JPH0319361B2 - - Google Patents

Info

Publication number
JPH0319361B2
JPH0319361B2 JP24241785A JP24241785A JPH0319361B2 JP H0319361 B2 JPH0319361 B2 JP H0319361B2 JP 24241785 A JP24241785 A JP 24241785A JP 24241785 A JP24241785 A JP 24241785A JP H0319361 B2 JPH0319361 B2 JP H0319361B2
Authority
JP
Japan
Prior art keywords
rotating body
magnetic field
housing
air
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24241785A
Other languages
Japanese (ja)
Other versions
JPS62101804A (en
Inventor
Toshihiro Hotsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Morita Manufaturing Corp
Original Assignee
J Morita Manufaturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Morita Manufaturing Corp filed Critical J Morita Manufaturing Corp
Priority to JP24241785A priority Critical patent/JPS62101804A/en
Publication of JPS62101804A publication Critical patent/JPS62101804A/en
Publication of JPH0319361B2 publication Critical patent/JPH0319361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は歯科用ハンドピース等に用いられるエ
アタービン或はエアモーター等のエアドライブ型
の駆動装置における回転数制御方法並びにこれを
用いたエアドライブ型駆動装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a rotation speed control method in an air drive type drive device such as an air turbine or an air motor used in a dental handpiece, etc., and an air control method using the same. The present invention relates to a drive type drive device.

(従来の技術) 歯科用ハンドピース等に用いられるエアタービ
ン或はエアモーター等のエアドライブ型の小型駆
動装置は、概ねハウジングと、該ハウジング内に
軸装され空気圧により回転する回転体とより成
り、該回転体の回転数の制御は、回転体の近傍に
回転数検出部を設け、この回転数検出部からの信
号により空気の供給圧をコントロールすることに
より行われていた。
(Prior Art) A small air drive type drive device such as an air turbine or an air motor used in a dental handpiece or the like generally consists of a housing and a rotating body that is mounted in the housing and rotated by air pressure. The rotational speed of the rotating body is controlled by providing a rotational speed detecting section near the rotating body and controlling the air supply pressure based on a signal from the rotating speed detecting section.

(発明が解決しようとする問題点) 然し乍ら、上記の如き回転数の制御方式におい
ては、空気圧を直接制御する為、応答生が悪く、
しかもハウジング内に回転数検出部を設ける為に
装置の小型である特性が損われることがあり、且
つ空気圧制御の為の電気及び機械部品を必要とす
る等の欠点があつた。亦、回転数とトルクとの関
係は第10図に示す如き関係にある為、負荷が急
激に変動すると回転数も急激に変化すると云う問
題点もあつた。更に、ある負荷に対し出力を大と
したい場合、上述の如く空気の供給圧を大きくす
ることになるが、この状態を回転数とトルクとの
関係で示せば、第10図のaからbに移行するこ
とに等しく、無負荷状態での回転数が非常に大き
くなつてしまう。従つて歯科用ハンドピースの如
く負荷・無負荷の状態が頻多に繰り返される用途
に用いた場合、上記の応答性が悪いこととも相俟
つて、無負荷になつた時、回転数が瞬時に上昇
し、その結果ボールベアリングで軸承している場
合にはボールの損傷を惹起し、また空気軸受で軸
承している場合には軸受面の焼き付等を起こす原
因ともなつていた。
(Problems to be Solved by the Invention) However, in the above-mentioned rotational speed control method, since the air pressure is directly controlled, the response is poor.
Furthermore, since the rotational speed detecting section is provided within the housing, the compactness of the device may be impaired, and there are disadvantages such as the need for electrical and mechanical components for air pressure control. In addition, since the relationship between rotational speed and torque is as shown in FIG. 10, there was a problem in that when the load suddenly changed, the rotational speed also changed rapidly. Furthermore, if you want to increase the output for a certain load, you will have to increase the air supply pressure as described above, but if this situation is expressed in terms of the relationship between rotation speed and torque, it will be shown from a to b in Figure 10. As a result, the number of revolutions under no load becomes very large. Therefore, when used in applications where loaded and unloaded states are frequently repeated, such as dental handpieces, this combined with the poor responsiveness described above means that when the load becomes unloaded, the rotational speed will drop instantly. As a result, if the bearing is supported by a ball bearing, this may cause damage to the ball, and if the bearing is supported by an air bearing, this may cause seizure of the bearing surface.

