylaluminoxane obtained in step ① above so that the ratio of aluminum atoms IAI to diethylaluminum monochloride is 0.13. In addition, instead of tris(trimethylsilyl)phosphate, methyl methacrylate is supplied at a molar ratio to titanium atoms of 0.05, and the hydrogen concentration in the gas phase of the polymerization vessel is set to 0.8% by volume, Polypropylene was obtained by polymerizing propylene in the same manner except that each catalyst component was supplied so that the total pressure within the polymerization vessel was maintained at 23 kg/cm2G.

得られたポリプロピレンのアイソタクチックペンタッド
分率(P)はo、aao、沸騰n−ヘプタン不溶部分は
91.0重量%、該沸ll1n−ヘプタン不溶部分のア
イソタクチックペンタッド分率(Pr)は0.905で
あった。
The isotactic pentad fraction (P) of the obtained polypropylene was o, aao, the boiling n-heptane insoluble portion was 91.0% by weight, and the isotactic pentad fraction (P) of the boiling n-heptane insoluble portion was 91.0% by weight. ) was 0.905.

(2)ポリプロピレン組成物の製造 実施例1の(2)において、ポリプロピレンとして上記
(1)で得たポリプロピレンを用いること以外は同様に
してポリプロピレン組成物を得た。
(2) Production of polypropylene composition A polypropylene composition was obtained in the same manner as in Example 1 (2) except that the polypropylene obtained in (1) above was used as the polypropylene.

比較例7 実施例6の(2)において、ナトリウム−2,2°−メ
チレン−ビス−(4,6−ジ〜t−ブチルフェニル)ホ
スフェートを添加しないこと以外は同様にしてポリプロ
ピレン組成物を得た。
Comparative Example 7 A polypropylene composition was obtained in the same manner as in Example 6 (2) except that sodium-2,2°-methylene-bis-(4,6-di-t-butylphenyl) phosphate was not added. Ta.

以上の実施例および比較例について、ポリプロピレン組
成物の構成(ポリプロピレンと造核剤について)と評価
結果を表に示す。
Regarding the above Examples and Comparative Examples, the composition of the polypropylene composition (regarding the polypropylene and the nucleating agent) and the evaluation results are shown in the table.

[発明の効果] 既述した実施例で明らかなように、本発明のポリプロピ
レン組成物(実施例1〜6参照)を成形品に加工する際
には、溶融時の流動性が優れているため、省エネルギー
や生産性向上に寄与する。
[Effect of the invention] As is clear from the examples already described, when the polypropylene composition of the present invention (see Examples 1 to 6) is processed into a molded article, it has excellent fluidity when melted. , contributing to energy conservation and productivity improvement.

しかも得られた成形品は通常のポリプロピレン(比較例
3参照)を用いて得られた成形品と同等の剛性および耐
ブロッキング性を有しながら、耐衝撃性および透明性に
おいて優れているので各用途分野に広く利用することが
可能である。
Moreover, the obtained molded product has the same rigidity and blocking resistance as a molded product obtained using ordinary polypropylene (see Comparative Example 3), but has excellent impact resistance and transparency, so it can be used for various purposes. It can be widely used in various fields.

以上 手続補正書 (自発) 平成3年(月that's all Procedural amendment (spontaneous) 1991 (Monday)

Claims (4)

