JPH03195199A - Image orienting device - Google Patents

Image orienting device

Info

Publication number
JPH03195199A
JPH03195199A JP1335519A JP33551989A JPH03195199A JP H03195199 A JPH03195199 A JP H03195199A JP 1335519 A JP1335519 A JP 1335519A JP 33551989 A JP33551989 A JP 33551989A JP H03195199 A JPH03195199 A JP H03195199A
Authority
JP
Japan
Prior art keywords
phase shift
phase shifting
circuit
sound
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1335519A
Other languages
Japanese (ja)
Inventor
Takeo Nasu
那須 武夫
Shinichi Isozaki
磯崎 紳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP1335519A priority Critical patent/JPH03195199A/en
Publication of JPH03195199A publication Critical patent/JPH03195199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stereophonic System (AREA)

Abstract

PURPOSE:To simplify configuration and to reduce the cost of a device by using a phase shifting circuit with the cascade connection of primary and secondary phase shifting circuit as a main body. CONSTITUTION:The phase shifting circuit is provided with the cascade connection of the primary or secondary phase shifting circuits PS1-PSn, which number is correspondent to the asymmetrical degree of a loudspeaker, so that a phase shifting amount in a low frequency area can be larger than a phase shifting amount in a high frequency area with 1-2kHz as border. A level correcting means EQ is provided so that a level in the high frequency area can be decreased by delayed phase shifting and increased by advanced phase shifting corresponding to the increase of a frequency with 1-2kHz as the border. In such a way, the phase shifting amount is controlled by the primary or secondary phase shifting circuit. Thus, the configuration can be extremely simplified rather than executing a digital signal processing and by providing a frequency characteristic even to the level as well, right and left direction feelings can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、聴取者に対して非対称に配置されたスピーカ
のチャネル信号を処理することにより、聴取者の正面を
中心にして対称の方向に見掛は上の音源をイヤり出す音
像定位装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention processes the channel signals of speakers arranged asymmetrically with respect to the listener, so that the channel signals of the speakers are arranged symmetrically with respect to the front of the listener. The appearance is related to a sound image localization device that focuses on the sound source above.

〔従来の技術〕[Conventional technology]

我々が音の方向や音像定位を認識する要因としては (1)両耳間の音のパワー差 (2)両耳間の音波の伝達時間差(位相差)(3)両耳
への音の入射角の差に基づく周波数差および位相差 の三つがあり、このうち(1)および(2)が音像定位
に大きく寄与する。
The factors that allow us to recognize the direction of sound and sound image localization are (1) power difference in sound between both ears, (2) difference in propagation time (phase difference) of sound waves between both ears, and (3) incidence of sound in both ears. There are three types: a frequency difference and a phase difference based on the angular difference, of which (1) and (2) greatly contribute to sound image localization.

いま、ステレオ再生装置の聴取位置が、第10図(a)
に示すように、左スピーカLおよび右スピーカRに対し
て等距N1の点にあれば、上記(1〕の要因、すなわち
、左スピーカしがち到達する音のパワーと右スピーカR
がら到達する音のパワーとが等しくなるように調節すれ
ば、音像が両方のスピー力間を滑らかに移動する対称音
場が得られる。
The listening position of the stereo playback device is now as shown in Figure 10(a).
As shown in , if the left speaker L and the right speaker R are at a point equidistant N1, the factor (1) above, that is, the power of the sound that tends to reach the left speaker and the right speaker R
By adjusting the power of the sound arriving at the two speakers to be equal, a symmetrical sound field in which the sound image moves smoothly between the two speaker powers can be obtained.

第11図および第12図は、中心周波数を500c/s
、幅+Oc/sのバンドノイズを音源とした場合、およ
び中心周波数を1.1kc/s 、幅22C/Sのバン
ドノイズを音源とした場合の左右スピーカの出力比と音
源の定位との関係を示した公知文献の写しである。
In Figures 11 and 12, the center frequency is 500c/s.
, the relationship between the output ratio of the left and right speakers and the localization of the sound source when the sound source is band noise with a width of +Oc/s, and when the band noise with a center frequency of 1.1 kc/s and a width of 22C/S is used as the sound source. This is a copy of the indicated publicly known document.

これら両図から明らかなように、実線で示した計算値と
・印で示した実測値とがほぼ一致しており、左右スピー
カからの音のパワーを一致させれば、音像が両方のスピ
ーカ間に滑らかに移動することが裏付けられている。
As is clear from these two figures, the calculated value shown by the solid line and the measured value shown by the * mark almost match, and if the sound power from the left and right speakers is matched, the sound image will be It is proven that it moves smoothly.

ところで、車載用ステレオ再生装置は、第10図(旧に
示すように、聴取者に対する前方の左右スピーカまでの
位置が非対称である。このため、両方のスピーカから到
達する音のパワーを等しくしても、左右スピーカ間の音
の分布が聴取者に近い方向に音像が偏り、非対称音場と
なってしまう。
By the way, as shown in Figure 10 (old), in-vehicle stereo playback devices have asymmetrical positions of the left and right speakers in front of the listener. However, the distribution of sound between the left and right speakers biases the sound image toward the direction closer to the listener, resulting in an asymmetric sound field.

第13図は非対称音場において周波数1110C/Sを
音源としたとき、音の定位と左右スピーカの各チャネル
間のレベル差ならびに位相値の関係を示した公知文献の
写しである。この図から明らかなように音像は近い方の
スピーカに偏って薬まるごとが裏付けられている。
FIG. 13 is a copy of a known document showing the relationship between sound localization, level difference between left and right speaker channels, and phase value when a sound source having a frequency of 1110C/S is used in an asymmetric sound field. As is clear from this figure, the sound image is biased towards the closer speakers, which supports the whole medicine.

この場合、聴取者から見て左スピーカLまでの距離が1
 、右スピーカRまでの距離が12であす るとき、聴取位置までの距離差1 −+、、)を音速に
換算した時間だけ遅延させる遅延器を右スピーカRのチ
ャネルに挿入すれば、第10図(C1に示すように、見
掛は上R′の位置から音波が発せられたと等価となり、
上記(2)の要因、すなわち、両耳間の音波の伝達時間
差(位相差)を等しくすることができる。
In this case, the distance from the listener to the left speaker L is 1
, when the distance to the right speaker R is 12, if a delay device is inserted in the channel of the right speaker R to delay the distance difference 1 - +, , ) to the listening position by the time converted to the speed of sound, the 10th As shown in Figure (C1), the appearance is equivalent to a sound wave being emitted from the upper position R',
The factor (2) above, that is, the transmission time difference (phase difference) of sound waves between both ears can be made equal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、左右スピーカからの距離差を音速換算
し1例えば、ディジタル信号処理によりチャネル信号を
遅延させるならば、はぼ対称音場に近い音像定位が可能
であることが本願の発明者等によって確認されている。
As mentioned above, the inventors of the present application found that if the difference in distance from the left and right speakers is converted to the speed of sound, for example, if the channel signal is delayed by digital signal processing, it is possible to localize a sound image close to a symmetrical sound field. confirmed by.

しかしながら、この方法はシステム構成としてA/D変
換器、ダイナミックRAM、D/A変換器、および、ク
ロック発生部等が不可欠であり、装置価格が高臆すると
いう問題点があった。
However, this method requires an A/D converter, a dynamic RAM, a D/A converter, a clock generator, etc. as a system configuration, and has a problem in that the cost of the device is high.

本発明は上記の問題点を解決するためになされたもので
、簡易な構成により容易に対称音場に近い音像定位を実
現することのできる音像定位装置を得ることを目的とす
る。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a sound image localization device that can easily realize sound image localization close to a symmetrical sound field with a simple configuration.

〔課題を解決するための手段〕[Means to solve the problem]

一般に、車室内の左右スピーカと聴取位置とは第101
2+(b)もしくは第13図に示した関係にある場合が
殆どである。車室内の左右スピーカと聴取位置がこのよ
うな関係にあるとき、発明者等の実験によれば1周波数
が低くなればなる程、左右スピーカから両耳への到達時
間差が中央定位に寄与することが確められている。この
現象は、文献r電子情報通信学会誌Vo1.72.Nc
i8聴覚の話題「音像定位」宮田裕之他jに開示され、
第9図に示したr音像が中央に知覚される信号の時間差
と音圧差との関係」によっても裏付けられている。これ
によれば、およそ1.5kH2付近の周波数を境界にし
てそれより低い周波数では時間(移相)差が、高い周波
数では音圧差が左右の方向感に大きく寄与していること
が分る。
In general, the left and right speakers in the vehicle and the listening position are the 101st
2+(b) or the relationship shown in FIG. 13 in most cases. When the left and right speakers in the vehicle interior and the listening position have such a relationship, the inventors' experiments have shown that the lower one frequency is, the more the difference in arrival time from the left and right speakers to both ears contributes to central localization. has been confirmed. This phenomenon is described in the document r Journal of the Institute of Electronics, Information and Communication Engineers Vol. 1.72. Nc
i8 Hearing topic "Sound image localization" disclosed by Hiroyuki Miyata et al.
This is also supported by the relationship between the time difference and the sound pressure difference between the signals in which the r sound image is perceived at the center, as shown in FIG. According to this, it can be seen that with a frequency around 1.5 kHz as a boundary, at lower frequencies, the time (phase shift) difference greatly contributes, and at higher frequencies, the sound pressure difference greatly contributes to the sense of left and right direction.

一方、通常のステレオ音楽ソースは各楽器の対称音場で
聴取することを考慮して作られるケースが多く、特にボ
ーカルにおいては殆どが対称音場、中央定位を意識した
左右同レベルで配置されるケースが多い、この場合の周
波数帯はぜいぜい1.2〜2KHzに上限があり、この
ようなソースを非対称音場で聴取すると、音像が偏った
ままで、両方のスピーカからの音のパワーをバランスさ
せただけでは中央定位が難しかった。
On the other hand, normal stereo music sources are often created with the intention of being listened to in a symmetrical sound field for each instrument, and vocals in particular are often placed in a symmetrical sound field, with the left and right sides at the same level with central localization in mind. In many cases, the frequency band in this case has an upper limit of 1.2 to 2 KHz at most, and when listening to such a source in an asymmetric sound field, the sound image remains biased and the power of the sound from both speakers increases. It was difficult to achieve central localization by simply balancing the

そこで本発明は、1及至2KHzを境にして低周波数域
での移相量が高周波数域での移相量より大きくなるよう
にスピーカの非対称の度合に応じた個数だけ1次移相回
路、または2次移相回路を従続接続してなる移相回路を
設けたものである。
Therefore, the present invention provides a primary phase shift circuit whose number corresponds to the degree of asymmetry of the speaker so that the amount of phase shift in the low frequency range is larger than the amount of phase shift in the high frequency range between 1 and 2 KHz. Alternatively, a phase shift circuit formed by successively connecting a secondary phase shift circuit is provided.

また、1及至2KHzを境にして高周波数域でのレベル
が周波数の増大に応じて、遅れ移相で減少し、進み移相
で増加するようなレベル補正手段を設けたものである。
Further, a level correction means is provided such that the level in a high frequency range between 1 and 2 KHz is decreased by a delayed phase shift and increased by an advanced phase shift as the frequency increases.

〔作 用〕[For production]

本発明においては、移相量の調整を1次移相回路または
2次移相回路で行っているので、ディジタル信号処理を
施すよりも構成を著しく簡易化することができる。
In the present invention, since the phase shift amount is adjusted by a first-order phase shift circuit or a second-order phase shift circuit, the configuration can be significantly simplified compared to when digital signal processing is performed.

また、高周波数域でのレベルが周波数の増大に応じて、
遅れ移相で減少し、進み移相で増加するようにレベルに
対しても周波数特性を持たせることにより左右の方向感
を増大させている。
In addition, the level in the high frequency range increases as the frequency increases.
By giving a frequency characteristic to the level so that it decreases with a delay phase shift and increases with an advance phase shift, the sense of left and right direction is increased.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成を示すブロック図で
あり、特に、聴取者に近いスピーカのチャネルに挿入す
る信号処理回l各を示したものである。同図において、
n (n=2以上の整数)個の移相回路ps  、ps
  、・・・、ps   、ps+    2    
  n−1n と、1個のエコライザ回路EQとがこの順に縦続接続さ
れている。このうち、遅延量ta p s 、は1次移
相回路であり、スイッチSW1によってコンデンサCを
接続したり、コンデンサC2を接続したりして遅延時間
量を切換えるようになっている。移相回路ps  、・
・・、ps   、ps  は12      n−1
n 次または2次移相回路で、スイッチSW2は遅延量が多
過ぎるときに最終段の移相回路PS を短絡して遅延量
を少なくするものである。また、エコライザ回路EQは
高周波数域のレベルを減衰させるもので、場合によって
は遅延を必要としないチャネルとの間の電力比を設定し
たりもするものである。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and particularly shows each signal processing circuit inserted into a channel of a speaker near the listener. In the same figure,
n (n = integer greater than or equal to 2) phase shift circuits ps, ps
,...,ps,ps+2
n-1n and one equalizer circuit EQ are connected in cascade in this order. Among these, the delay time tap s is a first-order phase shift circuit, and the delay time amount is switched by connecting a capacitor C or a capacitor C2 by a switch SW1. Phase shift circuit ps,・
..., ps, ps is 12 n-1
In the nth-order or second-order phase shift circuit, the switch SW2 short-circuits the final stage phase shift circuit PS to reduce the delay amount when the delay amount is too large. Further, the equalizer circuit EQ is used to attenuate the level in a high frequency range, and in some cases, it also sets the power ratio between channels that do not require delay.

ここで、1次移相回路としては、例えば第2図に示すよ
うに、信号入力端にそれぞれ一端を接続した抵抗R6の
他端を演算増幅器oPの反転入力端子(−)に、抵抗R
の他端を演算増幅器OPの非反転入力端子(◆)に接続
し、この演算増幅器oPの反転入力端子(−)と出力端
子との間にフィードバック用の抵抗R4を接続し、さら
に、演算増幅器oPの非反転入力端子(÷)と接地点と
の間にコンデンサCを接続したものを用いることができ
る。
Here, as a primary phase shift circuit, for example, as shown in FIG.
The other end is connected to the non-inverting input terminal (◆) of the operational amplifier OP, and a feedback resistor R4 is connected between the inverting input terminal (-) and the output terminal of the operational amplifier oP. It is possible to use a capacitor C connected between the non-inverting input terminal (÷) of oP and the ground point.

また、もう一つの1次移相回路としては、例えば第3図
に示すように、信号入力端にそれぞれ一端を接続した抵
抗R6の他端を演算増幅器OPの反転入力端子(−)に
、コンデンサCの他端を演算増幅器OPの非反転入力端
子(◆)に接続し、この演算増幅器OPの反転入力端子
(−) と出力端子との間にフィードバック用の抵抗R
Fを接続し、さらに、演算増幅器OPの非反転入力端子
(◆)と接地点との間に抵抗Rを接続したものを用いる
ことができる。
In addition, as another first-order phase shift circuit, for example, as shown in FIG. The other end of C is connected to the non-inverting input terminal (◆) of the operational amplifier OP, and a feedback resistor R is connected between the inverting input terminal (-) of the operational amplifier OP and the output terminal.
It is possible to use one in which F is connected and a resistor R is further connected between the non-inverting input terminal (♦) of the operational amplifier OP and the ground point.

因みに、第3図に示した1次移相回路の抵抗Rを可変と
して、RCωと移相角との間係を示すと第4図のように
なる。この図から明らかなように周波数200 Hzの
信号に対してRCω;lになるようにすれば、この場合
の入力■ と出力■2との移相差は90”となる。
Incidentally, when the resistance R of the primary phase shift circuit shown in FIG. 3 is made variable, the relationship between RCω and the phase shift angle is shown in FIG. 4. As is clear from this figure, if RCω;l is set for a signal with a frequency of 200 Hz, the phase shift difference between the input (2) and the output (2) in this case will be 90''.

すなわち、T(ω)−90°/360°= 1.25m
5ecの時間差Δt1が得られる。
That is, T(ω)-90°/360°= 1.25m
A time difference Δt1 of 5 ec is obtained.

一方、2次移相回路としては、第5図に示すように、コ
ンデンサC1と抵抗R1との直列接続回路の一端を入力
端子に接続し、その他端を演算増幅器OPの反転入力端
子(−)に接続する共に、端が入力端子に接続された抵
抗Rの他端を演算増幅器oPの非反転入力端子(÷)に
接続し、この演算増幅器OPの出力端子と入力端子との
間にフィードバック用のコンデンサC2を、同じく演算
増幅器OPの出力端子とコンデンサC1および抵抗Rの
相互接合点との間に抵抗R2を接続し。
On the other hand, as a secondary phase shift circuit, as shown in FIG. 5, one end of the series connection circuit of capacitor C1 and resistor R1 is connected to the input terminal, and the other end is connected to the inverting input terminal (-) of operational amplifier OP. At the same time, the other end of the resistor R whose end is connected to the input terminal is connected to the non-inverting input terminal (÷) of the operational amplifier oP, and a feedback circuit is connected between the output terminal and the input terminal of the operational amplifier OP. Similarly, a resistor R2 is connected between the output terminal of the operational amplifier OP and the mutual junction of the capacitor C1 and the resistor R.

さらに、演算増幅器oPの非反転入力端子と接地点との
間に抵抗Rbを接続したものを用いることができる。
Furthermore, it is possible to use an operational amplifier oP in which a resistor Rb is connected between the non-inverting input terminal and the ground point.

なお、第5図に示した2次移相回路の人出方の周波数と
移相との関係を、Qをパラメータとして表すと第6図の
ようになる。ここで、Q=1とし、1 kH2で180
°の移相差にすれば、前式と同様にして、T((,1)
−180°/360°= 0.51secの時間差Δt
2が得られる。
Incidentally, when the relationship between the turnout frequency and the phase shift of the secondary phase shift circuit shown in FIG. 5 is expressed using Q as a parameter, it becomes as shown in FIG. 6. Here, Q=1 and 180 at 1 kHz
If the phase shift difference is set to °, T((,1)
-180°/360° = 0.51 sec time difference Δt
2 is obtained.

上述した1次移相回路と2次移相回路とを縦続接続する
と、Δt1がΔt2に、Δt2がΔt1に各々の周波数
差を持って加算され、結果的には200 Hzで約1.
6’m5ec、1 kH2で約0.94ssecノ遅れ
となる。
When the above-mentioned first-order phase shift circuit and second-order phase shift circuit are connected in cascade, Δt1 is added to Δt2, and Δt2 is added to Δt1 with respective frequency differences, resulting in a frequency difference of about 1.0 at 200 Hz.
At 6'm5ec and 1kH2, there is a delay of about 0.94ssec.

第7図に1次移相回路と2次移相回路とを多段接続した
場合の周波数と遅延量との関係を示す。
FIG. 7 shows the relationship between frequency and delay amount when primary phase shift circuits and secondary phase shift circuits are connected in multiple stages.

図中、実線は接続数nを4とした場合、破線は接続数n
を6とした場合を示し、−点鎖線はスイッチSW1でコ
ンデンサC7がらc2に切換え接続した場合の特性を示
す。
In the figure, the solid line indicates the number of connections n, and the dashed line indicates the number n of connections.
is set to 6, and the dashed-dotted line shows the characteristics when the capacitor C7 is switched and connected to c2 using the switch SW1.

この第7図の特性曲線から明らかなように、n=4.n
=6のいずれの場合も、2〜3 t+++zまでの、い
わゆる、時間差を感じゃすい帯域で遅延皿が大きく、そ
れ以上の高い周波数で遅延量を暫減させることができて
いる。
As is clear from the characteristic curve in FIG. 7, n=4. n
In any case of =6, the delay plate is large in the so-called band where the time difference is sensitive to 2 to 3 t+++z, and the amount of delay can be gradually reduced at higher frequencies.

かくして、この実施例によれば、極めて簡易な構成にて
所望の遅延時間を得ることができると共に、非対称音場
で極めて良好な音場の定位が可能となる。
Thus, according to this embodiment, a desired delay time can be obtained with an extremely simple configuration, and extremely good sound field localization can be achieved in an asymmetric sound field.

また、移相回路PS1としてスイッチsW1により二つ
のコンデンサを切換え接続する構成のものを用いたので
、移相量の微調整が可能になっている。
Further, since the phase shift circuit PS1 is configured to switch and connect two capacitors using the switch sW1, it is possible to finely adjust the amount of phase shift.

さらにまた、この実施例ではエコライザ回路EQを設け
て、高周波数域でのレベルを減衰させるようにしたので
、左右の方向感と増大させることができる。
Furthermore, in this embodiment, an equalizer circuit EQ is provided to attenuate the level in the high frequency range, so it is possible to increase the sense of left and right direction.

なお、上記実8!例では、聴取者に近いスピーカのチャ
ネル信号を遅らせて音源を見掛は上遠ざける遅延回路、
すなわち、遅相系の信号処理回路を用いたが、この代わ
りに、聴取者から離隔したスピーカのチャネル信号を進
ませて音源を見掛は上近付ける進相回部、すなわち、進
相系の信号処理回路を用いることも可能である。
In addition, the above fruit 8! An example is a delay circuit that delays the channel signal of a speaker close to the listener, apparently moving the sound source further away.
In other words, a phase-delay signal processing circuit is used, but instead of this, a phase-advancing circuit advances the channel signal of a speaker distant from the listener to bring the sound source closer to the sound source, that is, a phase-advance signal processing circuit is used. It is also possible to use processing circuits.

また、上記実施例ではスイッチSWIによりコンデンサ
C、Cの切換え接続により移相量を2 微調整したが、この代わりに第3図に示した1次移相回
路を用いて抵抗Rを別の値の抵抗に切換え接続する構成
とすることも可能であり、さらに1次移相回路での調整
に限らず2次移相回路を調整するようにしてもよい。
In addition, in the above embodiment, the phase shift amount was finely adjusted by 2 by connecting the capacitors C and C using the switch SWI, but instead of this, the primary phase shift circuit shown in FIG. It is also possible to adopt a configuration in which the resistor is switched and connected to the resistor, and furthermore, the adjustment is not limited to the primary phase shift circuit, but may be made to adjust the secondary phase shift circuit.

なお、この微調整は車室内音場のように車種の違いや、
スピーカに対する運転者の位置の違いがあるときに極め
て有効なものであるが、例えば、1次移相回路を多段接
続し、各段に可変抵抗または電圧可変抵抗素子を用いて
連続的に可変することも可能である。
Please note that this fine adjustment may vary depending on the car model, such as the sound field inside the car.
This is extremely effective when there are differences in the position of the driver relative to the speaker, but for example, it is possible to connect a primary phase shift circuit in multiple stages and use a variable resistor or voltage variable resistance element in each stage to continuously vary the phase shift circuit. It is also possible.

また、上記実施例中の1次移相回路のコンデンサCの代
わりに、インダクタンスLを用いれば相対的に遅延量を
減する方向に作用するが、これと同様な機能を第8図に
示したように、ジャイレータ構成と可変インピータンス
回路とからなる気積回路化に適した遅延時間可変回路で
実現することもできる。
Furthermore, if an inductance L is used in place of the capacitor C of the primary phase shift circuit in the above embodiment, it will work to relatively reduce the amount of delay.A similar function is shown in FIG. As shown in the figure, it can also be realized by a variable delay time circuit suitable for a bulk circuit consisting of a gyrator configuration and a variable impedance circuit.

この第8図における移相用演i増幅器OPの非反転入力
端子(◆)から見た第2の演算増幅器を含む負荷回路は
インダクタンスLと等価であり、インダクタンスL1.
L2と置換することができる。
The load circuit including the second operational amplifier viewed from the non-inverting input terminal (♦) of the phase-shifting operational amplifier OP in FIG. 8 is equivalent to the inductance L, and the inductance L1.
It can be replaced with L2.

また、インピーダンスZ1.Z2に電圧あるいは電流可
変素子を含ませ、外部からこれを制御すればRL  ω
、R2L2ωが変わり、結果的に遅1 延時間を連続的に変化させることができる。
In addition, impedance Z1. If Z2 includes a voltage or current variable element and this is controlled externally, RL ω
, R2L2ω changes, and as a result, the delay time can be changed continuously.

〔発明の効果〕〔Effect of the invention〕

非対称音場における音源位置の見掛は上の補正は、ディ
ジタル信号処理の採用により可能ではあるが、回路規模
の増大を伴う点で実現されなかった。なお、より簡易に
遅延時間を得る手段としてB B D (Bucket
 Brigade Device ) ノ応用も考えら
れるがクロック周波数の動作上限が低く、しかも、S/
N比の劣化を招きやすく、実用には供されていない。
Although the apparent correction of the sound source position in an asymmetric sound field is possible by employing digital signal processing, it has not been realized because it involves an increase in circuit scale. Note that B B D (Bucket
Brigade Device) could be applied, but the operating upper limit of the clock frequency is low, and S/
This tends to cause deterioration of the N ratio and is not used in practical use.

本発明は、1次移用回路および2次移相回路の縦続接続
を主体とした位相回路を用いているので、構成が著しく
簡易化されると共に、装置価格を大幅に低減させること
ができる。
Since the present invention uses a phase circuit mainly consisting of a cascade connection of a primary transfer circuit and a secondary phase shift circuit, the configuration can be significantly simplified and the cost of the device can be significantly reduced.

また、高周波数域でのレベルが周fi数の増大に応じて
、遅れ移相で減少し、進み移相で増加するレベル補正回
路を付加することにより音圧力差で方向感を持たせるこ
とができている。
In addition, by adding a level correction circuit in which the level in the high frequency range decreases with a delayed phase shift and increases with an advanced phase shift as the frequency fi number increases, it is possible to give a sense of direction by sound pressure difference. is made of.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の音像定位装置の一実施例に係る信号処
理回路の構成を示すブロック図、第2図、第3図および
第5図は同実施例の主要素の詳細な構成を示す回路図、
第4図、第6図および第7図は同実施例の動作を説明す
るためにそれぞれ周波数と移相との関係を示した線図、
第8図は本発明の他の実施例を示すブロック図、第9図
は本発明の詳細な説明するために、音圧のレベル差とW
t間差との関係を周波数をパラメータとして示した線図
、第10図(al〜(C1は対称音場と非対称音場にお
ける音像定位の関係を示した説HA IIW 、第11
図、第12図および第13図は対称音場と非対称音場に
おけるスピーカの出力レベルと音源の方向との関係を示
した線図である。 PS ・・・1次移相回路、 P S 2〜PS ・・
・1次移相回路または2次移相回路、EQ・・・エコラ
イザ回路、sw  、sw2・・・スイッチ。 第 4 図 7・ 第 図 第 図 第 図 第 8 図 (O) 第 (b) 0図 (C)
FIG. 1 is a block diagram showing the configuration of a signal processing circuit according to an embodiment of the sound image localization device of the present invention, and FIGS. 2, 3, and 5 show detailed configurations of the main elements of the embodiment. circuit diagram,
4, 6, and 7 are diagrams showing the relationship between frequency and phase shift, respectively, to explain the operation of the same embodiment;
FIG. 8 is a block diagram showing another embodiment of the present invention, and FIG. 9 is a block diagram showing the sound pressure level difference and W
Diagram showing the relationship between the t difference and the frequency as a parameter, Figure 10 (al~(C1 is a theory showing the relationship between sound image localization in a symmetric sound field and an asymmetric sound field.
12 and 13 are diagrams showing the relationship between the speaker output level and the direction of the sound source in a symmetric sound field and an asymmetric sound field. PS...Primary phase shift circuit, PS2~PS...
- Primary phase shift circuit or secondary phase shift circuit, EQ...equalizer circuit, sw, sw2...switch. Figure 4 Figure 7 Figure Figure 8 Figure 8 (O) Figure 0 (C)

Claims (2)

【特許請求の範囲】[Claims] (1)聴取者に対して非対称に配置された二つのスピー
カのチャネル信号を処理して、前記聴取者の正面を中心
にして対称の方向に見掛け上の音源を作り出す音像定位
装置において、前記スピーカの非対称の度合に応じた時
間差だけ前記聴取者に接近した一方のスピーカのチャネ
ル信号を遅らせるか、もしくは前記聴取者から離隔した
他方のスピーカのチャネル信号を進めると共に、1及至
2KHzを境にして低周波数域での移相量が高周波数域
での移相量より大きくなるように1次移相回路、または
2次移相回路を従続接続した移相回路を備えたことを特
徴とする音像定位装置。
(1) In a sound image localization device that processes channel signals of two speakers arranged asymmetrically with respect to a listener and creates an apparent sound source in a direction symmetrical with respect to the front of the listener, the speaker The channel signal of one speaker closer to the listener is delayed by a time difference depending on the degree of asymmetry of A sound image characterized by comprising a phase shift circuit in which a first-order phase shift circuit or a second-order phase shift circuit is connected in series so that the amount of phase shift in a frequency range is larger than the amount of phase shift in a high frequency range. Stereotaxic device.
(2)1及至2KHzを境にして高周波数域でのレベル
が周波数の増大に応じて、遅れ移相で減少し、進み移相
で増加するようなレベル補正回路を備えたことを特徴と
する請求項1記載の音像定位装置。
(2) It is characterized by being equipped with a level correction circuit such that the level in a high frequency range between 1 and 2 kHz decreases with a delay phase shift and increases with an advance phase shift as the frequency increases. The sound image localization device according to claim 1.
JP1335519A 1989-12-25 1989-12-25 Image orienting device Pending JPH03195199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1335519A JPH03195199A (en) 1989-12-25 1989-12-25 Image orienting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1335519A JPH03195199A (en) 1989-12-25 1989-12-25 Image orienting device

Publications (1)

Publication Number Publication Date
JPH03195199A true JPH03195199A (en) 1991-08-26

Family

ID=18289481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335519A Pending JPH03195199A (en) 1989-12-25 1989-12-25 Image orienting device

Country Status (1)

Country Link
JP (1) JPH03195199A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208679A (en) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd Sound reproduction device
WO2009069228A1 (en) * 2007-11-30 2009-06-04 Pioneer Corporation Center channel positioning device
WO2010150705A1 (en) * 2009-06-24 2010-12-29 パイオニア株式会社 Sound field adjustment device
JP2011097561A (en) * 2009-11-02 2011-05-12 Harman Becker Automotive Systems Gmbh Audio system phase equalization
JP5330515B2 (en) * 2009-06-24 2013-10-30 パイオニア株式会社 Sound field adjustment device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208679A (en) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd Sound reproduction device
WO2009069228A1 (en) * 2007-11-30 2009-06-04 Pioneer Corporation Center channel positioning device
US8204235B2 (en) 2007-11-30 2012-06-19 Pioneer Corporation Center channel positioning apparatus
JP5015266B2 (en) * 2007-11-30 2012-08-29 パイオニア株式会社 Center channel localization device
WO2010150705A1 (en) * 2009-06-24 2010-12-29 パイオニア株式会社 Sound field adjustment device
JP5330515B2 (en) * 2009-06-24 2013-10-30 パイオニア株式会社 Sound field adjustment device
JP2011097561A (en) * 2009-11-02 2011-05-12 Harman Becker Automotive Systems Gmbh Audio system phase equalization
US9049533B2 (en) 2009-11-02 2015-06-02 Markus Christoph Audio system phase equalization
US9930468B2 (en) 2009-11-02 2018-03-27 Apple Inc. Audio system phase equalization

Similar Documents

Publication Publication Date Title
USRE42390E1 (en) Sound signal playback machine and method thereof
US4972489A (en) Sound reproducing apparatus
JP2536044Y2 (en) Binaural correlation coefficient correction device
US7778427B2 (en) Phase compensation techniques to adjust for speaker deficiencies
JPH0137080B2 (en)
JP6015146B2 (en) Channel divider and audio playback system including the same
JPH0136318B2 (en)
JPH03195199A (en) Image orienting device
EP1714525A1 (en) First-order loudspeaker crossover network
US7123724B1 (en) Sound system
KR20050036812A (en) Sound quality enhancement circuit for audio signals and audio amplifier circuit using the same
JP2005109969A (en) Audio system
US9154878B2 (en) Interconnected speaker system
JP2831547B2 (en) Variable loudness circuit
JPS6132700A (en) Generator of stereo sound field reproducing signal
JP3613904B2 (en) Sound field expander
KR20040048104A (en) 3D Audio Processing System for the Portable Equipment
JPH0927996A (en) Onboard sound field correction device
JPH0685518U (en) Balance adjustment circuit
JPS5929003B2 (en) Frequency characteristic adjustment circuit
JPH03211999A (en) Stereo reproducing device in vehicle
RU1794281C (en) Electroacoustic path
Krauss Advantages of FIR Filters in Digital Loudspeaker Controllers
KR101009065B1 (en) Tone control circuit for hearing aid
JPH01296800A (en) Stereo headphone sound field corrector