本発明は上記問題点を一掃すべくなされたもの
で、エアドライブ型の駆動装置における負荷時の
回転数の変動を少なくし且つ無負荷時の回転数を
出来るだけ抑える為の新規な方法とこの方法を用
いた新規且つ至便なエアドライブ型駆動装置を提
供せんとするものである。
The present invention has been made to eliminate the above-mentioned problems, and provides a new method and method for reducing fluctuations in the rotational speed under load and suppressing the rotational speed during no-load conditions as much as possible in an air drive type drive device. It is an object of the present invention to provide a new and convenient air drive type drive device using this method.

(問題点を解決する為の手段及び実施例) 上記目的を達成する為の本発明の構成を添付の
実施例図に基づき説明すると、第1図はエアター
ビンハンドピースを例に採つた本発明の実施例を
示す縦断面図、第2図乃至第4図は他の実施例の
同様図、第5図は第4図の−線断面図、第6
図はエアーターハンドピースを例に採つた本発明
の実施例を示す縦断面図、第7図及び第8図は磁
界の発生パターンを示す模式図、第9図は本発明
による駆動装置の回転数とトルクとの関係を示す
特性図である。即ち、特定発明の要旨は、ハウジ
ング内に軸装された回転体を空気圧により回転さ
せるエアドライブ型駆動装置において、上記ハウ
ジング及び回転体の少なくとも一方に磁界を発生
せしめて電流の良導体である他方にその磁界を貫
通せしめ、且つ回転体の回転に伴つてこの磁界を
相対的に移動せしめて、上記ハウジング若しくは
回転体に渦電流損失を生起させ、この渦電流損失
をして回転体の高回転及び低トルク領域の回転エ
ネルギーを制御するようにしたことを特徴とする
エアドライブ型駆動装置の回転数制御方法にあ
る。亦、第2発明の要旨は、ハウジング1と、該
ハウジング1内に軸装され空気圧により回転する
回転体2と、該回転体2に関連した圧縮空気の供
給口3と、エネルギーが消費された圧縮空気の排
出口4とより成るエアドライブ型駆動装置におい
て、上記ハウジング1及び回転体2の少なくとも
一方に電流の良導体である他方を貫通する磁界の
発生源5を設け、回転体2の回転に伴う磁界の相
対的移動によりハウジング1若しくは回転体2に
渦電流損失を生起させ、この渦電流損失をして回
転体2の高回転及び低トルク領域の回転エネルギ
ーを制限するようにしたことを特徴とするエアド
ライブ型駆動装置にある。
(Means and Embodiments for Solving the Problems) The structure of the present invention for achieving the above object will be explained based on the attached embodiment diagrams. Figure 1 shows the present invention using an air turbine handpiece as an example. FIGS. 2 to 4 are similar views of other embodiments, FIG. 5 is a cross-sectional view taken along the - line of FIG.
The figure is a longitudinal sectional view showing an embodiment of the present invention using an airter handpiece as an example, Figures 7 and 8 are schematic diagrams showing the magnetic field generation pattern, and Figure 9 is a rotation of the drive device according to the present invention. FIG. 4 is a characteristic diagram showing the relationship between the number and torque. That is, the gist of the specific invention is that, in an air drive type drive device that rotates a rotating body mounted in a housing by air pressure, a magnetic field is generated in at least one of the housing and the rotating body, and the other is a good current conductor. The magnetic field is made to penetrate and move relatively as the rotating body rotates, causing eddy current loss in the housing or the rotating body, and this eddy current loss is used to increase the rotation speed of the rotating body. A method for controlling the rotational speed of an air drive type drive device, characterized in that rotational energy in a low torque region is controlled. In addition, the gist of the second invention is that the housing 1, the rotary body 2 that is mounted in the housing 1 and rotates by air pressure, and the compressed air supply port 3 associated with the rotary body 2 consume energy. In an air drive type drive device consisting of a compressed air outlet 4, a magnetic field generation source 5 is provided in at least one of the housing 1 and the rotating body 2, which penetrates the other, which is a good current conductor, to control the rotation of the rotating body 2. The relative movement of the accompanying magnetic field causes eddy current loss in the housing 1 or the rotating body 2, and this eddy current loss limits the rotational energy of the rotating body 2 in the high rotation and low torque regions. It is an air drive type drive device.

第1図乃至第5図は、いずれも歯科用のエアタ
ービンハンドピースに本発明を適用した例を示
し、また第6図は同じく歯科用のエアモーターハ
ンドピースに本発明を適用した例を示す。これら
のエアタービン若しくはエアモーター型ハンドピ
ースにおける回転体2は、ハウジング1に対して
ボールベアリング5により軸承され(第1図、第
3図及び第6図)或は空気軸受6により軸承され
(第2図及び第4図)ている。該回転体2は回転
羽21(ベーン等も含む)及び回転軸22を含
み、この回転軸22が上記ボールベアリング5及
び空気軸受6によつて軸承されている。歯科用ハ
ンドピースの場合、回転軸22に着脱自在な工具
23が同軸的に嵌着され、歯牙にこの回転軸22
を間接的に押当させることにより回転体2にトル
クが発生する。
1 to 5 each show an example in which the present invention is applied to a dental air turbine handpiece, and FIG. 6 similarly shows an example in which the present invention is applied to a dental air motor handpiece. . The rotating body 2 in these air turbine or air motor type handpieces is supported on the housing 1 by a ball bearing 5 (FIGS. 1, 3, and 6) or by an air bearing 6 (FIG. 6). 2 and 4). The rotating body 2 includes a rotating blade 21 (including vanes, etc.) and a rotating shaft 22, and the rotating shaft 22 is supported by the ball bearing 5 and the air bearing 6. In the case of a dental handpiece, a removable tool 23 is coaxially fitted to a rotating shaft 22, and this rotating shaft 22 is attached to a tooth.
Torque is generated in the rotating body 2 by indirectly pressing the rotating body 2 .

本発明では、上記ハウジング1及び回転体2の
いずれか一方に磁界が発生するようになされ、こ
の磁界は電流の良導体である他方に貫通するよう
に配置される。そして一方のみより磁界が発生す
る場合には、他方は非磁性体或は磁性体いずれも
採用可能であるが、渦電流損失の作用をより効果
的にするにはアルミニウ、真鍮或はステンレス鋼
等の電流の良導体である非磁性体金属によりこれ
を得るようにすることが望ましい。また磁界の発
生源としては永久磁石或は電磁石いずれも採用可
能であるが、装置のコンパクト化と云う点では複
数極を有する永久磁石が望ましい。第1図及び第
2図は回転体2の回転羽21を永久磁石により製
しこれを磁界の発生源5とし、第3図及び第4図
はハウジング1を永久磁石により製してこれを磁
界の発生源とし、更に第6図はハウジング1の内
面に部分的に永久磁石を添設し、これを実質的に
ハウジング1からの磁界の発生源5としたことを
夫々示す。
In the present invention, a magnetic field is generated in either the housing 1 or the rotating body 2, and this magnetic field is arranged so as to penetrate the other, which is a good current conductor. If a magnetic field is generated from only one side, the other can be made of either non-magnetic or magnetic material, but to make the eddy current loss effect more effective, aluminum, brass, stainless steel, etc. It is desirable to obtain this using a non-magnetic metal that is a good conductor of current. Although either a permanent magnet or an electromagnet can be used as the source of the magnetic field, a permanent magnet having a plurality of poles is preferable in terms of making the device more compact. 1 and 2, the rotating blade 21 of the rotating body 2 is made of a permanent magnet, and this is used as the magnetic field generation source 5. In FIGS. 3 and 4, the housing 1 is made of a permanent magnet, and this is used as the magnetic field source 5. Further, FIG. 6 shows that a permanent magnet is partially attached to the inner surface of the housing 1, and this is substantially used as the source 5 of the magnetic field from the housing 1.

(作用) 上記構成の駆動装置において、圧縮空気の供給
源(不図示)より供給口3を経てハウジング1内
に導入された圧縮空気は、回転体2の回転羽21
に作用し該回転体2を高速回転せしめ、ここでエ
ネルギーが消費され(全部消費されるとは限らな
い)、排出口4より装置内を経て外部に排出され
る。本発明ではハウジング1と回転体2との相対
関係に於いて磁界が移動するようになされている
が、これを第7図及び第8図に基づき更に説明す
る。第7図は回転体2を、第8図はハウジング1
を夫々磁界の発生源5とし、各発生源5から発せ
られる磁界Mは図の如き軌跡を描いて他方に貫通
する。回転体2の回転に伴い該磁界Mが相対的に
移動し、これにより上記貫通部位に渦電流が発生
し回転体2に対して渦電流損失として作用し、こ
の渦電流損失が回転体2の回転速度を制御するべ
く機能する。この渦電流損失は回転数fの2乗に
比例すると共に抵抗率に反比例する。このように
f2の関数としての損失Wfは、回転体2の回転数
とトルクとの関係において、高回転低トルク領域
では大きく、また低回転高トルク領域では小さく
作用する。これを第9図にて説明すれば、図の縦
軸は回転体2の回転数(単位、RPM)を、横軸
は無負荷から負荷時のトルク(単位、gcm)を
夫々示す。図中Aは上記損失Wfが付加されない
場合の特性図を示し、これに損失Wfが付加され
ると、高回転低トルク領域においては勾配が緩や
かで且つ低回転高トルク領域に向かうに従い上記
Aに沿うような曲線Bを描くことになる。従つて
従来装置においてCのような条件で使用している
ときに、出力をアツプすべく圧縮空気の供給圧を
上げるとAの如く平行移動し、無負荷時の回転数
も上昇する為、前述の如くベアリングの摩耗や空
気軸受の接触面の焼付きと云つたトラブルが惹起
されるが、本発明では曲線Bの如く高回転低トル
ク領域での回転エネルギーが制限されるから無負
荷時の回転数は上昇せず、上記の如き機械的トラ
ブルは生じる懸念が無いのである。亦歯科用ハン
ドピースの如く歯牙に切削工具を押当すると回転
体2に負荷が加わり、その負荷の度合いによつて
回転数が変動するが、この回転数の変動は、本発
明の場合実際の使用時の負荷領域では回転数とト
ルク関係特性図の勾配が従来より緩やかであるの
で小さくなり、歯科治療等の効率化が図れる。こ
のように本発明は、無負荷時の回転数が下げら
れ、且つ負荷時の回転数の変動が少なくなること
に作用的特質を有するものであるが、斯かる特質
は上記説明で明らかな如くハウジング1と回転体
2との相対関係において損失Wf、即ち渦電流損
失を積極的に用いることにあり、この作用をより
効果的ならしめるには、渦電流損失を出来るだけ
大きくすることにあり、上述の渦電流損失と抵抗
率との関係(反比例の関係)から磁界を発生しな
い側の材質が抵抗率の小さな非磁性体金属である
ことが望ましいことは理解されるであろう。
(Function) In the drive device configured as described above, compressed air introduced into the housing 1 from a compressed air supply source (not shown) through the supply port 3 is supplied to the rotating blades 21 of the rotating body 2.
The energy acts on the rotating body 2 to make it rotate at a high speed, and energy is consumed here (not all of it is necessarily consumed), and is discharged to the outside through the discharge port 4 through the inside of the device. In the present invention, the magnetic field is moved in the relative relationship between the housing 1 and the rotating body 2, and this will be further explained based on FIGS. 7 and 8. FIG. 7 shows the rotating body 2, and FIG. 8 shows the housing 1.
are respective magnetic field generation sources 5, and the magnetic field M emitted from each generation source 5 penetrates the other while drawing a trajectory as shown in the figure. As the rotating body 2 rotates, the magnetic field M moves relatively, and as a result, an eddy current is generated in the penetration portion and acts on the rotating body 2 as an eddy current loss. Functions to control rotational speed. This eddy current loss is proportional to the square of the rotational speed f and inversely proportional to the resistivity. in this way
The loss Wf as a function of f 2 is large in the high rotation, low torque region and small in the low rotation, high torque region in the relationship between the rotation speed and torque of the rotating body 2. To explain this with reference to FIG. 9, the vertical axis of the figure shows the rotational speed (unit: RPM) of the rotating body 2, and the horizontal axis shows the torque (unit: gcm) from no-load to loaded state. A in the figure shows the characteristic diagram when the above loss Wf is not added. When the loss Wf is added to this, the slope becomes gentle in the high rotation and low torque region, and as it goes to the low rotation and high torque region, We will draw a curve B along the line. Therefore, when using a conventional device under conditions like C, if the supply pressure of compressed air is increased to increase the output, the compressed air will move in parallel as shown in A, and the number of revolutions under no load will also increase. However, in the present invention, since the rotation energy is limited in the high rotation and low torque region as shown by curve B, the rotation under no load is reduced. The number does not increase, and there is no concern that the mechanical troubles mentioned above will occur. Furthermore, when a cutting tool such as a dental handpiece is pressed against a tooth, a load is applied to the rotating body 2, and the rotation speed changes depending on the degree of the load. In the load range during use, the slope of the rotational speed and torque relationship characteristic diagram is gentler and smaller than before, making it possible to improve the efficiency of dental treatment, etc. As described above, the present invention has an operational feature in that the rotation speed under no load is lowered and the fluctuation in the rotation speed under load is reduced, as is clear from the above description. The purpose is to actively use the loss Wf, that is, eddy current loss, in the relative relationship between the housing 1 and the rotating body 2, and in order to make this effect more effective, the eddy current loss must be made as large as possible. It will be understood from the above-mentioned relationship (inversely proportional relationship) between eddy current loss and resistivity that it is desirable that the material on the side that does not generate a magnetic field is a non-magnetic metal with low resistivity.

尚、上記実施例図は、ハウジング1及び回転体
2のいずれか一方に磁界の発生源5を設けた例を
示しているが、両者いずれもにこの発生源5を設
けることも除外するものではない。また磁界の発
生源5として電磁石を用いることも本発明を逸脱
するものではない。
Although the above embodiment diagram shows an example in which the magnetic field source 5 is provided on either the housing 1 or the rotating body 2, it is not excluded that the magnetic field source 5 may be provided on both. do not have. Further, it is not outside the scope of the present invention to use an electromagnet as the magnetic field source 5.

(発明の効果) 叙上の如く、本発明はハウジング内に軸装され
た回転体を圧縮空気圧により回転せしめるエアド
ライブ型の駆動装置において、上記ハウジング及
び回転体の少なくとも一方に磁界を発生せしめ、
該磁界を他方に貫通するようにしたから、回転体
の回転に伴いこの磁界が相対的に移動し、これに
より上記ハウジング若しくは回転体に渦電流損失
が発生し、この損失の回転数との相対的関係によ
り高回転及び低トルク領域においては回転エネル
ギーが制限され、これにより無負荷時の回転数が
下げられ且つ負荷時には負荷による回転数の変動
が少なくなる。従つて本発明による装置を歯科用
ハンドピース等に応用した場合、高トルクを得た
い為に供給空気圧を上げても無負荷時の回転数が
上昇しないので、ベアリングの摩耗や空気軸受の
接触面の焼付きと云つたトラブルが回避され、ま
た治療中に負荷が頻多に変つても切削工具の回転
数の変動が少ないので治療内容に応じた治療の適
正化が図れる。更に実施例の如く磁界の発生源と
して複数極を有する永久磁石を用い、ハウジング
若しくは回転体自体をこの永久磁石により構成す
れば、構造的には何等変更を要することなく小型
である特性が維持できる。
(Effects of the Invention) As described above, the present invention provides an air drive type drive device for rotating a rotating body mounted in a housing by compressed air pressure, in which a magnetic field is generated in at least one of the housing and the rotating body,
Since the magnetic field is made to penetrate the other side, this magnetic field moves relatively as the rotating body rotates, and this causes eddy current loss in the housing or the rotating body, and this loss changes relative to the rotational speed. Due to this relationship, the rotational energy is limited in the high rotation and low torque region, which lowers the rotational speed when no load is applied, and reduces the variation in the rotational speed due to the load when the engine is loaded. Therefore, when the device according to the present invention is applied to a dental handpiece, etc., even if the supply air pressure is increased to obtain high torque, the rotational speed under no load will not increase, resulting in wear of the bearings and the contact surface of the air bearing. Problems such as seizure are avoided, and even if the load changes frequently during treatment, there is little variation in the rotational speed of the cutting tool, so the treatment can be optimized according to the treatment content. Furthermore, if a permanent magnet with multiple poles is used as the magnetic field generation source as in the embodiment, and the housing or the rotating body itself is made of this permanent magnet, the characteristic of being compact can be maintained without requiring any structural changes. .

本発明はこのよいうに特筆されるべき利点を有
し、従来のこの種駆動装置での回転数制御を行う
場合の問題点を全て一掃するものであり、その有
用性は極めて大である。
The present invention has such notable advantages and eliminates all the problems encountered when controlling the rotational speed in conventional drive devices of this type, making it extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエアタービンハンドピースを例に採つ
た本発明の実施例を示す縦断面図、第2図乃至第
4図は他の実施例の同様図、第5図は第4図の
−線断面図、第6図はエアモーターハンドピー
スを例に採つた本発明の実施例を示す縦断面図、
第7図及び第8図は磁界の発生パターンを示す模
式図、第9図は本発明による駆動装置の回転数と
トルクとの関係を示す特性図、第10図は従来の
駆動装置における回転数とトルクとの関係を示す
特性図である。 (符号の説明)、1……ハウジング、2……回
転体、21……回転羽、3……圧縮空気の供給
口、4……エネルギーの消費された圧縮空気の排
出口、5……磁界の発生源、6……ボールベアリ
ング、7……空気軸受。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention taking an air turbine handpiece as an example, FIGS. 2 to 4 are similar views of other embodiments, and FIG. 6 is a longitudinal sectional view showing an embodiment of the present invention taking an air motor handpiece as an example;
7 and 8 are schematic diagrams showing the magnetic field generation pattern, FIG. 9 is a characteristic diagram showing the relationship between the rotation speed and torque of the drive device according to the present invention, and FIG. 10 is the rotation speed in the conventional drive device. FIG. 3 is a characteristic diagram showing the relationship between torque and torque. (Explanation of symbols), 1...Housing, 2...Rotating body, 21...Rotating blade, 3...Compressed air supply port, 4...Energy consumed compressed air outlet, 5...Magnetic field Source of generation, 6...Ball bearing, 7...Air bearing.

Claims (1)