【特許請求の範囲】[Claims] (1)アイソタクチックペンタッド分率(P)が0.8
0〜0.91、沸騰n−ヘプタン不溶部分が80重量%
〜95重量%であり、かつ該n−ヘプタン不溶部分のア
イソタクチックペンタッド分率(Pr)が前記(P)と
の関係において、0<(Pr)−(P)≦0.08の式
を満足するポリプロピレン100重量部に対して、造核
剤0.005重量部〜5重量部を添加してなるポリプロ
ピレン組成物。
(1) Isotactic pentad fraction (P) is 0.8
0-0.91, boiling n-heptane insoluble portion is 80% by weight
~95% by weight, and the isotactic pentad fraction (Pr) of the n-heptane insoluble portion satisfies the formula 0<(Pr)-(P)≦0.08 in relation to the above (P). A polypropylene composition obtained by adding 0.005 parts by weight to 5 parts by weight of a nucleating agent to 100 parts by weight of polypropylene that satisfies the following.
(2)造核剤が芳香族系燐化合物の金属塩である特許請
求の範囲第1項に記載の組成物。
(2) The composition according to claim 1, wherein the nucleating agent is a metal salt of an aromatic phosphorus compound.
(3)造核剤がジベンジリデンソルビトール類である特
許請求の範囲第1項に記載の組成物。
(3) The composition according to claim 1, wherein the nucleating agent is dibenzylidene sorbitol.
(4)造核剤が芳香族系カルボン酸の金属塩である特許
請求の範囲第1項に記載の組成物。
(4) The composition according to claim 1, wherein the nucleating agent is a metal salt of an aromatic carboxylic acid.
JP1334000A 1989-12-22 1989-12-22 Polypropylene composition Expired - Fee Related JPH0618946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1334000A JPH0618946B2 (en) 1989-12-22 1989-12-22 Polypropylene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1334000A JPH0618946B2 (en) 1989-12-22 1989-12-22 Polypropylene composition

Publications (2)

Publication Number Publication Date
JPH03195751A true JPH03195751A (en) 1991-08-27
JPH0618946B2 JPH0618946B2 (en) 1994-03-16

Family

ID=18272376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1334000A Expired - Fee Related JPH0618946B2 (en) 1989-12-22 1989-12-22 Polypropylene composition

Country Status (1)

Country Link
JP (1) JPH0618946B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031490A1 (en) * 1994-05-12 1995-11-23 Showa Denko K. K. Propylene polymer, process for producing the same, composition thereof, polymerization catalyst component, and process for producing the same
US6184328B1 (en) 1994-09-07 2001-02-06 Showa Denko Kabushiki Kaisha Propylene-based polymer, method for its production, composition thereof, catalyst component for polymerization, and method for its production
KR100336338B1 (en) * 1994-05-12 2002-09-25 쇼와 덴코 가부시키가이샤 Propylene-based polymer, preparation method thereof, composition thereof, catalyst component for polymerization, and preparation method thereof
WO2019159804A1 (en) 2018-02-15 2019-08-22 株式会社Adeka Granular nucleating agent, resin composition, molded article, and production method therefor
WO2019220658A1 (en) 2018-05-18 2019-11-21 株式会社Adeka Particulate nucleating agent, resin composition, molded article and method for manufacturing same
WO2020008668A1 (en) 2018-07-04 2020-01-09 株式会社Adeka Particulate nucleating agent, resin composition, molded article and method for manufacturing same
WO2021149524A1 (en) 2020-01-20 2021-07-29 株式会社Adeka Method for producing resin composition and method for producing molded article
WO2021186862A1 (en) 2020-03-16 2021-09-23 株式会社Adeka Particulate nucleator, resin composition and production method therefor, and molded article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337148A (en) * 1986-08-01 1988-02-17 Chisso Corp High-rigidity propylene homopolymer composition
JPH01104638A (en) * 1987-10-16 1989-04-21 Chisso Corp High-rigidity and high-melt viscoelastic propylene homopolymer composition
JPH01104639A (en) * 1987-10-19 1989-04-21 Chisso Corp High-rigidity propylene homopolymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337148A (en) * 1986-08-01 1988-02-17 Chisso Corp High-rigidity propylene homopolymer composition
JPH01104638A (en) * 1987-10-16 1989-04-21 Chisso Corp High-rigidity and high-melt viscoelastic propylene homopolymer composition
JPH01104639A (en) * 1987-10-19 1989-04-21 Chisso Corp High-rigidity propylene homopolymer composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031490A1 (en) * 1994-05-12 1995-11-23 Showa Denko K. K. Propylene polymer, process for producing the same, composition thereof, polymerization catalyst component, and process for producing the same
US5916990A (en) * 1994-05-12 1999-06-29 Showa Denko K.K. Propylene-based polymer, method of its production, composition thereof, catalyst component for polymerization, and method for its production
US6323298B1 (en) 1994-05-12 2001-11-27 Showa Denko K.K. Propylene-based polymer, method for its production, composition thereof, catalyst component for polymerization, and method for its production
KR100336338B1 (en) * 1994-05-12 2002-09-25 쇼와 덴코 가부시키가이샤 Propylene-based polymer, preparation method thereof, composition thereof, catalyst component for polymerization, and preparation method thereof
CN1100069C (en) * 1994-05-12 2003-01-29 昭和电工株式会社 Propylene polymer, process for producing the same, composition thereof, polymerization catalyst component, and process for producing the same
US6184328B1 (en) 1994-09-07 2001-02-06 Showa Denko Kabushiki Kaisha Propylene-based polymer, method for its production, composition thereof, catalyst component for polymerization, and method for its production
WO2019159804A1 (en) 2018-02-15 2019-08-22 株式会社Adeka Granular nucleating agent, resin composition, molded article, and production method therefor
WO2019220658A1 (en) 2018-05-18 2019-11-21 株式会社Adeka Particulate nucleating agent, resin composition, molded article and method for manufacturing same
WO2020008668A1 (en) 2018-07-04 2020-01-09 株式会社Adeka Particulate nucleating agent, resin composition, molded article and method for manufacturing same
WO2021149524A1 (en) 2020-01-20 2021-07-29 株式会社Adeka Method for producing resin composition and method for producing molded article
WO2021186862A1 (en) 2020-03-16 2021-09-23 株式会社Adeka Particulate nucleator, resin composition and production method therefor, and molded article

