JPH0319310A - Formation of resist pattern - Google Patents

Formation of resist pattern

Info

Publication number
JPH0319310A
JPH0319310A JP1153971A JP15397189A JPH0319310A JP H0319310 A JPH0319310 A JP H0319310A JP 1153971 A JP1153971 A JP 1153971A JP 15397189 A JP15397189 A JP 15397189A JP H0319310 A JPH0319310 A JP H0319310A
Authority
JP
Japan
Prior art keywords
resist
ion beam
substrate
silylated
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1153971A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Kojima
小島 義克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1153971A priority Critical patent/JPH0319310A/en
Publication of JPH0319310A publication Critical patent/JPH0319310A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam

Abstract

PURPOSE:To prevent damage of a substrate and deterioration in device characteristics by a method wherein a resist, with which an ultraviolet ray irradiation part will be silylated selectively, is coated on the substrate, it is exposed by a focussing ion beam, and ultraviolet rays are collectively made to irradiate on the resist. CONSTITUTION:First, a silylated resist of about 2.0mum in thickness, for example, is spin-coated on a GaAs substrate 12, and it is baked at 90 deg.C for 30 minutes. Then, a formed gate pattern part of 0.1mum in line width is exposed using a Be focussing ion beam of accelerating energy of 260keV obtained from an Au-Si-Be alloy ion source. Subsequently, ultraviolet rays are collectively projected on the whole surface of resist in order to selectively take in Si to an unexposed part. Then, Si is selectively taken into only a part unirradiated with a converged Be ion beam by exposing the resist into a hexamethyldisilazane(HMDS) atmosphere. Lastly, a dry developing operation is conducted on a pattern using O2RIE.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体素子製造工程等に用いるレジストパタ
ーンの形成方法に係わり、詳しくは集束イオンビームを
用いたパターン形戊方法に関1一る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of forming a resist pattern used in a semiconductor device manufacturing process, etc., and more particularly to a method of forming a pattern using a focused ion beam. .

(従来の技術) GaA.sMESFET等において、その動作速度の向
上を計るためには、ゲート長の短縮が有効な手段である
。現在ステッパ等の光露光の実用的限界解f象度は0.
5pm程度であり、更に微細なゲート電極形成には電子
ビーム露光、あるいは集束イオンビーム露光が用いられ
てきた。その中でも特に集束イオンビーム露光は電子ビ
ーム露光と比較すると、前方及び後方散乱による近接効
果の影響を受けにくく、また感度が1〜2桁程高いため
電荷蓄積の影響も受けにくいなど優れた微細加工性を有
している。
(Prior art) GaA. In order to improve the operating speed of sMESFETs and the like, shortening the gate length is an effective means. Currently, the practical limit of resolution f for light exposure using steppers, etc. is 0.
The thickness is about 5 pm, and electron beam exposure or focused ion beam exposure has been used to form even finer gate electrodes. Among these, focused ion beam exposure is particularly effective in microfabrication, as compared to electron beam exposure, it is less susceptible to proximity effects due to forward and backward scattering, and is less susceptible to charge accumulation due to its sensitivity being one to two orders of magnitude higher. It has a sexual nature.

従って現在線幅0.1pm程度の微細ゲートの形成には
集束イオンビームによる露光が用いられている。
Therefore, focused ion beam exposure is currently used to form fine gates with a line width of about 0.1 pm.

第3図は従来技術によるGaAsMESFETゲートリ
フトオフ用のパターン形成方法を示している。まず基板
32上にボジ型レジストポリメチルメタクリレート31
を厚さ約1.0pmスピン塗布し、170’C、30分
間ベイクする(第3図(a))。ついでビーム径0.1
pm程度まで集束したBe集束イオンビーム33を用い
てポリメチルメタクリレート31を露光する(第3図(
b))。この時Be集束イオンビームの加速エネルギー
は260keV、露光量は1.5 X 1013ion
s/cm2であった。
FIG. 3 shows a method of forming a pattern for GaAs MESFET gate lift-off according to the prior art. First, a positive resist polymethyl methacrylate 31 is placed on the substrate 32.
was spin-coated to a thickness of about 1.0 pm and baked at 170'C for 30 minutes (Figure 3(a)). Then the beam diameter is 0.1
A polymethyl methacrylate 31 is exposed using a Be focused ion beam 33 focused to about pm (see Fig. 3).
b)). At this time, the acceleration energy of the Be focused ion beam was 260 keV, and the exposure amount was 1.5 x 1013 ions.
It was s/cm2.

そしてメチルイソブチルケトン:イソプロビルアルコー
ル=1:3の混液中にて3分間現像し、イソプロビルア
ルコール中で1分間リンスを行うことにより、線幅0.
1pm程度の微細なレジストパターンを形威していた(
第3図(C))。しかしながらこの従来技術による方法
では、他の露光方法では形成不可能な線幅0.1pm程
度の微細なパターンが形成可能な反面、集束イオンビー
ムによるレジストの露光時にレジストを基板面まで露光
しなければならないので、必然的に露光イオンが基板に
注入され基板に損傷を与え、また注入されたイオンは不
純物となるなどして、結果的にソースードレイン電流の
減少などデバイス特性を劣化させていた(例えば、ジャ
ーナル・オブ・バキューム・サイエンス・アンド・テク
ノロジーB5、p21L 1987、モリモトら)。
Then, by developing for 3 minutes in a mixture of methyl isobutyl ketone and isopropyl alcohol = 1:3, and rinsing for 1 minute in isopropyl alcohol, the line width is 0.
It featured a fine resist pattern of about 1 pm (
Figure 3 (C)). However, although this conventional method can form fine patterns with a line width of about 0.1 pm that cannot be formed using other exposure methods, it is necessary to expose the resist to the substrate surface when exposing the resist using a focused ion beam. Therefore, exposure ions were inevitably implanted into the substrate, damaging the substrate, and the implanted ions became impurities, resulting in deterioration of device characteristics such as a decrease in source-drain current ( For example, Journal of Vacuum Science and Technology B5, p21L 1987, Morimoto et al.).

本発明の目的は、集束イオンビーム露光によるパターン
形成において、従来のように集束イオンビーム露光時に
基板にイオン照射による損傷を与えることが無く、イオ
ンの進入長よりも厚いレジストパターンを形成すること
ができるパターン形成方法を提供することにある。
An object of the present invention is to form a resist pattern that is thicker than the ion penetration length in pattern formation by focused ion beam exposure without damaging the substrate due to ion irradiation during focused ion beam exposure as in the conventional method. The purpose of this invention is to provide a pattern forming method that can be used.

(課題を解決するための手段) 本発明によれば、集束イオンビーム露光によるレジスト
パターン形成において、基板上に紫外光照射部分が選択
的にシリル化されるレジストを塗布する工程と、前記レ
ジストの所望の領域を集束イオンビームによって露光す
る工程および、前記露光後のレジズトに紫外光を照射す
る工程と前記レジストのイオンビーム未露光部分をシリ
ル化する工程と、イオンビーム露光部分とこの露光部分
の直下のレジストを除去する工程とを具備することを特
徴とするレジストパターン形成方法によって得られる。
(Means for Solving the Problems) According to the present invention, in forming a resist pattern by focused ion beam exposure, a step of applying a resist on a substrate in which a portion irradiated with ultraviolet light is selectively silylated; a step of exposing a desired region with a focused ion beam; a step of irradiating the exposed resist with ultraviolet light; a step of silylating the portion of the resist not exposed to the ion beam; The resist pattern is obtained by a resist pattern forming method characterized by comprising a step of removing the resist immediately below.

(作用) シリル化レジストは紫外光照射された部分の分子構造が
化学的変化を起こし、その後Siを含む雰囲気中に曝す
ことで、照射部分にのみ選択的に分子構造中にSiが取
り込まれ、Siが取り込まれなかった未照射部分に比較
してドライエッチ耐性が向上する。従ってその後そのド
ライエッチ耐性の差を利用してドライエッチによりネガ
型のパターン形戊を行うことができる。ここで紫外光の
代わりにイオンや電子等の荷電粒子を照射した場合、紫
外光に比較してレジスト中に与えるエネルギーが非常に
大きいため、レジスト構或分子は主鎖および側鎖の切断
や架橋など紫外光照射時には起こり得なかった反応が起
こり、本来の機能を失う。従って荷電粒子照射部分には
その後紫外光を照射し、Si雰囲気中に曝してもSiは
取り込まれなくなる(たとえば、ソリッド・ステート・
テクノロジー日本版、1987年9月号、p34)。
(Function) The molecular structure of the silylated resist undergoes a chemical change in the portion irradiated with ultraviolet light, and then by exposing it to an atmosphere containing Si, Si is selectively incorporated into the molecular structure only in the irradiated portion. Dry etch resistance is improved compared to the unirradiated portion where Si was not incorporated. Therefore, after that, a negative pattern can be formed by dry etching by utilizing the difference in dry etching resistance. When charged particles such as ions and electrons are irradiated instead of ultraviolet light, the energy given to the resist is much larger than that of ultraviolet light, so the resist structure molecules may be irradiated with main chain and side chain cleavage or cross-linking. Reactions that could not occur when irradiated with ultraviolet light occur, and the original function is lost. Therefore, even if the charged particle irradiated area is then irradiated with ultraviolet light and exposed to a Si atmosphere, no Si will be taken in (for example, solid state
Technology Japan Edition, September 1987 issue, p34).

一方イオンは電子と比較した場合質量が非常に大きい。On the other hand, ions have very large masses compared to electrons.

従ってイオンを用いてレジスト露光を行った場合、電子
と比較してレジスト中への進入長は非常に短く,通常集
束イオンビーム露光に用いられる50〜300keV程
度の加速エネルギーの範囲では、比較的質量が軽く進入
長が長いBeイオンを用いても、その進入長は約0.5
〜1.7pm程度である。
Therefore, when resist exposure is performed using ions, the penetration length into the resist is very short compared to that of electrons, and in the range of acceleration energy of about 50 to 300 keV normally used for focused ion beam exposure, the mass is relatively large. Even if Be ions are used that have a light penetration length and a long penetration length, the penetration length is approximately 0.5
~1.7pm.

従ってレジストの塗布膜厚を、用いる集束イオンビーム
のレジスト中での進入長より厚くすることにより、露光
時に照射されたイオンは基板面まで到達しなくなる。
Therefore, by making the resist coating film thicker than the penetration length of the focused ion beam used into the resist, ions irradiated during exposure will not reach the substrate surface.

以上のことを踏まえ、本発明の作用を第2図を用いて説
明する。まず基板22上に塗布されたシリル化レジスト
21を集束イオンビーム23によって露光する(第2図
(a))。この時露光イオンが基板面まで到達しないよ
う、レジストの塗布膜厚およびイオンのエネルギーを選
ぶ。また露光量はレジストの分子構造が破壊され、シリ
ル化反応が起こらなくなる露光量を選ぶ。ついで未露光
部分をシリル化するため、レジスト全面に紫外光24を
照射する(第2図(b))。そしてヘキサメチルジシラ
ザン(HMDS)等のSiを含有する雰囲気中にてSi
取り込みのシリル化を行う(第2図(C))。この時集
束イオンビーム露光部分は分子構造の破壊により本来の
機能を失っており、未露光部分のみが選択的にシリル化
される。
Based on the above, the operation of the present invention will be explained using FIG. 2. First, the silylated resist 21 coated on the substrate 22 is exposed to a focused ion beam 23 (FIG. 2(a)). At this time, the resist coating thickness and ion energy are selected so that the exposure ions do not reach the substrate surface. Further, the exposure amount is selected so that the molecular structure of the resist is destroyed and the silylation reaction does not occur. Next, in order to silylate the unexposed portions, the entire surface of the resist is irradiated with ultraviolet light 24 (FIG. 2(b)). Then, in an atmosphere containing Si such as hexamethyldisilazane (HMDS), Si
The incorporation is silylated (Fig. 2(C)). At this time, the focused ion beam exposed portion loses its original function due to destruction of the molecular structure, and only the unexposed portion is selectively silylated.

従ってその後Siと有機レジスト膜との選択比の大きい
02RIEによってドライエッチを行うことにより、シ
リル化されていない集束イオンビーム露光部分のみが選
択的にエッチング除去され、パターンが形成される(第
2図(d))。この時あらかじめ露光イオンが基板面ま
で到達しないよう、レジストの塗布膜厚およびイオンの
エネルギーを選んであるため、基板にはパターン形成に
よって損傷や不純物が与えられることはなく、デバイス
特性の劣化を抑えることができる。
Therefore, by dry etching using 02RIE, which has a high selectivity ratio between Si and organic resist film, only the non-silylated focused ion beam exposed portions are selectively etched away, forming a pattern (see Figure 2). (d)). At this time, the resist coating thickness and ion energy are selected in advance so that the exposure ions do not reach the substrate surface, so the substrate is not damaged or impurities are caused by pattern formation, suppressing deterioration of device characteristics. be able to.

(実施例) 以下本発明の実施例として、線幅0.1pmのGaAs
MESFETゲートリフト用レジストパターンの形成に
ついて、第1図を用いて説明する。まずGaAs基板1
2上にシリル化レジスト11を厚さ約2.0pmスピン
塗布し、90°C、30分間ベイクする(第1図(a)
)。次いでAu−Si−Be合金イオン源から得られる
加速エネルギ−260keVのBe集束イオンビームを
用いて、形戊したい線幅0.1μmのゲートパターン部
分を露光する。露光量は1.O X 1013ions
/cm2とした。ここで加速エネルギー260keVと
Beイオンの組合せでは、レジスト中へのイオンの進入
長は1.5μm #.度であるので、レジストは表面か
ら1.5llm程度の深さまで露光によるレジスト構成
分子の破壊が起こる(第1図(b))。その後未露光部
分にSiを選択的に取り込ませるため、レジスト全面に
紫外光を一括照射する(第1図(C))。この時照射量
は350mJ/cm2とした。照対する紫外光の波長は
300〜500nmが適当であった。次にヘキサメチル
ジシラザン(HMDS)雰囲気中にレジストを曝してB
e集東イオンビーム未照射部分にのみ選択的にSiを取
り込ませる(第1図(d))。このとき時間は3分間と
し、Siは表面から0.3μm程度の深さまで取り込ま
れる。このシリル化の時間は1分〜5分、基板温度は1
00〜200’Cが適当であった。そして最後に02R
IEによりパターンのドライ現象を行う(第1図(e)
)。この時02流量30SCCM,RF電力1.5kW
、エッチング時間5分間とした。Be集束イオンビーム
未露光部分は取り込まれたSiのため02RIE耐性が
向上しており、Be集束イオンビーム露光部分のみが選
択的にエッチング除去される。従ってこの結果、第1図
(e)に示したような線幅約0.1pmのゲートリフト
オフ用レジストパターンが形成された。この時、集束イ
オンビーム露光時のBeイオンは基板面まで到達しない
ため、ゲートリフトオフ用レジストパターン形成前と後
で、基板の損傷によるソースードレイン電流の減少は認
められなかった。
(Example) As an example of the present invention, GaAs with a line width of 0.1 pm will be described below.
Formation of a resist pattern for MESFET gate lift will be explained using FIG. 1. First, GaAs substrate 1
A silylated resist 11 is spin-coated on 2 to a thickness of about 2.0 pm, and baked at 90°C for 30 minutes (Fig. 1(a)).
). Next, using a Be focused ion beam with an acceleration energy of 260 keV obtained from an Au-Si-Be alloy ion source, a gate pattern portion with a line width of 0.1 μm to be shaped is exposed. The exposure amount is 1. O X 1013ions
/cm2. Here, with a combination of acceleration energy of 260 keV and Be ions, the ion penetration length into the resist is 1.5 μm #. Since the resist is exposed to light at a depth of about 1.5 llm from the surface, the molecules constituting the resist are destroyed by exposure (FIG. 1(b)). Thereafter, in order to selectively incorporate Si into unexposed areas, the entire surface of the resist is irradiated with ultraviolet light (FIG. 1(C)). At this time, the irradiation amount was 350 mJ/cm2. The appropriate wavelength of the ultraviolet light for illumination was 300 to 500 nm. Next, the resist was exposed to a hexamethyldisilazane (HMDS) atmosphere and B
e. Selectively incorporate Si only into the areas that have not been irradiated with the concentrated ion beam (Fig. 1(d)). At this time, the time is 3 minutes, and Si is taken in to a depth of about 0.3 μm from the surface. The silylation time was 1 to 5 minutes, and the substrate temperature was 1
00-200'C was suitable. And finally 02R
Dry the pattern using IE (Fig. 1(e))
). At this time, 02 flow rate 30SCCM, RF power 1.5kW
, the etching time was 5 minutes. The portions not exposed to the Be focused ion beam have improved 02RIE resistance due to the incorporated Si, and only the portions exposed to the Be focused ion beam are selectively etched away. Therefore, as a result, a resist pattern for gate lift-off with a line width of about 0.1 pm as shown in FIG. 1(e) was formed. At this time, since Be ions during focused ion beam exposure did not reach the substrate surface, no decrease in source-drain current due to damage to the substrate was observed before and after forming the resist pattern for gate lift-off.

本実施例はGaAsMESFETにおける微細ゲートリ
フトオフ用レジストパターン形成に関するものであるが
、本発明の実施例はそれに限定されるものではなく、他
の集束イオンビーム露光によるレジストパターン形成に
実施することができる。
Although this embodiment relates to the formation of a resist pattern for fine gate lift-off in a GaAs MESFET, the embodiment of the present invention is not limited thereto, and can be implemented to form a resist pattern using other focused ion beam exposures.

本実施例では集束イオンビーム露光工程にAu−Si−
Be合金イオン源から得られる加速エネルギー260k
eVのBe集束イオンビームを用いたが、これはレジス
トの塗布膜厚に対してイオンの進入長が短くなる条件で
あれば、他の加速エネルギー及び他のLi, Ga, 
Au等単体金属イオン源、Au−Si, Pt−Sb,
 Pb−Ni−B等合金イオン源、あるいはHe, 8
2、02、F2等のガスイオン源から得られるイオン種
の集束イオンビームを用いてもよい。集束イオンビーム
露光の露光量は1.O X 1013ions/crn
2としたが、これは用いるシリル化レジストにシリル化
反応が起こらなくなるような分子構造の破壊が起こるよ
うな露光量であれば任意の大きさの露光量としてもよい
。本実施例ではレジストとしてシリル化レジスト(日本
合成ゴム社、PLASMASKレジスト;商品名)を用
いたが、他のシリル化レジストを用いてもよい。またシ
リル化条件はこれに限らず、紫外光照射部分に選択的に
Siを取り込ませることができる条件であればよい。更
に02RIE条件についても、シリル化されていない部
分を選択的にエッチング除去できる条件であれば、本実
施例の条件に限定されることはない。
In this example, Au-Si-
Acceleration energy 260k obtained from Be alloy ion source
Although a Be focused ion beam of eV was used, other acceleration energy and other Li, Ga,
Simple metal ion sources such as Au, Au-Si, Pt-Sb,
Alloy ion source such as Pb-Ni-B or He, 8
A focused ion beam of ion species obtained from a gas ion source such as 2, 02, or F2 may also be used. The exposure dose of focused ion beam exposure is 1. O X 1013ions/crn
2, but the exposure amount may be any value as long as it causes destruction of the molecular structure such that no silylation reaction occurs in the silylated resist used. In this example, a silylated resist (PLASMASK resist, trade name, manufactured by Nippon Gosei Rubber Co., Ltd.) was used as the resist, but other silylated resists may be used. Furthermore, the silylation conditions are not limited to these, and any conditions may be used as long as they can selectively incorporate Si into the ultraviolet irradiated portion. Furthermore, the 02RIE conditions are not limited to those of this example as long as they can selectively etch away the non-silylated portions.

(発明の効果) 以上説明したように、本発明によれば集束イオンビーム
露光によるレジストパターン形成において、基板上に紫
外光照射部分が選択的にシリル化されるレジストを塗布
する工程と、前記レジストを集束イオンピームによって
露光する工程および、前記露光後のレジストに紫外光を
一括照射する工程とを具備することを特徴とするレジス
トパターン形成方法によって、集束イオンビーム露光時
の基板に到達する深さまでイオン照射する必要がなくな
るので基板の損傷を防ぐことができ、デバイス特性の劣
化を防ぐことができた。
(Effects of the Invention) As described above, according to the present invention, in forming a resist pattern by focused ion beam exposure, there are a step of applying a resist on a substrate in which a portion irradiated with ultraviolet light is selectively silylated; A method for forming a resist pattern, which comprises the steps of: exposing the exposed resist with a focused ion beam; and irradiating the exposed resist with ultraviolet light at once; Since there is no need for irradiation, damage to the substrate can be prevented, and deterioration of device characteristics can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための基板の部分
断面図、第2図は本発明の作用を説明するための基板の
部分断面図、第3図は従来技術を説明するための基板の
部分断面図である。 図においてl1・・・シリル化レジスト、12・・・G
aAs基板、13・・・Be集東イオンビーム、14・
・・紫外光、15・・・ヘキサメチルジシラザン(HM
DS)、21・・・シリル化レジスト、22・・・基板
、23・・・集束イオンビーム、24・・・紫外光、2
5・・・ヘキサメチルジシラザン(HMDS)、31・
・・ボリメチルメタクリレート、32・・・GaAs基
板、33・・・Be集束イオンビーム、34・・・損傷
である。
FIG. 1 is a partial cross-sectional view of a substrate for explaining an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of a substrate for explaining the operation of the present invention, and FIG. 3 is a partial cross-sectional view for explaining the prior art. FIG. In the figure, l1...silylated resist, 12...G
aAs substrate, 13...Be focused ion beam, 14.
...ultraviolet light, 15...hexamethyldisilazane (HM
DS), 21... Silylated resist, 22... Substrate, 23... Focused ion beam, 24... Ultraviolet light, 2
5...hexamethyldisilazane (HMDS), 31.
...Borimethyl methacrylate, 32...GaAs substrate, 33...Be focused ion beam, 34...Damage.

Claims (1)

【特許請求の範囲】[Claims] (1)集束イオンビーム露光によるレジストパターン形
成において、基板上に紫外光照射部分が選択的にシリル
化されるレジストを塗布する工程と、前記レジストの所
望の領域にレジストの膜厚の途中まで集束イオンビーム
によって露光する工程と、前記レジストのイオンビーム
露光部分に隣接した未露光部分を含む領域に紫外光を照
射する工程と、前記レジストのイオンビーム未露光部分
をシリル化する工程と、イオンビーム露光部分とこの露
光部分の直下のレジストを除去する工程とを具備するこ
とを特徴とするレジストパターン形成方法。
(1) In forming a resist pattern by focused ion beam exposure, there is a step of applying a resist on a substrate in which the portions irradiated with ultraviolet light are selectively silylated; a step of exposing with an ion beam; a step of irradiating an area of the resist including an unexposed portion adjacent to an ion beam exposed portion with ultraviolet light; a step of silylating the unexposed portion of the resist with an ion beam; 1. A method for forming a resist pattern, comprising the steps of removing an exposed portion and a resist directly under the exposed portion.
JP1153971A 1989-06-16 1989-06-16 Formation of resist pattern Pending JPH0319310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153971A JPH0319310A (en) 1989-06-16 1989-06-16 Formation of resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153971A JPH0319310A (en) 1989-06-16 1989-06-16 Formation of resist pattern

Publications (1)

Publication Number Publication Date
JPH0319310A true JPH0319310A (en) 1991-01-28

Family

ID=15574080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153971A Pending JPH0319310A (en) 1989-06-16 1989-06-16 Formation of resist pattern

Country Status (1)

Country Link
JP (1) JPH0319310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520669B1 (en) * 1999-05-06 2005-10-10 주식회사 하이닉스반도체 Method for Forming Ultrafine Pattern by Top Surface Imaging Process
JP2012009497A (en) * 2010-06-22 2012-01-12 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of microscopic structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520669B1 (en) * 1999-05-06 2005-10-10 주식회사 하이닉스반도체 Method for Forming Ultrafine Pattern by Top Surface Imaging Process
JP2012009497A (en) * 2010-06-22 2012-01-12 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of microscopic structure

Similar Documents

Publication Publication Date Title
US5362606A (en) Positive resist pattern formation through focused ion beam exposure and surface barrier silylation
WO1991006041A1 (en) Surface barrier silylation microlithography
US5258266A (en) Method of forming minute patterns using positive chemically amplifying type resist
US5158861A (en) Method of forming minute patterns using chemically amplifying type resist
EP0348962B1 (en) Fine pattern forming method
JP3081655B2 (en) Method of forming resist pattern
JPS58124230A (en) Forming method for ultrafine pattern
JPH0319310A (en) Formation of resist pattern
Hartney et al. Surface imaging of focused ion‐beam exposed resists
JPS5819127B2 (en) Fine pattern formation method
JPH0653106A (en) Formation of fine resist pattern
Hartney et al. Silylation of focused ion beam exposed resists
Adesida Fine line lithography using ion beams
JPH03235331A (en) Forming method for grating pattern
JPH04305912A (en) Forming method of v-shaped gate
JPH02187010A (en) Formation of resist pattern
Mladenov et al. General problems of high resolution lithography
JP3035535B1 (en) Pattern forming method and pattern forming apparatus
JPS6054775B2 (en) Dry development method
JPS6376332A (en) Manufacture of semiconductor device
JP2671355B2 (en) Resist formation method
JP2000077364A (en) Pattern forming method
JPH04369828A (en) Pattern formation
JP2000112149A (en) Forming method of resist pattern
JPH0510821B2 (en)