【特許請求の範囲】 1 ハウジング内に軸装された回転体を空気圧に
より回転させるエアドライブ型駆動装置におい
て、上記ハウジング及び回転体の少なくとも一方
に磁界を発生せしめて電流の良導体である他方に
その磁界を貫通せしめ、且つ回転体の回転に伴つ
てこの磁界を相対的に移動せしめて、上記ハウジ
ング若しくは回転体に渦電流損失を生起させ、こ
の渦電流損失をして回転体の高回転及び低トルク
領域の回転エネルギーを制限するようにしたこと
を特徴とするエアドライブ型駆動装置の回転数制
御後方法。 2 上記磁界の発生が複数極を有する永久磁石に
よりなされる特許請求の範囲第1項記載の方法。 3 上記磁界の発生が電磁石によりなされる特許
請求の範囲第1項記載の方法。 4 上記磁界の発生が永久磁石より成る回転体に
よりなされ、該磁界がな非磁性体金属のハウジン
グを貫通するようになされた特許請求の範囲第1
項又は第2項記載の方法。 5 上記磁界の発生が永久磁石製の回転羽を有す
る回転体によりなされる特許請求の範囲第1項、
第2項及び第4項いずれか記載の方法。 6 上記磁界の発生が永久磁石より成るハウジン
グによりなされ、該磁界が非磁性体金属の回転体
を貫通するようになされた特許請求の範囲第1項
又は第2項記載の方法。 7 上記回転体をボールベアリングにより軸承さ
せるようにした特許請求の範囲第1項乃至第6項
いずれか記載の方法。 8 上記回転体を空気軸受により軸承させるよう
にした特許請求の範囲第1項乃至第6項いずれか
記載の方法。 9 ハウジング1と、該ハウジング1内に軸装さ
れ空気圧により回転する回転体2と、該回転体2
に関連した圧縮空気の供給口3と、エネルギーが
消費された圧縮空気の排出口4とより成るエアド
ライブ型駆動装置において、上記ハウジング1及
び回転体2の少なくとも一方に電流の良導体であ
る他方を貫通する磁界の発生源5を設け、回転体
2の回転に伴う磁界の相対的移動によりハウジン
グ1若しくは回転体2に渦電流損失を生起させ、
この渦電流損失をして回転体2の高回転及び低ト
ルク領域の回転エネルギーを制限するようにした
ことを特徴とするエアドライブ型駆動装置。 10 上記磁界の発生源3を複数極を有する永久
磁石とした特許請求の範囲第9項記載の装置。 11 上記磁界の発生源3を電磁石とした特許請
求の範囲第9項記載の装置。 12 上記回転体2が永久磁石により成り且つハ
ウジング1が非磁性体金属より成る特許請求の範
囲第9項又は第10項記載の装置。 13 上記回転体2のうち少なくとも回転羽21
が永久磁石により成る特許請求の範囲第9項、第
10項及び第12項いずれか記載の装置。 14 上記ハウジング1が永久磁石により成り且
つ回転体2が非磁性体金属より成る特許請求の範
囲第9項又は第10項記載の装置。 15 上記回転体2がボールベアリング6により
軸承されている特許請求の範囲第9項乃至第14
項いずれか記載の装置。 16 上記回転体2が空気軸受7により軸承され
ている特許請求の範囲第9項乃至第14項いずれ
か記載の装置。
[Scope of Claims] 1. In an air drive type drive device that uses air pressure to rotate a rotary body mounted in a housing, a magnetic field is generated in at least one of the housing and the rotary body, and the magnetic field is generated in the other, which is a good current conductor. A magnetic field is passed through the rotating body, and this magnetic field is caused to move relatively as the rotating body rotates, thereby causing eddy current loss in the housing or the rotating body. A post-rotation speed control method for an air drive type drive device, characterized in that rotational energy in a torque region is limited. 2. The method according to claim 1, wherein the magnetic field is generated by a permanent magnet having multiple poles. 3. The method according to claim 1, wherein the magnetic field is generated by an electromagnet. 4. Claim 1, wherein the magnetic field is generated by a rotating body made of a permanent magnet, and the magnetic field penetrates a housing made of non-magnetic metal.
or the method described in paragraph 2. 5. Claim 1, wherein the magnetic field is generated by a rotating body having rotating blades made of a permanent magnet;
The method according to any one of paragraphs 2 and 4. 6. The method according to claim 1 or 2, wherein the magnetic field is generated by a housing made of a permanent magnet, and the magnetic field penetrates a rotating body made of non-magnetic metal. 7. The method according to any one of claims 1 to 6, wherein the rotating body is supported by a ball bearing. 8. The method according to any one of claims 1 to 6, wherein the rotating body is supported by an air bearing. 9 A housing 1, a rotating body 2 that is shaft-mounted in the housing 1 and rotates by air pressure, and the rotating body 2
In an air drive type drive device comprising a supply port 3 for compressed air related to the compressed air and a discharge port 4 for the compressed air in which energy has been consumed, at least one of the housing 1 and the rotating body 2 is provided with the other being a good current conductor. A penetrating magnetic field generation source 5 is provided, and eddy current loss is caused in the housing 1 or the rotating body 2 by relative movement of the magnetic field as the rotating body 2 rotates,
An air drive type drive device characterized in that the rotational energy of the rotating body 2 in the high rotation and low torque region is limited by this eddy current loss. 10. The device according to claim 9, wherein the magnetic field source 3 is a permanent magnet having multiple poles. 11. The device according to claim 9, wherein the magnetic field source 3 is an electromagnet. 12. The device according to claim 9 or 10, wherein the rotating body 2 is made of a permanent magnet and the housing 1 is made of a non-magnetic metal. 13 At least the rotating blade 21 of the rotating body 2
13. The device according to any one of claims 9, 10 and 12, wherein: is a permanent magnet. 14. The device according to claim 9 or 10, wherein the housing 1 is made of a permanent magnet and the rotating body 2 is made of a non-magnetic metal. 15 Claims 9 to 14, wherein the rotating body 2 is supported by a ball bearing 6.
The device described in any of the paragraphs. 16. The apparatus according to any one of claims 9 to 14, wherein the rotating body 2 is supported by an air bearing 7.
JP24241785A 1985-10-29 1985-10-29 Revolving speed controlling method and equipment for air-drive type driving device Granted JPS62101804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24241785A JPS62101804A (en) 1985-10-29 1985-10-29 Revolving speed controlling method and equipment for air-drive type driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24241785A JPS62101804A (en) 1985-10-29 1985-10-29 Revolving speed controlling method and equipment for air-drive type driving device