Also Published As

Publication number Publication date
JPH0618946B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JP4982365B2 (en) High transparency propylene copolymer composition
US20030130443A1 (en) Partly crystalline propylene polymerisate composition for production of biaxial-stretched polypropylene films
PL195824B1 (en) Method of obtaining polypropylene
EP1871832B1 (en) Biaxially oriented propylene polymer films
JP4423192B2 (en) Flexible propylene copolymer composition having high transparency
JP5140625B2 (en) Propylene resin composition, food container using the same, and medical member
JP6507324B2 (en) Propylene polymer composition
JPS58219207A (en) Polypropylene having high rigidity and melt viscoelasticity and preparation thereof
JPS58104907A (en) Polypropylene for molded article having high rigidity and its preparation
PL100309B1 (en) METHOD OF MANUFACTURING RUBBER-LIKE COOPOLYMERS OF PROPYLENE WITH ETHYLENE
JPH03195751A (en) Polypropylene composition
BRPI0707016A2 (en) catalytic components for olefin polymerization
JPH0673132A (en) Polypropylene random copolymer and film therefrom
JP3984290B2 (en) Polypropylene polymer resins made from highly active catalysts having a wide heat-processed window and articles made therefrom
JPS63260943A (en) Polyolefin composition
JPH03111404A (en) Highly stereoregular polypropylene
JPH03131641A (en) Polypropylene composition having high stereoregularity
JP2676266B2 (en) Method for producing polypropylene composition
JP2733793B2 (en) Method for producing polypropylene
JP2759691B2 (en) Method for producing low stereoregularity polypropylene
JP3207464B2 (en) Method for producing propylene polymer
JPS61155404A (en) Crystalline polypropylene
JP2002309049A (en) Polypropylene resin composition and molded product thereof
KR20100027877A (en) Polypropylene composition for thin wall injection molding
JPH02142803A (en) Titanium trichloride composition for preparation of alpha-olefin polymer and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees