JPH03193313A - Manufacture of plastic lens - Google Patents

Manufacture of plastic lens

Info

Publication number
JPH03193313A
JPH03193313A JP33098589A JP33098589A JPH03193313A JP H03193313 A JPH03193313 A JP H03193313A JP 33098589 A JP33098589 A JP 33098589A JP 33098589 A JP33098589 A JP 33098589A JP H03193313 A JPH03193313 A JP H03193313A
Authority
JP
Japan
Prior art keywords
irradiation
lens
active energy
energy rays
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33098589A
Other languages
Japanese (ja)
Other versions
JP2691038B2 (en
Inventor
Hiroshi Fukushima
福島 洋
Akira Motonaga
彰 元永
Mikito Nakajima
幹人 中島
Yusuke Kutsukake
祐輔 沓掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Seiko Epson Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Mitsubishi Rayon Co Ltd filed Critical Seiko Epson Corp
Priority to JP33098589A priority Critical patent/JP2691038B2/en
Publication of JPH03193313A publication Critical patent/JPH03193313A/en
Application granted granted Critical
Publication of JP2691038B2 publication Critical patent/JP2691038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the surface accuracy of a plastic lens and shorten the manufacturing time and increase the use cycle of a glass mold by a method wherein polymerization is completed by the irradiation of active energy rays after at least one cycle of pre-polymerization process consisting of the irradiation of active energy rays and the stoppage of the irradiation is executed. CONSTITUTION:At least one cycle of pre-polymerization process consisting of the duration of the irradiation of active energy rays over monomer composition, which is poured in a mold consisting of two sheets of glass mold and gaskets, from one side or both sides of the mold and the duration of the stoppage of the irradiation for the relaxation of the stress developing due to the shrinkage on polymerization is performed. A lens having a few strain due to residual stress is obtained through one or more times of irradiation of active energy rays consisting of the duration of the irradiation of active energy rays, which brings the state of a comparatively few stress, and at least one duration of the stoppage of the irradiation. Normally, three or more cycles of the pre- polymerization process are preferably executed. By means of the above- mentioned method, the warpage at the central part of a concave lens can be checked, resulting in obtaining a lens having good surface accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプラスチックレンズの製造方法に関する。特に
硬化に伴なう残留応力歪の少ないプラスチックレンズを
、活性エネルギー線の照射により短時間で製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a plastic lens. In particular, the present invention relates to a method for manufacturing plastic lenses with low residual stress distortion caused by curing in a short time by irradiating active energy rays.

[従来の技術] 現在、一般的に使用されているプラスチックレンズとし
て、ジエチレングリコールビスアリルカーボネートを原
料としたCR−39レンズがある。
[Prior Art] Currently, as a commonly used plastic lens, there is a CR-39 lens made from diethylene glycol bisallyl carbonate.

このレンズの製造に際しては、20時間前後という非常
に長い熱硬化時間を要する。そのため、型および重合炉
を占有する時間が長く、非常に製造効率が悪かった。
When manufacturing this lens, a very long heat curing time of around 20 hours is required. As a result, the mold and polymerization furnace were occupied for a long time, resulting in extremely low production efficiency.

この問題点を改良する目的で、光を利用した短時間硬化
が可能なレンズ(特公昭63−5721)か開示されて
いる。
In order to improve this problem, a lens (Japanese Patent Publication No. 63-5721) has been disclosed which can be cured in a short time using light.

[発明が解決しようとする課題] プラスチックレンズに使用する熱硬化もしくは光硬化樹
脂は、千ツマ−またはオリゴマー状態からポリマー化す
る時に、5〜15%程度の体積収縮を示す。このとき、
二枚のガラスモールドとガスゲットの間に封入された樹
脂は応力を生じる。熱硬化方法の場合、比較的に長い時
間をかけ硬化するために、硬化時に分子内応力緩和か行
われ、硬化後、ガラスモールドおよびカスケラトより取
りはずした離型レンズ中の残留応力は小さい。これと比
較すると、光硬化方法は短時間で硬化が可能であるとい
うメツリドはあるものの、硬化時間が短いために、硬化
収縮に伴なう分子内応力緩和が不十分であり、レンズ内
部に大きな残留応力歪が内在し、凹レンズを製造した場
合、レンズの中心部が湾曲(レンズの曲率が設計上の曲
率と異なってしまう現象)し、面精度が著しく低ドする
という現象が現われた。この湾曲は、型ガラスから脱型
した後に加熱(アニール処理)して内部歪を取り除くと
さらに著しいものとなった。この湾曲を抑えるために中
心部を厚くし対処することは可能であるが、レンズのコ
バ厚も厚くなり、レンズ形状が好ましくないものになっ
た。
[Problems to be Solved by the Invention] Thermosetting or photocuring resins used for plastic lenses exhibit volumetric shrinkage of about 5 to 15% when polymerized from a polymer or oligomer state. At this time,
The resin sealed between the two glass molds and the gas get generates stress. In the case of the thermosetting method, since curing takes a relatively long time, intramolecular stress relaxation occurs during curing, and residual stress in the release lens removed from the glass mold and caskerat after curing is small. In comparison, although photocuring methods can cure methulide in a short time, due to the short curing time, the intramolecular stress relaxation associated with curing shrinkage is insufficient, and large When a concave lens is manufactured due to residual stress distortion, the center of the lens is curved (a phenomenon in which the curvature of the lens differs from the designed curvature), resulting in a significant decrease in surface accuracy. This curvature became even more significant when the internal strain was removed by heating (annealing) after the glass was removed from the mold. Although it is possible to prevent this curvature by making the center thicker, the edge of the lens also becomes thicker, resulting in an unfavorable lens shape.

[課題を解決するための手段] 1−なわち本発明は、活性エネルギー線の照射により、
または活性エネルギー線の照射と加熱処理とを併用して
モノマーを重合させプラスチックレンズを製造する方法
において、活性エネルギー線の照射と非照射停止とから
なる予備重合工程を少なくとも一回行なった後、活性エ
ネルギー線の照射を行なって重合を完了させることを特
徴とするプラスチックレンズの製造方法である。
[Means for Solving the Problems] 1-That is, the present invention provides, by irradiation with active energy rays,
Alternatively, in a method of manufacturing plastic lenses by polymerizing monomers using active energy ray irradiation and heat treatment in combination, after carrying out at least one preliminary polymerization step consisting of active energy ray irradiation and non-irradiation stop, This is a method for manufacturing a plastic lens, characterized in that polymerization is completed by irradiation with energy rays.

[作用] 本発明の方法を実施するに際しては、通常二枚のガラス
モールドとガスケットから構成された鋳型中に、千ツマ
−(オリゴマーを含む、以下単に「モノマー」と略称す
る)組成物を注入した後、片面もしくは両面から活性エ
ネルギー線を照射した後、重合収縮にて発生する応力を
緩和するために照射停止時間を置くという予備重合工程
を少なくとも一回実施する。活性エネルギー線の必要照
射量は、モノマーの重合速度、重合開始剤や増感剤の量
、活性エネルギー線強度、千ツマ−の液温、レンズ形状
等により異なるため、−概には規定できないが、−回の
照射量は硬化により発生する内部応力か比較的小さい状
態になるようにするのか好ましい。
[Function] When carrying out the method of the present invention, a composition (containing oligomers, hereinafter simply referred to as "monomer") is injected into a mold usually composed of two glass molds and a gasket. After that, a prepolymerization step is carried out at least once, in which one or both sides are irradiated with active energy rays, and then an irradiation stop period is allowed to relax the stress generated by polymerization shrinkage. The required dose of active energy rays varies depending on the polymerization rate of the monomer, the amount of polymerization initiator and sensitizer, the intensity of the active energy rays, the temperature of the liquid, the shape of the lens, etc., so it cannot be generally specified. , - times of irradiation is preferably set so that the internal stress generated by curing is relatively small.

レンズ内の応力の発生状況は、偏光板を組み合せた直交
ニコル法により観察することができる。
The state of stress generation within the lens can be observed using the crossed Nicol method in combination with polarizing plates.

応力の全く発生していないレンズは、直交ニコル法で観
察すると真黒になる。比較的小さい応力の発生したレン
ズでは、クロス状またはクロス状十円状の黒い部分が生
じる。大きな応力の発生したレンズは、前記現象に、さ
らに同心円状の虹色模様か生じる。この現象と応力の強
さとの関係は、A=BxCxDで説明される(A=光路
差、C;光弾性定数、D=サンプルの厚さ、B=応力)
A lens with no stress at all will appear completely black when observed using the crossed Nicols method. In a lens where a relatively small stress has occurred, a cross-shaped or cross-shaped 10-circle black area appears. In addition to the above phenomenon, a lens with a large stress generates a concentric iridescent pattern. The relationship between this phenomenon and the strength of stress is explained by A=BxCxD (A=optical path difference, C: photoelastic constant, D=thickness of sample, B=stress)
.

C,Dは一定なので光路差Aは応力Bに比例する。した
がって、応力が大きくなる程、光路差は大きくなる。光
路差は、光の位相差であるから色を生しる。すなわち、
直交ニコル法によるレンズの虹色の観測は、大きな応力
を示すこととなる。
Since C and D are constant, the optical path difference A is proportional to the stress B. Therefore, the greater the stress, the greater the optical path difference. Since the optical path difference is the phase difference of light, it produces color. That is,
Observation of iridescence in a lens using the crossed Nicol method indicates large stress.

従ってレンズ製造時における一回分のエネルギー照射量
は、直交ニコル法にて観察した際のクロス状十円状の黒
い部分が生じるまでの重合度を与えるエネルギー量とす
べきである。
Therefore, the amount of energy irradiated for one time during lens manufacturing should be the amount of energy that provides the degree of polymerization until a black part in the shape of a cross-shaped 10 circles is formed when observed by the crossed Nicols method.

このように直交ニコル法にて観察しながら、応力か比較
的少ない状態まで活性エネルギー線を照射し、次の照射
開始までに1分間から60分間程度の照射停止時間(応
力緩和時間)を少なくとも一度は配して一回以上活性エ
ネルギー線を照射することにより、残留応力歪の少ない
レンズが得られる。通常、このような活性エネルギー線
の照射および照射停止からなる予備重合工程は、3回以
上実施することが好ましいが、活性エネルギー線の照射
−照射停止−再照射という単純な一回の予備重合工程を
配することのみによって実施してもよい。通常、予備工
程における活性エネルギー線の照射停止時間の累計は、
1分〜3時間程度であることが好ましいが、照射エネル
ギーが少ない(発生する応力が小さい)場合には1分〜
20分間、照射エネルギーが大きな(発生応力が大きい
)場合にはIO分〜3時間の停止時間をとることが好ま
しい。照射停止時間の累計が短過ぎると、応力緩和が不
十分となり、面精度の良好なプラスチックレンズを製造
することができない。また、照射停止時間の累計が長過
ぎる場合には、短時間にプラスチックレンズを製造する
という本発明の目的が達成できない。なお、本発明にい
う活性エネルギー線の照射停止とは、完全に照射がなさ
れないことだけを意味するのではなく、通常の照射時に
比較して照射エネルギーをl/10未満に減することを
も包含する。
In this way, while observing using the crossed Nicol method, active energy rays are irradiated until the stress is relatively low, and the irradiation stop time (stress relaxation time) of about 1 minute to 60 minutes is given at least once before the start of the next irradiation. By irradiating active energy rays one or more times with the active energy rays applied, a lens with less residual stress distortion can be obtained. Normally, it is preferable to carry out the prepolymerization step consisting of irradiation with active energy rays and stopping the irradiation three or more times, but it is preferable to carry out the prepolymerization step in one simple step of irradiation with active energy rays, stopping irradiation, and re-irradiation. It may also be implemented by simply arranging. Normally, the cumulative total of the irradiation stop time of active energy rays in the preliminary process is
The time is preferably about 1 minute to 3 hours, but if the irradiation energy is low (the stress generated is small), the time is about 1 minute to 3 hours.
When the irradiation energy is large (the generated stress is large), it is preferable to take a stopping time of 10 minutes to 3 hours. If the cumulative irradiation stop time is too short, stress relaxation will be insufficient, making it impossible to manufacture a plastic lens with good surface precision. Furthermore, if the cumulative irradiation stop time is too long, the objective of the present invention, which is to manufacture plastic lenses in a short time, cannot be achieved. Note that the termination of irradiation of active energy rays as used in the present invention does not only mean that irradiation is not completed completely, but also means that the irradiation energy is reduced to less than 1/10 compared to normal irradiation. include.

このような本発明の方法を採用することにより、凹レン
ズ中心部の湾曲を抑えることが可能となり、面精度の良
いレンズが得られる。−古砂化に伴う応力歪を考慮せず
、連続的に活性エネルギー線を照射した場合には、残留
応力歪の大きなレンズとなり、面精度の悪いレンズとな
る。
By employing such a method of the present invention, it is possible to suppress curvature at the center of a concave lens, and a lens with good surface precision can be obtained. - If active energy rays are continuously irradiated without considering the stress strain caused by old sand formation, the lens will have a large residual stress strain, resulting in a lens with poor surface precision.

本発明での一回分のレンズ照射量は、前述したように一
概には規定できないが、通常200mJ/cm’〜30
,000mJ/cm2である。
Although the amount of lens irradiation for one dose in the present invention cannot be unconditionally defined as mentioned above, it is usually 200 mJ/cm' to 30 mJ/cm'.
,000mJ/cm2.

活性エネルギー線として紫外線を用いる場合、通常用い
られる波長2000〜8000人のものを用いることが
でき、光源としては公知のケミカルランプ、キセノンラ
ンプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ
、フュージョンランプ等が適用できる。
When using ultraviolet rays as active energy rays, commonly used wavelengths of 2,000 to 8,000 can be used, and known chemical lamps, xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, fusion lamps, etc. can be used as light sources. can.

また、本発明の方法は、上述の紫外線以外に、公知のX
線、電子線、可視光線等の活性エネルギー線を照射する
重合硬化方法に適用することが可能である。
In addition to the above-mentioned ultraviolet rays, the method of the present invention also uses known
It is possible to apply the present invention to a polymerization curing method in which active energy rays such as radiation, electron beams, and visible light are irradiated.

本発明で使用するモノマーは、単官能または多官能の反
応基を有するもので、例えば脂肪族、脂環族、芳香族ア
ルコールのアクリレートもしくはメタクリレート、ウレ
タンアクリレート、ウレタンメタクリレート、エポキシ
アクリレート、エポキシメタクリート、ポリエステルア
クリレート、ポリエステルメタクリレート等、分子内に
1つまたは2つ以上のラジカル重合性二重結合を有する
化合物が使用可能である。
The monomer used in the present invention has a monofunctional or polyfunctional reactive group, such as aliphatic, alicyclic, or aromatic alcohol acrylate or methacrylate, urethane acrylate, urethane methacrylate, epoxy acrylate, epoxy methacrylate, Compounds having one or more radically polymerizable double bonds in the molecule, such as polyester acrylate and polyester methacrylate, can be used.

また、活性エネルギー線の照射後に、重合を完結するた
めに、加熱処理することは、活性エネルギー線の照射後
のレンズの応力状態が比較的小さい状態であれば何ら問
題はない。
Furthermore, heat treatment to complete polymerization after irradiation with active energy rays poses no problem as long as the stress state of the lens after irradiation with active energy rays is relatively small.

本発明に用いる光開始剤としては、ベンゾインブチルエ
ーテル、ベンジルジメチルケタール、ヒドロキシアセト
フェノンなどの分子内結合開裂型、ベンゾフェノン、ミ
ヒラーケトン、ベンジルなどの分子間水素引抜き型等の
光開始剤が使用可能である。また光増感剤としてジメチ
ルアミノエタノールなどのアミン類を用いると光重合速
度が向上する。また、有機過酸化物等の熱触媒も併用で
きる。
As the photoinitiator used in the present invention, intramolecular bond cleavage type photoinitiators such as benzoin butyl ether, benzyl dimethyl ketal, and hydroxyacetophenone, and intermolecular hydrogen abstraction type photoinitiators such as benzophenone, Michler's ketone, and benzyl can be used. Furthermore, when amines such as dimethylaminoethanol are used as a photosensitizer, the photopolymerization rate is improved. A thermal catalyst such as an organic peroxide can also be used in combination.

また、本発明の効果を損なわない範囲で、千ツマ−には
種々の酸化防止剤、黄変防止剤、紫外線吸収剤、ブルー
イング染料などの各種添加剤を添加してもよい。
Furthermore, various additives such as various antioxidants, anti-yellowing agents, ultraviolet absorbers, bluing dyes, etc. may be added to the chisel without impairing the effects of the present invention.

[実施例] 以下、実施例により、本発明を更に詳しく説明するが、
本発明はこれらの実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

評価法 (1)残留応力の観察、東芝歪検査器5VP−100に
よりレンズの残留応力を観察した。
Evaluation method (1) Observation of residual stress: The residual stress of the lens was observed using a Toshiba distortion tester 5VP-100.

(2)レンズ中心部の湾曲;レンズ中心部の湾曲状態を
肉眼により観察を行い、下記ランクに分類した。
(2) Curvature at the center of the lens: The state of curvature at the center of the lens was observed with the naked eye and classified into the following ranks.

A:まったく湾曲がない。(設計時の曲率と成形レンズ
の曲率の差が0〜1%) B:やや湾曲している。  (差が1〜3%)C:若干
湾曲している。  (差が3〜5%)D:fi曲してい
る。    (差が5〜lO%)E:著しく湾曲してい
る。(差が10〜20%)F:使用できない。    
(差が20%以上)実施例1 ジアリリデンペンタエリスリット1モルと2−ヒドロキ
シエチルアクリレート2モルを反応させて得られた分子
量444、粘度4.4ボイズ、ガードナー色数2〜3の
反応生成物100重量部に、ベンゾフェノン1重量部お
よびジメチルアミノエタノール1重量部を添加してなる
千ツマー組成物を、鏡面仕上げした外径80nun、曲
率386mmと外径80mm、曲率65mmガラスを中
心の厚みを1.5111[11の凹レンズとなるよう組
み合せ、周囲をポリ塩化ビニル製ガスケットで囲み、こ
のモールド型中に注入した。
A: There is no curvature at all. (The difference between the curvature at the time of design and the curvature of the molded lens is 0 to 1%) B: Slightly curved. (Difference is 1 to 3%) C: Slightly curved. (Difference is 3-5%) D: Fi is bent. (Difference is 5-10%) E: Significantly curved. (Difference is 10-20%) F: Unusable.
(Difference is 20% or more) Example 1 Reaction obtained by reacting 1 mole of diarylidene pentaerythrite with 2 moles of 2-hydroxyethyl acrylate, with a molecular weight of 444, a viscosity of 4.4 voids, and a Gardner color number of 2 to 3. A 100% composition obtained by adding 1 part by weight of benzophenone and 1 part by weight of dimethylaminoethanol to 100 parts by weight of the product was polished to a mirror finish with an outer diameter of 80 mm, a curvature of 386 mm, an outer diameter of 80 mm, a curvature of 65 mm, and a thickness at the center of the glass. were combined to form a concave lens of 1.5111 [11], surrounded by a polyvinyl chloride gasket, and poured into the mold.

次いで、予備重合工程としてモールド型の両面10cm
の距離から2 KWの高圧水銀灯により、10秒照射、
2分照射停止という間欠的照射を15回繰り返した後、
さらに30秒照射して重合を完結させ、型よりレンズを
脱型した。このレンズを前記評価法で評価し、その結果
を第1表に示した。 さらに、 110℃、1時間のア
ニールを行なったレンズについて、同様な評価を行ない
、その結果を第1表に示した。
Next, as a prepolymerization step, 10 cm of both sides of the mold were
Irradiate for 10 seconds with a 2 KW high pressure mercury lamp from a distance of
After repeating intermittent irradiation 15 times with 2-minute irradiation stop,
The polymerization was completed by further irradiation for 30 seconds, and the lens was removed from the mold. This lens was evaluated using the evaluation method described above, and the results are shown in Table 1. Furthermore, similar evaluations were performed on lenses that had been annealed at 110° C. for 1 hour, and the results are shown in Table 1.

比較例1 実施例1と同一のモノマー組成物とモールド型を使用し
、硬化方法を下記内容に変更しレンズを成形した。モー
ルド型の両面10cnIの距離から2KWの高圧水銀灯
により、3分間連続して照射を行った。型より脱型した
レンズを前記評価法で評価し、その結果を第1表に示し
た。
Comparative Example 1 A lens was molded using the same monomer composition and mold as in Example 1, but with the curing method changed as follows. Both surfaces of the mold were continuously irradiated for 3 minutes from a distance of 10 cnI using a 2 KW high pressure mercury lamp. The lenses removed from the molds were evaluated using the evaluation method described above, and the results are shown in Table 1.

さらに、 110℃1時間のアニールを行なったレンズ
について、同様な評価を行い、その結果を第1表に示し
た。
Furthermore, similar evaluations were performed on lenses annealed at 110° C. for 1 hour, and the results are shown in Table 1.

実施例2 キシリレンジイソシアネートと2−ヒドロキシプロピル
メタクリレートとをモル比1:2で反応させた化合物6
0重量部、ヘンシルメタクリレート20重量部、トリメ
チロールプロパントリメタクリレート20重量部、ベン
ゾフェノン0.5重量部、トリフェニルホスフィン0.
1重量部、2−ヒドロキシ−4−メトキシベンゾフェノ
ン0.01重量部を混合し、千ツマー組成物を調製した
。このモノマー組成物を、実施例1と同一のモールド型
に注入し、実施例1と同様な間欠照射による硬化方法で
レンズを成形した。このレンズを前記評価方法で評価し
、その結果を第1表に示した。さらに、110℃、1時
間のアニールを行なったレンズについて同様な評価を行
い、その結果を第1表に示した。
Example 2 Compound 6 in which xylylene diisocyanate and 2-hydroxypropyl methacrylate were reacted at a molar ratio of 1:2
0 parts by weight, 20 parts by weight of Hensyl methacrylate, 20 parts by weight of trimethylolpropane trimethacrylate, 0.5 parts by weight of benzophenone, 0.5 parts by weight of triphenylphosphine.
1 part by weight and 0.01 part by weight of 2-hydroxy-4-methoxybenzophenone were mixed to prepare a 1,000-mer composition. This monomer composition was injected into the same mold as in Example 1, and a lens was molded using the same curing method using intermittent irradiation as in Example 1. This lens was evaluated using the evaluation method described above, and the results are shown in Table 1. Furthermore, similar evaluations were performed on lenses annealed at 110° C. for 1 hour, and the results are shown in Table 1.

実施例3 実施例2で使用したモノマー組成物を用い、予備重合工
程を10秒間の照射、10分間の照射停止という間欠的
照射を15回繰り返した後、さらに30秒照射して重合
を完結させ、型よりレンズを脱型した。このレンズを前
記評価法で評価し、その結果を第1表に示した。さらに
、110℃、1時間のアニール処理を行なフたレンズに
ついて同様な評価を行ない、その結果を第1表に示した
Example 3 Using the monomer composition used in Example 2, intermittent irradiation of 10 seconds of irradiation and 10 minutes of irradiation stop was repeated in the prepolymerization process 15 times, followed by further 30 seconds of irradiation to complete the polymerization. , the lens was removed from the mold. This lens was evaluated using the evaluation method described above, and the results are shown in Table 1. Furthermore, the same evaluation was performed on the cover lens which was annealed at 110° C. for 1 hour, and the results are shown in Table 1.

比較例2 実施例2で使用したモノマー組成物を用い、比較例1と
同様な連続紫外線照射による硬化方法でレンズの成形を
行った。このレンズを前記評価方法で評価し、その結果
を第1表に示した。
Comparative Example 2 Using the monomer composition used in Example 2, a lens was molded using the same curing method as in Comparative Example 1 using continuous ultraviolet irradiation. This lens was evaluated using the evaluation method described above, and the results are shown in Table 1.

さらに、 110℃1時間のアニールを行ったレンズに
ついて、同様な評価を行い、その結果を第1表に示した
Furthermore, similar evaluations were performed on lenses annealed at 110° C. for 1 hour, and the results are shown in Table 1.

実施例4 イソホロンジイソシアネートと2−ヒドロキエチルメタ
クリレートとをモル比1:2で反応させた化合物40重
量部、ポリエチレングリコールジアクリレート(東亜合
成化学工業■製゛°アロニックスM−245”)35重
量部、ヘキサンジオールジアクリレート25重量部、2
,4.6− トリメチルベンゾイルジフェニルフォスフ
インオキサイド0.05重:11部、t−ブチルパーオ
キシイソブチレート0.03重量部、2(2“−ヒドロ
キシ−5°−メチルフェニル)ベンゾトリアゾール0.
02重量部を混合し、千ツマー組成物を調製した。この
千ツマー組成物を実施例1と同一のモールド型に注入し
た。
Example 4 40 parts by weight of a compound obtained by reacting isophorone diisocyanate and 2-hydroxyethyl methacrylate at a molar ratio of 1:2, 35 parts by weight of polyethylene glycol diacrylate ("Aronix M-245" manufactured by Toagosei Kagaku Kogyo ■), 25 parts by weight of hexanediol diacrylate, 2
, 4.6-trimethylbenzoyldiphenylphosphine oxide 0.05 parts by weight: 11 parts, t-butylperoxyisobutyrate 0.03 parts by weight, 2(2"-hydroxy-5°-methylphenyl)benzotriazole 0.
02 parts by weight were mixed to prepare a 1000 ml composition. This composition was poured into the same mold as in Example 1.

次いで予備重合工程としてモールド型の両面20cmの
距離から3  KWのメタルハライドランプにより、1
対のランプ間を2 m/minの速度で通過させた。通
過後20分間、室温で放置した。その後、連続して、1
分間、前記ランプで照射を行ない、ガラス型をはずさす
に110℃で1時間硬化を行ない重合を完結させた。脱
型後、このレンズを前記評価法で評価し、その結果を第
1表に示した。
Next, as a preliminary polymerization step, polymerization was performed using a 3 KW metal halide lamp from a distance of 20 cm on both sides of the mold.
It passed between the pair of lamps at a speed of 2 m/min. After passing, it was left at room temperature for 20 minutes. After that, 1
After irradiating with the lamp for 1 minute, the glass mold was removed and curing was carried out at 110° C. for 1 hour to complete the polymerization. After demolding, this lens was evaluated using the evaluation method described above, and the results are shown in Table 1.

さらに、 120℃1時間のアニールを行なったレンズ
について、同様な評価を行ない、その結果を第1表に示
した。
Furthermore, similar evaluations were performed on lenses that had been annealed at 120° C. for 1 hour, and the results are shown in Table 1.

比較例3 実施例3と同一の組成物を実施例1と同一のモールド型
に注入し、硬化方法を下記内容に変更した。モールド型
の両面20cmの距離から3 KWのメタルハライドラ
ンプにより1分間連続して照射を行ない、ガラス型をは
ずさず110℃で1時間硬化を行なった。脱型したレン
ズを前記評価法で評価し、その結果を第1表に示した。
Comparative Example 3 The same composition as in Example 3 was injected into the same mold as in Example 1, and the curing method was changed as follows. Irradiation was performed continuously for 1 minute using a 3 KW metal halide lamp from a distance of 20 cm on both sides of the mold, and the mold was cured at 110° C. for 1 hour without removing the glass mold. The demolded lenses were evaluated using the evaluation method described above, and the results are shown in Table 1.

さらに、実施例4と同一のアニールを行なったレンズに
ついて、同様な評価を行ない、その結果を第1表に示し
た。
Furthermore, similar evaluations were performed on lenses that had been annealed in the same manner as in Example 4, and the results are shown in Table 1.

実施例5 トリレンジイソシアネート(商品名コロネートT−80
、日本ポリウレタン社製)と2−ヒドロキシプロピルメ
タクリレートをモル比1:2で反応させた化合物40重
量部、2,4.6− トリブロモフェノキシエチルアク
リレート20重量部、2.2’−ビス(4−メタクリロ
キシペンタエトキシフェニル)−プロパン20重量部、
トリシクロ(5,2,1,0)デカニルメタクリレート
20重量部、メチルフェニルグリオキシレート 0.1
重量部、t−ブチルパーオキシ−2−エチルヘキサノエ
ート0.1重量部、2(2°−ヒドロキシ−5°−メチ
ルフェニル)ベンゾトリアゾール0.02重量部からな
る千ツマー組成物を、実施例1と同一のモールド型に注
入した。
Example 5 Tolylene diisocyanate (trade name Coronate T-80
, manufactured by Nippon Polyurethane Co., Ltd.) and 2-hydroxypropyl methacrylate at a molar ratio of 1:2, 40 parts by weight of a compound, 20 parts by weight of 2,4.6-tribromophenoxyethyl acrylate, 2.2'-bis(4 -methacryloxypentaethoxyphenyl)-propane 20 parts by weight,
20 parts by weight of tricyclo(5,2,1,0)decanyl methacrylate, 0.1 parts of methylphenylglyoxylate
A 1,000-mer composition consisting of parts by weight, 0.1 parts by weight of t-butylperoxy-2-ethylhexanoate, and 0.02 parts by weight of 2(2°-hydroxy-5°-methylphenyl)benzotriazole was carried out. It was poured into the same mold as in Example 1.

次いで予備重合工程としてモールドの両面20c+n距
離から3  KWフュージョンランプ(Vバルブ)によ
り、30秒照射、8分間照射停止という間欠的照射を5
回繰り返し、さらに1分間照射して重合を完結させ、型
よりレンズを脱型した。このレンズを前記評価法で評価
し、その結果を第1表に示した。
Next, as a preliminary polymerization step, intermittent irradiation was performed on both sides of the mold from a distance of 20c+n using a 3KW fusion lamp (V bulb) for 30 seconds and then stopped for 8 minutes.
The polymerization was repeated several times and irradiated for an additional 1 minute to complete polymerization, and the lens was removed from the mold. This lens was evaluated using the evaluation method described above, and the results are shown in Table 1.

さらに、実施例3と同一のアニールを行なったレンズに
ついて、同様な評価を行ない、その結果を第1表に示し
た。
Furthermore, similar evaluations were performed on lenses that had been annealed in the same manner as in Example 3, and the results are shown in Table 1.

比較例4 実施例5と同一の組成物を実施例1と同一モールド型に
注入し、硬化方法を下記内容に変更した。モールドの両
面20cm′i&11からB  MWの、フュージョン
ランプ(Vバルブ)により、3分間連続して照射を行な
った。脱型したレンズを前記評価法で評価し、その結果
を第1表に示した。
Comparative Example 4 The same composition as in Example 5 was injected into the same mold as in Example 1, and the curing method was changed as follows. Both sides of the mold were continuously irradiated for 3 minutes from 20 cm'i&11 using a B MW fusion lamp (V bulb). The demolded lenses were evaluated using the evaluation method described above, and the results are shown in Table 1.

さらに、実施例4と同一のアニールを行なったレンズに
ついて、同様な評価を行ない、その結果を第1表に示し
た。
Furthermore, similar evaluations were performed on lenses that had been annealed in the same manner as in Example 4, and the results are shown in Table 1.

第1表 [発明の効果] 本発明によれば、短時間光硬化レンズでの欠点であった
面鯖度の改善が著しい。これによって、プラスチックレ
ンズの製造時間が短縮され、ガラス型の使用サイクルが
増加し、ガラス型の必要個数を減らすことが可能となっ
た。さらに、生産スペースを削減でき、生産コストの低
減への貢献度は極めて高い。
Table 1 [Effects of the Invention] According to the present invention, there is a remarkable improvement in surface hardness, which was a drawback of short-time photocurable lenses. This shortens the manufacturing time of plastic lenses, increases the usage cycle of glass molds, and reduces the number of glass molds required. Furthermore, the production space can be reduced, making an extremely high contribution to reducing production costs.

Claims (1)

【特許請求の範囲】 1)活性エネルギー線の照射により、または活性エネル
ギー線の照射と加熱処理とを併用してモノマーを重合さ
せプラスチックレンズを製造する方法において、活性エ
ネルギー線の照射と照射停止とからなる予備重合工程を
少なくとも一回行なった後、活性エネルギー線の照射を
行なって重合を完了させることを特徴とするプラスチッ
クレンズの製造方法。 2)前記予備重合工程における活性エネルギー線の照射
停止時間の少なくとも一つが1分間〜60分間である請
求項1記載の製造方法。
[Scope of Claims] 1) A method for producing a plastic lens by polymerizing monomers by irradiation with active energy rays or by using irradiation with active energy rays and heat treatment in combination, comprising: irradiating active energy rays and stopping the irradiation; 1. A method for producing a plastic lens, which comprises performing a prepolymerization step at least once, and then irradiating with active energy rays to complete the polymerization. 2) The manufacturing method according to claim 1, wherein at least one of the active energy ray irradiation stop times in the prepolymerization step is 1 minute to 60 minutes.
JP33098589A 1989-12-22 1989-12-22 Plastic lens manufacturing method Expired - Lifetime JP2691038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33098589A JP2691038B2 (en) 1989-12-22 1989-12-22 Plastic lens manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33098589A JP2691038B2 (en) 1989-12-22 1989-12-22 Plastic lens manufacturing method

Publications (2)

Publication Number Publication Date
JPH03193313A true JPH03193313A (en) 1991-08-23
JP2691038B2 JP2691038B2 (en) 1997-12-17

Family

ID=18238549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33098589A Expired - Lifetime JP2691038B2 (en) 1989-12-22 1989-12-22 Plastic lens manufacturing method

Country Status (1)

Country Link
JP (1) JP2691038B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422046A (en) * 1993-08-31 1995-06-06 Essilor Of America, Inc. Method for producing optical lenses
WO2004095087A1 (en) * 2003-04-21 2004-11-04 Seiko Epson Corporation Resin composition for hybrid lens, method for producing hybrid lens, hybrid lens and lens system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422046A (en) * 1993-08-31 1995-06-06 Essilor Of America, Inc. Method for producing optical lenses
WO2004095087A1 (en) * 2003-04-21 2004-11-04 Seiko Epson Corporation Resin composition for hybrid lens, method for producing hybrid lens, hybrid lens and lens system

Also Published As

Publication number Publication date
JP2691038B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US5470892A (en) Polymerizable resin for forming clear, hard plastics
KR930003464B1 (en) Actinic radiation curable composition for cast polymerization and product of cast polymerization
US3171869A (en) Process for manufacturing curved optical articles
JPS6345081B2 (en)
EP1261886B1 (en) Methods and compositions for the manufacture of ophthalmic lenses
EP1303568B1 (en) Method of manufacturing a replica as well as a replica obtained by carrying out a uv light-initiated cationic polymerization
KR20050074973A (en) Lithographic method for forming mold inserts and molds
US4986633A (en) Microlens and process for producing same
EP1316820B1 (en) Lens made of synthetic resin and process for producing the same
JPH03193313A (en) Manufacture of plastic lens
JPS5987126A (en) Manufacture of lens
JP3681534B2 (en) Polymerization curable composition for optical lens
JP3547307B2 (en) Polymerizable curable composition for optical lens
JPH07316245A (en) Ultraviolet-curing resin composition for transmission screen and cured product thereof
JPH01163201A (en) Production of molded article of transparent plastic
JPH0985849A (en) Preparation of transparent cured body
JP2778988B2 (en) Manufacturing method of optical materials
JPH08258171A (en) Manufacture of plastic lens
US7169828B2 (en) Method of manufacturing a replica as well as a replica obtained by carrying out an UV light-initiated cationic polymerization
JP3507502B2 (en) Method for producing transparent organic glass substrate and substrate thus obtained
JPH0782121B2 (en) Optical element manufacturing method
JPH01190711A (en) Composition for plastic lens
US20120038880A1 (en) Modulated uv cure
JPH01309001A (en) Plastic lens material
JP2001091909A (en) Method for dyeing plastic lens and dyed lens

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13