Publications (2)

Publication Number Publication Date
JPS62101804A JPS62101804A (en) 1987-05-12
JPH0319361B2 true JPH0319361B2 (en) 1991-03-14

Family

ID=17088809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24241785A Granted JPS62101804A (en) 1985-10-29 1985-10-29 Revolving speed controlling method and equipment for air-drive type driving device

Country Status (1)

Country Link
JP (1) JPS62101804A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267495B1 (en) * 2022-11-29 2023-05-01 株式会社ナカニシ Turbine rotors, cartridges and medical cutting instruments

Also Published As

Publication number Publication date
JPS62101804A (en) 1987-05-12

Similar Documents

Publication Publication Date Title
EP1903244A3 (en) Brake with field responsive material
CA2226259A1 (en) Eddy current drive
ATE227476T1 (en) FLYWHEEL DRIVEN POWER SUPPLY UNIT
MY109678A (en) Compressor
AU1541495A (en) Compressor
FR2435809A1 (en) X-RAY TUBE WITH IMPROVED ROTATING ANODE
JP3474852B2 (en) Generation method of overpressure gas
JPH0319361B2 (en)
GB1038795A (en) Improvements in or relating to a fluid operated hand grinder or cutting tool
JPS62101805A (en) Revolving speed controlling method and equipment for air-drive type driving device
CA2321585A1 (en) Linear/rotary motor and method of use
JPH10213146A (en) Flywheel device
US3728600A (en) Arrangement for transmitting mechanical power from a driving machine to a load
JPH0633940A (en) Fluid rotating machine
JP3153691B2 (en) Hand piece
JPH07305697A (en) Axial flow fluid electric machine
JP2803972B2 (en) Oiling system for spot lubrication type tilting pad journal bearing device
JPH068281Y2 (en) Bearing device for expansion turbine
JP3350835B2 (en) Motor speed control device
KR880003901Y1 (en) Ventilator
JPS6263176A (en) Motor-driven device for runner vane of movable vane water-wheel
JPH0492113A (en) Dynamic pressure gas bearing apparatus of high-speed rotating device
JPS569687A (en) Eccentric rotary pump
KR950003782Y1 (en) Shaft for geard motor
ES2166826T3 (en) ELECTRIC MACHINE.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees