JPH0319245B2 - - Google Patents

Info

Publication number
JPH0319245B2
JPH0319245B2 JP21711783A JP21711783A JPH0319245B2 JP H0319245 B2 JPH0319245 B2 JP H0319245B2 JP 21711783 A JP21711783 A JP 21711783A JP 21711783 A JP21711783 A JP 21711783A JP H0319245 B2 JPH0319245 B2 JP H0319245B2
Authority
JP
Japan
Prior art keywords
resin
parts
acid
water
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21711783A
Other languages
Japanese (ja)
Other versions
JPS60110765A (en
Inventor
Hisao Ogawa
Hiroaki Tamaya
Michiaki Wake
Masahiro Ishidoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP21711783A priority Critical patent/JPS60110765A/en
Publication of JPS60110765A publication Critical patent/JPS60110765A/en
Publication of JPH0319245B2 publication Critical patent/JPH0319245B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は常温硬化型水性被覆用組成物に使用す
る水性樹脂分散体に関するものである。 従来技術 常温硬化型水性被覆用組成物としては、主とし
てエマルジヨン型塗料および水溶性型塗料が使用
されている。エマルジヨン型塗料は、塗料固型分
が比較的高く、加えてチキソトロピツクな粘性に
富むため厚膜塗装に適しており、同時に塗装後の
乾燥が極めて速い特長を有する。しかし、その反
面、塗装後の乾燥過程で、いわゆるフラツシユラ
ストを発生し、また硬化塗膜の光沢が低いという
欠点を有している。これに対して水溶性型塗料
は、フラツシユラストが比較的発生し難く、又塗
膜の光沢が優れている特長を有するが、乾燥が遅
く、塗装中にタレを生じ易く、厚膜塗装に適さな
いという欠点を有している。 発明の目的 本発明は、上記既存の常温硬化型水性被覆用組
成物に見られる欠点を解消し、上記両タイプの特
長を合わせ持ち、フラツシユラストの発生を抑
え、塗膜の乾燥性、光沢に優れ、厚膜塗装に適す
る常温硬化型水性被覆用組成物に使用する水性樹
脂分散体を提供することを目的とする。 発明の構成 本発明の水性樹脂分散体は、α,β−エチレン
性不飽和酸と他の重合性不飽和単量体との共重合
樹脂100部に、乾性油脂肪酸又は半乾性油脂肪酸
から選ばれた不飽和脂肪酸のグリシジルエステル
10〜200部を反応させて得られる下記の2種類の
樹脂(A)および樹脂(B)を含有する。 樹脂(A):20酸価150、水酸基価15〜150、数
平均分子量1000〜200000 樹脂(B):0酸価<20、水酸基価15〜150、数
平均分子量1000〜200000 本発明の水性樹脂分散体は、前記樹脂(A)対樹脂
(B)の比率が固形分換算重量比で20/80〜90/10の
範囲にあり、塩基により中和し、水性媒体中に溶
解または懸濁させて得られる。 本発明の水性樹脂分散体を使用した常温硬化型
水性被覆用組成物は、いわゆるアクリル系樹脂で
ありながら酸化硬化性を有し、かつ親水性と疎水
性の両性質を合わせ持つことに特徴がある。すな
わちエマルジヨン型塗料と水溶性型塗料の欠点を
補い、各型の特長を具備するものである。 本発明における共重合樹脂を構成するα,β−
エチレン性不飽和酸としては、アクリル酸、メタ
クリル酸、イタコン酸、クロトン酸、マレイン
酸、フマル酸などが対象となる。 また、共重合樹脂を構成する他の重合性不飽和
単量体としては、次式 (式中のR1はH又はCH3を示し、R2はCoH2o+1
(但しnは1n18の整数)で示されるアルキ
ル基を示す)で表わされるアクリル酸エステル
類、メタクリル酸エステル類を挙げることができ
る。ここで、式中のアルキル基のnの値を制限し
た理由は、nが18を超えると工業的規模での使用
が可能な単量体が極めて限られ、さらに、これら
単量体を使用する利点が小さいことによる。また
水酸基を有するアクリル酸あるいはメタクリル酸
エステル類、例えばアクリル酸2−ヒドロキシエ
チル、メタクリル酸2−ヒドロキシエチル、アク
リル酸2−ヒドロキシプロピル、メタクリル酸2
−ヒドロキシプロピル等を用いることができる。
このほか、アクリロニトリル、メタクリロニトリ
ル、アクリルアミド、メタクリルアミド、N−メ
チロールアクリルアミド、N−メチロールメタク
リルアミド、N−メトキシアクリルアミド、N−
メトキシメタクリルアミド、スチレン、ビニルト
ルエンなどが用いられる。 本発明の原料である共重合樹脂は、前記α,β
−エチレン性不飽和酸と前記他の重合性不飽和単
量体を、当業界で広く採用されている公知の重合
技術、すなわち、溶液重合法、乳化重合法、懸濁
重合法、塊状重合法等で製造することができる。
しかし、この共重合反応で得られた共重合樹脂と
不飽和脂肪酸のグリシジルエステルとの次の反応
を考慮すると、これらの重合法のうち最も好まし
い方法は溶液重合法である。 本発明の水性樹脂分散体構成する樹脂(A)および
樹脂(B)は、上記の共重合樹脂を有機溶剤中に溶解
し、そのカルボキシル基に不飽和脂肪酸のグリシ
ジルエステルを反応させて得られる。 不飽和脂肪酸のグリシジルエステルを構成する
不飽和脂肪酸としては、大気中の酸素により酸化
硬化性を示すものであればいかなるものでも対象
となるが、経済性ならびに原料の豊富さからみ
て、天然の乾性油脂肪酸、半乾性油脂肪酸、ある
いはこれらから加工されて得られる脂肪酸類が適
している。すなわち、あまに油、桐油、トール
油、大豆油、サフラワー油、ヌカ油、オイチシカ
油等から得られる脂肪酸が用いられる。また、こ
のほか脱水ヒマシ油脂肪酸、ハイジエン脂肪酸類
などが用いられる。 これらの不飽和脂肪酸は、グリシジルエステル
の形で共重合樹脂との反応に用いられるが、グリ
シジルエステルとするには、公知のグリシジル化
反応、例えば該脂肪酸にエピクロルヒドリンを反
応させ脱塩酸反応を経るか、あるいは不飽和脂肪
酸をメチルエステル化し、これをグリシドールと
反応させる等の方法により、容易に製造すること
ができる。 上記共重合樹脂と不飽和脂肪酸のグリシジルエ
ステルとの反応には、共重合樹脂100部に対しグ
リシジルエステルは10〜200部の範囲が適当であ
る。10部より小さい値では酸化重合反応による硬
化速度が遅く不十分であり、200部を超えると酸
化硬化反応が過度に進行し、塗膜の耐久性、柔軟
性を欠き好ましくない。 前述の共重合樹脂と不飽和脂肪酸のグリシジル
エステルとの反応は、まず共重合樹脂を有機溶剤
中に溶解し、不飽和酸のグリシジルエステルを加
え、加熱撹拌して行う。反応溶剤としては、エポ
キシ基やカルボキシル基と反応しないものであれ
ば特に制限はない。通常、エーテル類、ケトン
類、第2級アルコール類、第3級アルコール類、
エステル類などが適する。最終使用形態が水性塗
料という点から、水に可溶ないしは部分可溶なも
のが好ましいが、反応完了後、反応溶剤を減圧除
去又は凍結乾燥等により除去する工程を加えれ
ば、用いる溶剤の水溶性の有無に配慮する必要は
ない。又、水溶性溶剤であつても大気汚染防止の
観点から、有機溶剤の含有量を極力下げることが
求められ、このためには、反応後、溶剤の一部又
は全部を除去することが望ましい。 前記共重合樹脂と不飽和脂肪酸のグリシジルエ
ステルとの反応は、反応温度80〜160℃、反応時
間約30分〜6時間が適当である。又、必要によ
り、各種のエポキシ基開環触媒を用いることがで
きる。 このような反応により得られる樹脂(A)および樹
脂(B)のうち樹脂(A)は、樹脂(B)を水性媒体中に安定
に可溶化又は乳化分散するため、水溶性もしくは
水分散性を示す程度の極性を有することが好まし
く、酸価は20〜150、水酸基価は15〜150の範囲が
適する。酸価が20、水酸基価が15よりもそれぞれ
小さい値では、親水性が不足し、安定な樹脂分散
体を得難く、また酸価が150、水酸基価が150をそ
れぞれ超えると、親水性が大きくなり過ぎ、フラ
ツシユラストを発生し、塗膜の耐水性、防食性、
耐候性等を損う。樹脂(A)の分子量は1000〜200000
の範囲が適する。1000より小さい値では分子量が
低くなり過ぎ塗膜の硬化性、耐久性が劣り、又
200000を超えると樹脂の粘度が高くなり過ぎ、水
性樹脂分散体を得ることが難しくなると共に、塗
料固形分が下がり、塗装の際に十分な膜厚を確保
することが困難となる。 樹脂(B)は、それ自体では水に不溶で疎水性が高
いことが好ましく、0酸価<20、水酸基価15〜
150の範囲を有する。酸価が20以上、水酸基価が
150を超えると親水性が大きくなり、分散相形成
の効果に乏しく厚膜塗装性、乾燥性に劣る。尚、
水酸基価の下限15は、共重合樹脂とグリシジル
エステルを上記割合で反応させることにより不可
避的に生じる値である。樹脂(B)の分子量は1000〜
200000の範囲であり、樹脂(A)の場合と同様に、
1000より小さいと塗膜の硬化性、耐久性が劣り、
200000を超えると樹脂粘度が高く、水性樹脂分散
体を得ることが難しくなる。 樹脂(A)および樹脂(B)を得る上記反応において、
樹脂(A)および樹脂(B)を個々に合成するか、または
樹脂(B)を先に製造し、これに樹脂(A)用の共重合樹
脂を加えた後、樹脂(A)用のグリシジルエステルを
加えることが好ましい。 樹脂(A)と樹脂(B)との比率は、固形分換算重量比
で20/80〜90/10の範囲が適当である。全樹脂中
に占める樹脂(A)の比率が20%以下では、樹脂(B)を
水性媒体中に安定に懸濁させることが難しく、
又、90%以上では従来の水溶性型塗料に極めて近
い性質のものとなり、本発明の効果が薄れ好まし
くない。 本発明の水性樹脂分散体を製造するには、樹脂
(A)と樹脂(B)の均一な混合物に、混合物中の全カル
ボキシル基の50〜150モル%に当たる塩基を加え
中和し、撹拌下に水を加える。また、樹脂の混合
物に塩基を加える代わりに、予め水の中に塩基を
加えておき、撹拌しつつ、これに樹脂混合物を
徐々に又は一度に加えて製造することができる。
中和に用いる塩基としては、水性塗料に通常用い
られるアルキルアミン類、アルカノールアミン
類、アンモニア等が用いられ、これらのうち、メ
チルアミン、ジメチルアミン、トリメチルアミ
ン、エチルアミン、ジエチルアミン、トリエチル
アミン、ジメチルエタノールアミン、ジエチルエ
タノールアミン、アンモニアなどが好ましい。 酸化硬化型塗料には、一般にドライヤーと呼ば
れる各種の酸化重合触媒が使用されるが、水性樹
脂分散体を使用した常温硬化型水性被覆用組成物
についても、ドライヤーを配合し乾燥速度を調整
することができる。ドライヤーとしては、コバル
ト、マンガン、ジルコニウム、カルシウム、鉛、
亜鉛、鉄などの各種有機酸塩あるいは錯化合物が
用いられる。このほか、塗装性調整などの目的で
各種の添加剤類、並びに補助有機溶剤などを配合
することができる。 水性樹脂分散体を使用した常温硬化型水性被覆
用組成物は、クリヤー塗料として、あるいはこれ
に顔料を加えたエナメルとして用いることがで
き、水質素材、金属素材、無機質素材、プラスチ
ツク素材の被覆に適する。被覆に当たり、吹付
け、ローラー、はけ塗り、浸漬塗り等を用いるこ
とができ、常温乾燥はもとより、必要に応じて強
制乾燥し硬化させることができる。 水性樹脂分散体を使用した常温硬化型水性被覆
用組成物は、耐候性の良いアクリル樹脂の側鎖に
酸化重合性の不飽和脂肪酸を配した樹脂の水性樹
脂分散体から成り、樹脂自体の特性並びに溶解形
態の効果によつて、常温硬化型塗料として必要な
諸性能を加えて、特に、光沢、耐フラツシユラス
トに優れた塗膜を形成する。又、塗装に当たり、
厚塗りが可能で、しかも乾燥性に優れた被覆を可
能ならしめる効果を有する。 以下、本発明を実施例および比較例に基づき説
明する。例中、部は重量部を意味する。 実施例 1 (1) 樹脂(A)の合成 温度計、還流冷却器、窒素ガス導入管および撹
拌機を装備したガラス製フラスコに、第1表、A
(1)に示す配合比に従い、反応溶剤ジエチレングリ
コールジメチルエーテル27.7部を入れ、窒素ガス
を通気しながら、115〜125℃に加熱する。撹拌下
にアクリル酸10.4部、メタクリル酸ブチル23.0
部、スチレン8.9部、メタクリル酸2−ヒドロキ
シエチル5.3部、重合開始剤としてのt−ブチル
ペルオキシベンゾエート1.4部から成る混合物を、
前記フラスコに約4時間を要して滴下し、約1時
間撹拌後、t−ブチルペルオキシベンゾエート
0.1部、メチルイソブチルケトン2.3部の混合液を
約10分を要して滴下し、さらに1時間撹拌を続け
た。その後、反応物を約60℃まで冷却し、大豆油
脂肪酸のグリシジルエステル20.8部、および反応
触媒としてのトリエチルアミン0.1部を加え、約
1時間を要して反応物温度を130℃まで昇温し、
120〜130℃にて約4時間保ち、このあと90〜110
℃で反応溶剤の一部を減圧除去し、最終的に固形
分80%の樹脂A(1)を得た。樹脂A(1)は、第1表下
段に示すように、樹脂酸価72、樹脂水酸基価81、
数平均分子量約13000であつた。 (2) 樹脂(B)の合成 A(1)の合成と同じ方法、同じ条件下で配合比を
第1表B(1)に示す内容に変更して樹脂を合成し
た。合成後、減圧下に溶剤を除き、最終的に樹脂
固形分80%、樹脂酸価10、樹脂水酸基価80、数平
均分子量約16000の樹脂B(1)を得た。 (3) 水性樹脂分散体および塗料の製造 第2表の実施例1に示す組成比に従い、このよ
うにして得られた樹脂A(1)16.9部、樹脂B(1)11.3
部を金属製容器にとり、約50℃に加温後、28%ア
ンモニア水1.2部を加え、強力卓上撹拌機によつ
て十分に混合した後、脱イオン水47.82部を撹拌
下に徐々に加えて、均一な水性樹脂分散体を得
た。この水性樹脂分散体に、ナフテン酸コバルト
溶液(金属含有率4%)0.28部、ナフテン酸マン
ガン溶液(金属含有率5%)0.10部およびルチル
型酸化チタン22.4部を加え、均一に混合した後、
3本ロールミルにて分散し、顔料対樹脂比が1対
1、固形分が約45%の白エナメルを製造した。 以上のようにして得られた塗料を、ブルツクフ
イールド回転粘度計を用いて回転速度6r.p.m.に
て測定した粘度が約1500センチポイズになるよう
に、脱イオン水で希釈し、気温25℃、相対湿度80
%の条件下で垂直に立てた脱脂鉄板上にハケ塗り
し、塗装性および外観を評価した。 結果を第3表に示す。第3表から明らかなよう
に、この実施例で得られた塗料はタレやたるみを
生じず、一度に塗布可能な最大乾燥膜は38μmで
あつた。 又、乾燥膜厚25μmに塗装後、指触乾燥並びに
半硬化状態に達する時間を調べたところ、それぞ
れ60分および6時間であつた。得られた硬化塗膜
の光沢値は87であり、又、フラツシユラストは全
く観察されず純白で平滑な仕上がりを示した。 実施例 2 (1) 樹脂(A)の合成 実施例1の(1)と同じ製造条件下で、第1表A(2)
に示す反応溶剤、単量体、重合開始剤、グリシジ
ルエステルおよび触媒を用いて樹脂A(2)を合成
し、減圧脱溶剤して固形分80%に濃縮した。得ら
れた樹脂の特性値は第1表の下段に示した通りで
ある。 (2) 樹脂(B)の合成 実施例1の(2)と同じ製造条件下で、第1表B(2)
に示す配合比にて、樹脂B(2)を合成し、減圧脱溶
剤にて固形分80%に濃縮した。得られた樹脂の特
性値は第1表の下段に示した通りである。 (3) 水性樹脂分散体および塗料の製造 実施例1の(3)と同じ製造条件下で、第2表に示
す組成比にて水性樹脂分散体並びに固形分約50%
の白エナメルを製造した。 このようにして得られた塗料を実施例1と同じ
条件、即ち脱イオン水を加えて約1500センチポイ
ズに希釈し、気温25℃、相対湿度80%の条件下に
塗装した。その結果を第3表に示す。実施例1と
同様に良い結果が得られた。 実施例 3 (1) 樹脂(B)の合成 実施例1の(2)と同じ製造条件で第1表B(3)に示
す配合割合で樹脂B(3)を合成した。減圧脱溶剤を
することなく、第1表下段に示すように、固形分
70%、樹脂酸価6、樹脂水酸基価70、数平均分子
量約18000を得た。 (2) 水性樹脂分散体及び塗料の製造 実施例1の(1)と同じ合成装置を用い、第4表の
樹脂1に示す配合比に従い、反応溶剤としてメチ
ルイソブチルケトン20.1部をフラスコに入れ、窒
素ガスを通気しながら、115〜125℃に加熱する。
撹拌しながら、これにアクリル酸6.5部、チタク
リル酸ブチル9.7部、スチレン4.8部、および重合
開始剤のt−ブチルペルオキシベンゾエート0.7
部から成る混合物を約3時間かけて滴下する。約
2時間撹拌後、t−ブチルペルオキシベンゾエー
ト0.1部およびメチルイソブチルケトン0.6部から
成る混合物を約10分を要して滴下した。さらに、
約60分撹拌後、反応物温度を約60℃に冷却し、前
記(1)で合成した樹脂B(3)を46.2部および大豆脂肪
酸グリシジルエステル11.3部を加え、120〜130℃
に昇温し、約4時間反応させた。 反応完了後、80〜100℃で反応溶剤の一部を減
圧除去し、最終的に固形分85%の樹脂B(3)および
樹脂(A)から成る樹脂1を得た。第4表の下段に示
すように、樹脂1は樹脂酸価56、樹脂水酸基価
63、数平均分子量約15000であつた。 このようにして得られた樹脂1の28.2部に、第
2表に示すように、アンモニア水1.5部、ナフテ
ン酸コバルト溶液0.3部、ナフテン酸マンガン溶
液0.1部を加え、均一に混合し、さらに脱イオン
水45.9部を加えて強力卓上撹拌機によつて乳化分
散し、水性樹脂分散体を得た。この水性樹脂分散
体76部にルチル型酸化チタン24.0部を加え、均一
に混合した後、3本ロールミルにて分散し、固形
分約48%の白エナメルを製造した。 この白エナメルに脱イオン水を加えて約1500セ
ンチポイズの粘度に希釈し、実施例1と同じ塗装
条件で塗装し、塗装性、塗膜外観を評価した。 結果を第3表に示す。実施例1および2と同様
に良い結果が得られた。 実施例 4 (1) 樹脂(B)の合成 実施例1の(2)と同じ製造条件で第1表B(4)に示
す配合割合にて樹脂B(4)を合成した。減圧脱溶剤
をすることなく、第1表下段に示すように、固形
分70%、樹脂酸価6、樹脂水酸基価50、数平均分
子量約12000を得た。 (2) 水性樹脂分散体及び塗料の製造 実施例3の(2)と同様の方法で、第4表の樹脂2
に示す配合比によつて、固形分85%、樹脂酸価
53、樹脂水酸基価50、数平均分子量約12000の樹
脂(A)および樹脂B(4)の混合物である樹脂2を得
た。 次に、実施例3と同様の方法で、第2表の組成
比から成る固形分約47%の白エナメルを製造し
た。 この白エナメルに脱イオン水を加えて約1500セ
ンチポイズの粘度に希釈し、実施例1と同じ塗装
条件で塗装し、塗装性、塗膜外観を評価した。そ
の結果を第3表に示す。実施例1〜3と同様に良
い結果が得られた。
INDUSTRIAL APPLICATION FIELD The present invention relates to an aqueous resin dispersion used in a cold-curing aqueous coating composition. Prior Art Emulsion-type paints and water-soluble type paints are mainly used as cold-curable aqueous coating compositions. Emulsion type paints have a relatively high paint solids content and are also rich in thixotropic viscosity, making them suitable for thick film coating, and at the same time drying extremely quickly after coating. However, on the other hand, it has the disadvantage that so-called flash last occurs during the drying process after coating, and the gloss of the cured coating film is low. On the other hand, water-soluble paints are relatively less likely to cause flash rust and have excellent gloss, but they dry slowly, tend to sag during painting, and are difficult to coat with thick films. It has the disadvantage of being unsuitable. Purpose of the Invention The present invention eliminates the drawbacks of the existing room-temperature-curing aqueous coating compositions, combines the features of both types, suppresses the occurrence of flash last, improves the drying properties of the coating film, and improves gloss. An object of the present invention is to provide an aqueous resin dispersion for use in a cold-curable aqueous coating composition that has excellent properties and is suitable for thick film coating. Structure of the Invention The aqueous resin dispersion of the present invention consists of 100 parts of a copolymer resin of an α,β-ethylenically unsaturated acid and another polymerizable unsaturated monomer, and a mixture selected from drying oil fatty acids and semi-drying oil fatty acids. glycidyl esters of unsaturated fatty acids
It contains the following two types of resin (A) and resin (B) obtained by reacting 10 to 200 parts. Resin (A): 20 acid value 150, hydroxyl value 15-150, number average molecular weight 1000-200000 Resin (B): 0 acid value <20, hydroxyl value 15-150, number average molecular weight 1000-200000 Aqueous resin of the present invention The dispersion consists of the resin (A) versus the resin.
The ratio of (B) is in the range of 20/80 to 90/10 in solid content weight ratio, and is obtained by neutralizing with a base and dissolving or suspending it in an aqueous medium. The cold-curable aqueous coating composition using the aqueous resin dispersion of the present invention is characterized by having oxidative curability despite being a so-called acrylic resin, and having both hydrophilic and hydrophobic properties. be. In other words, it compensates for the drawbacks of emulsion-type paints and water-soluble type paints, and has the features of each type. α, β- constituting the copolymer resin in the present invention
Examples of ethylenically unsaturated acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, and fumaric acid. In addition, other polymerizable unsaturated monomers constituting the copolymer resin include the following formula: (R 1 in the formula represents H or CH 3 , R 2 is C o H 2o+1
(where n is an integer of 1n18) represents an alkyl group) and methacrylic esters can be mentioned. Here, the reason for limiting the value of n of the alkyl group in the formula is that when n exceeds 18, monomers that can be used on an industrial scale are extremely limited, and furthermore, the number of monomers that can be used on an industrial scale is extremely limited. Due to small advantages. Also, acrylic acid or methacrylic acid esters having a hydroxyl group, such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, etc.
-Hydroxypropyl, etc. can be used.
In addition, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N-methoxyacrylamide, N-
Methoxymethacrylamide, styrene, vinyltoluene, etc. are used. The copolymer resin that is the raw material of the present invention has the above-mentioned α, β
- The ethylenically unsaturated acid and the other polymerizable unsaturated monomers are combined using known polymerization techniques widely adopted in the industry, i.e., solution polymerization, emulsion polymerization, suspension polymerization, and bulk polymerization. etc. can be manufactured.
However, in consideration of the next reaction between the copolymer resin obtained by this copolymerization reaction and the glycidyl ester of unsaturated fatty acid, the most preferable method among these polymerization methods is the solution polymerization method. Resin (A) and resin (B) constituting the aqueous resin dispersion of the present invention are obtained by dissolving the above copolymer resin in an organic solvent and reacting the carboxyl group with glycidyl ester of unsaturated fatty acid. The unsaturated fatty acids that make up the glycidyl esters of unsaturated fatty acids can be any unsaturated fatty acids that show oxidative hardening properties due to oxygen in the atmosphere, but from the viewpoint of economic efficiency and the abundance of raw materials, natural drying fatty acids are suitable. Oil fatty acids, semi-drying oil fatty acids, or fatty acids obtained by processing them are suitable. That is, fatty acids obtained from linseed oil, tung oil, tall oil, soybean oil, safflower oil, bran oil, oiticica oil, etc. are used. In addition, dehydrated castor oil fatty acids, high diene fatty acids, and the like can be used. These unsaturated fatty acids are used in the reaction with the copolymer resin in the form of glycidyl esters, but in order to form glycidyl esters, a known glycidylation reaction, such as a dehydrochlorination reaction by reacting the fatty acids with epichlorohydrin, is performed. Alternatively, it can be easily produced by a method such as methyl esterifying an unsaturated fatty acid and reacting this with glycidol. For the reaction between the copolymer resin and the glycidyl ester of unsaturated fatty acid, the appropriate amount of the glycidyl ester is 10 to 200 parts per 100 parts of the copolymer resin. If the amount is less than 10 parts, the curing speed due to the oxidative polymerization reaction will be slow and insufficient, and if it exceeds 200 parts, the oxidative curing reaction will proceed excessively, resulting in a loss of durability and flexibility of the coating film, which is not preferable. The above-described reaction between the copolymer resin and the glycidyl ester of an unsaturated fatty acid is carried out by first dissolving the copolymer resin in an organic solvent, adding the glycidyl ester of an unsaturated acid, and stirring with heating. The reaction solvent is not particularly limited as long as it does not react with epoxy groups or carboxyl groups. Usually, ethers, ketones, secondary alcohols, tertiary alcohols,
Esters etc. are suitable. Since the final use form is a water-based paint, it is preferable to use one that is soluble or partially soluble in water. However, if a step is added to remove the reaction solvent by vacuum removal or freeze-drying after the reaction is completed, the water-solubility of the solvent used can be improved. There is no need to consider the presence or absence of Furthermore, even if the solvent is water-soluble, it is required to reduce the content of the organic solvent as much as possible from the viewpoint of preventing air pollution, and for this purpose, it is desirable to remove part or all of the solvent after the reaction. The reaction between the copolymer resin and the glycidyl ester of unsaturated fatty acid is suitably carried out at a reaction temperature of 80 to 160°C and a reaction time of about 30 minutes to 6 hours. Moreover, various epoxy group ring-opening catalysts can be used if necessary. Of the resin (A) and resin (B) obtained by such a reaction, resin (A) has water solubility or water dispersibility in order to stably solubilize or emulsify and disperse resin (B) in an aqueous medium. It is preferable to have the polarity as shown below, and the acid value is suitably in the range of 20 to 150, and the hydroxyl value is in the range of 15 to 150. If the acid value is lower than 20 and the hydroxyl value is lower than 15, the hydrophilicity will be insufficient and it will be difficult to obtain a stable resin dispersion, and if the acid value exceeds 150 and the hydroxyl value is higher than 150, the hydrophilicity will be too large. Excessive build-up can cause flash rust, and the water resistance and corrosion resistance of the coating film may deteriorate.
It impairs weather resistance, etc. The molecular weight of resin (A) is 1000-200000
A range of is suitable. If the value is less than 1000, the molecular weight will be too low and the curing properties and durability of the coating will be poor.
If it exceeds 200,000, the viscosity of the resin becomes too high, making it difficult to obtain an aqueous resin dispersion, and at the same time, the solid content of the paint decreases, making it difficult to ensure a sufficient film thickness during coating. The resin (B) is preferably insoluble in water by itself and highly hydrophobic, with an acid value of 0<20 and a hydroxyl value of 15 to 15.
Has a range of 150. Acid value is 20 or more, hydroxyl value is
When it exceeds 150, the hydrophilicity increases, the effect of forming a dispersed phase is poor, and thick film coating properties and drying properties are poor. still,
The lower limit of the hydroxyl value of 15 is a value inevitably produced by reacting the copolymer resin and the glycidyl ester in the above ratio. The molecular weight of resin (B) is 1000~
200000, and as in the case of resin (A),
If it is less than 1000, the hardness and durability of the coating film will be poor.
If it exceeds 200,000, the resin viscosity will be high and it will be difficult to obtain an aqueous resin dispersion. In the above reaction to obtain resin (A) and resin (B),
Resin (A) and resin (B) can be synthesized individually, or resin (B) can be produced first and a copolymer resin for resin (A) can be added thereto, and then glycidyl for resin (A) can be synthesized. Preferably, esters are added. The ratio of resin (A) to resin (B) is suitably in the range of 20/80 to 90/10 in terms of solid content weight ratio. If the proportion of resin (A) in the total resin is less than 20%, it is difficult to stably suspend resin (B) in the aqueous medium.
Moreover, if it exceeds 90%, the properties will be very similar to those of conventional water-soluble paints, which is undesirable as the effect of the present invention will be diminished. To produce the aqueous resin dispersion of the present invention, the resin
A homogeneous mixture of (A) and resin (B) is neutralized by adding a base corresponding to 50 to 150 mol% of the total carboxyl groups in the mixture, and water is added while stirring. Alternatively, instead of adding a base to the resin mixture, the base can be added to water in advance, and the resin mixture can be added to the water gradually or all at once while stirring.
As the base used for neutralization, alkylamines, alkanolamines, ammonia, etc., which are commonly used in water-based paints, are used. Among these, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, dimethylethanolamine, Diethylethanolamine, ammonia and the like are preferred. Various oxidative polymerization catalysts called driers are generally used in oxidation-curing paints, but dryers can also be added to adjust the drying speed for room-temperature curable aqueous coating compositions using aqueous resin dispersions. Can be done. As a dryer, cobalt, manganese, zirconium, calcium, lead,
Various organic acid salts or complex compounds such as zinc and iron are used. In addition, various additives and auxiliary organic solvents can be added for the purpose of adjusting paintability. A water-based coating composition that cures at room temperature using an aqueous resin dispersion can be used as a clear paint or as an enamel with added pigments, and is suitable for coating water-based materials, metal materials, inorganic materials, and plastic materials. . For coating, spraying, roller coating, brush coating, dipping coating, etc. can be used, and not only drying at room temperature but also forced drying and curing can be performed as necessary. Room-temperature curable aqueous coating compositions using a water-based resin dispersion are made of a water-based resin dispersion of a weather-resistant acrylic resin with an oxidation-polymerizable unsaturated fatty acid attached to the side chain. In addition, due to the effect of the dissolution form, it provides various performances necessary for a room-temperature curing type paint, and forms a coating film particularly excellent in gloss and flash last resistance. Also, when painting,
It has the effect of making it possible to coat thickly and with excellent drying properties. The present invention will be explained below based on Examples and Comparative Examples. In the examples, parts mean parts by weight. Example 1 (1) Synthesis of resin (A) In a glass flask equipped with a thermometer, a reflux condenser, a nitrogen gas inlet tube and a stirrer, the ingredients shown in Table 1, A
According to the compounding ratio shown in (1), 27.7 parts of diethylene glycol dimethyl ether as a reaction solvent is added and heated to 115 to 125°C while passing nitrogen gas. 10.4 parts of acrylic acid, 23.0 parts of butyl methacrylate under stirring
8.9 parts of styrene, 5.3 parts of 2-hydroxyethyl methacrylate, and 1.4 parts of t-butyl peroxybenzoate as a polymerization initiator.
It was added dropwise to the flask over a period of about 4 hours, and after stirring for about 1 hour, t-butyl peroxybenzoate was added.
A mixture of 0.1 part of methyl isobutyl ketone and 2.3 parts of methyl isobutyl ketone was added dropwise over about 10 minutes, and stirring was continued for an additional hour. Thereafter, the reactant was cooled to about 60°C, 20.8 parts of glycidyl ester of soybean oil fatty acid and 0.1 part of triethylamine as a reaction catalyst were added, and the temperature of the reactant was raised to 130°C over about 1 hour.
Keep at 120-130℃ for about 4 hours, then 90-110℃
A portion of the reaction solvent was removed under reduced pressure at °C to finally obtain Resin A (1) with a solid content of 80%. As shown in the lower part of Table 1, resin A (1) has a resin acid value of 72, a resin hydroxyl value of 81,
The number average molecular weight was approximately 13,000. (2) Synthesis of Resin (B) A resin was synthesized by the same method and under the same conditions as the synthesis of A(1), with the blending ratio changed to that shown in Table 1 B(1). After the synthesis, the solvent was removed under reduced pressure to finally obtain resin B(1) having a resin solid content of 80%, a resin acid value of 10, a resin hydroxyl value of 80, and a number average molecular weight of about 16,000. (3) Production of aqueous resin dispersion and paint According to the composition ratio shown in Example 1 in Table 2, 16.9 parts of resin A (1) and 11.3 parts of resin B (1) were obtained in this manner.
1 part was placed in a metal container, heated to approximately 50°C, 1.2 parts of 28% ammonia water was added, thoroughly mixed using a powerful tabletop stirrer, and 47.82 parts of deionized water was gradually added with stirring. , a uniform aqueous resin dispersion was obtained. To this aqueous resin dispersion, 0.28 parts of a cobalt naphthenate solution (4% metal content), 0.10 parts of a manganese naphthenate solution (5% metal content), and 22.4 parts of rutile titanium oxide were added and mixed uniformly.
A white enamel with a pigment to resin ratio of 1:1 and a solids content of about 45% was produced by dispersing in a three-roll mill. The paint obtained as described above was diluted with deionized water so that the viscosity measured using a Burtskfield rotational viscometer at a rotational speed of 6 rpm was approximately 1500 centipoise, and the temperature was 25°C. relative humidity 80
% on a vertically erected degreased iron plate, and the paintability and appearance were evaluated. The results are shown in Table 3. As is clear from Table 3, the paint obtained in this example did not sag or sag, and the maximum dry film that could be coated at one time was 38 μm. Furthermore, after coating to a dry film thickness of 25 μm, the time taken to reach a dry-to-touch state and a semi-cured state was investigated, and it was found to be 60 minutes and 6 hours, respectively. The gloss value of the cured coating film obtained was 87, and no flash luster was observed, giving a pure white and smooth finish. Example 2 (1) Synthesis of resin (A) Under the same manufacturing conditions as in Example 1 (1), Table 1 A (2)
Resin A (2) was synthesized using the reaction solvent, monomer, polymerization initiator, glycidyl ester, and catalyst shown in , and the solvent was removed under reduced pressure and concentrated to a solid content of 80%. The characteristic values of the obtained resin are as shown in the lower part of Table 1. (2) Synthesis of resin (B) Table 1 B (2) under the same manufacturing conditions as in Example 1 (2)
Resin B(2) was synthesized at the blending ratio shown in , and concentrated to a solid content of 80% by removing solvent under reduced pressure. The characteristic values of the obtained resin are as shown in the lower part of Table 1. (3) Production of aqueous resin dispersion and paint Under the same production conditions as in (3) of Example 1, an aqueous resin dispersion with a composition ratio shown in Table 2 and a solid content of approximately 50%
produced white enamel. The paint thus obtained was diluted to about 1500 centipoise by adding deionized water, and applied under the same conditions as in Example 1, at a temperature of 25° C. and a relative humidity of 80%. The results are shown in Table 3. Similar to Example 1, good results were obtained. Example 3 (1) Synthesis of Resin (B) Resin B (3) was synthesized under the same manufacturing conditions as in Example 1 (2) and at the blending ratio shown in Table 1 B(3). As shown in the lower part of Table 1, the solid content was reduced without desolventizing under reduced pressure.
70%, a resin acid value of 6, a resin hydroxyl value of 70, and a number average molecular weight of about 18,000. (2) Production of aqueous resin dispersion and paint Using the same synthesis equipment as in Example 1 (1), 20.1 parts of methyl isobutyl ketone as a reaction solvent was placed in a flask according to the compounding ratio shown in Resin 1 in Table 4. Heat to 115-125°C while bubbling nitrogen gas.
While stirring, add 6.5 parts of acrylic acid, 9.7 parts of butyl titacrylate, 4.8 parts of styrene, and 0.7 parts of t-butyl peroxybenzoate as a polymerization initiator.
of the mixture was added dropwise over a period of approximately 3 hours. After stirring for about 2 hours, a mixture consisting of 0.1 part of t-butyl peroxybenzoate and 0.6 part of methyl isobutyl ketone was added dropwise over about 10 minutes. moreover,
After stirring for about 60 minutes, the temperature of the reaction mixture was cooled to about 60°C, 46.2 parts of resin B (3) synthesized in (1) above and 11.3 parts of soybean fatty acid glycidyl ester were added, and the mixture was heated to 120-130°C.
The temperature was raised to 1, and the reaction was carried out for about 4 hours. After the reaction was completed, a portion of the reaction solvent was removed under reduced pressure at 80 to 100°C to finally obtain Resin 1 consisting of Resin B (3) and Resin (A) with a solid content of 85%. As shown in the lower part of Table 4, resin 1 has a resin acid value of 56 and a resin hydroxyl value of
63, and the number average molecular weight was approximately 15,000. As shown in Table 2, 1.5 parts of ammonia water, 0.3 parts of cobalt naphthenate solution, and 0.1 part of manganese naphthenate solution were added to 28.2 parts of Resin 1 thus obtained, mixed uniformly, and further desorbed. 45.9 parts of ionized water was added and emulsified and dispersed using a powerful tabletop stirrer to obtain an aqueous resin dispersion. 24.0 parts of rutile titanium oxide was added to 76 parts of this aqueous resin dispersion, mixed uniformly, and then dispersed in a three-roll mill to produce white enamel with a solid content of about 48%. Deionized water was added to this white enamel to dilute it to a viscosity of about 1500 centipoise, and it was painted under the same painting conditions as in Example 1, and the paintability and appearance of the paint film were evaluated. The results are shown in Table 3. Similar good results as in Examples 1 and 2 were obtained. Example 4 (1) Synthesis of Resin (B) Resin B (4) was synthesized under the same manufacturing conditions as in Example 1 (2) and at the blending ratio shown in Table 1 B (4). As shown in the lower part of Table 1, a solid content of 70%, a resin acid value of 6, a resin hydroxyl value of 50, and a number average molecular weight of about 12,000 were obtained without performing solvent removal under reduced pressure. (2) Production of aqueous resin dispersion and paint In the same manner as in Example 3 (2), resin 2 in Table 4 was prepared.
With the blending ratio shown in , solid content is 85%, resin acid value
Resin 2, which is a mixture of Resin (A) and Resin B (4), having a resin hydroxyl value of 50 and a number average molecular weight of about 12,000, was obtained. Next, in the same manner as in Example 3, white enamel having a solid content of about 47% and having the composition ratios shown in Table 2 was produced. Deionized water was added to this white enamel to dilute it to a viscosity of about 1500 centipoise, and it was painted under the same painting conditions as in Example 1, and the paintability and appearance of the paint film were evaluated. The results are shown in Table 3. Good results were obtained similarly to Examples 1-3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 比較例 1 樹脂Bは使用せずに、実施例2の(1)で得られた
樹脂A(2)のみを使用して水溶性型塗料を製造し、
本発明の実施例2と比較した。 即ち、樹脂A(2)の21.9部に、28%アンモニア水
2.1部、ナフテン酸コバルト溶液(金属含有率4
%)0.2部、ナフテン酸マンガン溶液(金属含有
率5%)0.1部を加え、強力卓上撹拌機によつて
十分に混合した後、脱イオン水58.2部を加えて、
樹脂水溶液を得た。 この樹脂水溶液にルチル型酸化チタン17.5部を
加え、均一に混合した後、3本ロールミルでにて
分散し、顔料対樹脂比が1対1、固形分が約35%
の白エナメルを製造した。この白エナメルに脱イ
オン水を加えて約1500センチポイズに希釈し、実
施例2と同様の試験を行い、第5表に示すような
結果を得た。 実施例2と比較すると、塗膜光沢、フラツシユ
ラストの発生、平滑性においては問題がないもの
の、タレ限界膜厚が小さく厚膜塗装に適さないこ
と、指触乾燥および半硬化に要する時間が長く乾
燥性および硬化性に劣つていることから、水溶性
型塗料に共通の欠点が認められた。 比較例 2,3 エマルジヨン型の常温硬化型水性塗料の市販品
を2種類入手して、これを脱イオン水で約1500セ
ンチポイズに希釈し、実施例2と同様の試験を実
施した。 比較例2としては水性ワイド白、比較例3とし
ては水性ツヤあり塗料白を用いた。その結果を第
5表に示す。 本発明の実施例(第3表)に比較するとタレ限
界膜厚、指触乾燥時間、半硬化時間および平滑性
においては問題がないものの、塗膜光沢が劣ると
共に、乾燥初期にフラツシユラストが発生し白色
塗膜が部分的にまだらに黄変し、エマルジヨン型
に共通の欠点が認められた。 以上、本発明の水性樹脂分散体を使用した常温
硬化型水性被覆用組成物は、特定範囲の酸価、水
酸基価、数平均分子量を有する樹脂(A)および樹脂
(B)を一定の比率で用いたので、従来の塗料に比較
して、水溶性型およびエマルジヨン型の両性質の
特長を有することができる。
[Table] Comparative Example 1 A water-soluble paint was produced using only Resin A (2) obtained in Example 2 (1) without using Resin B.
A comparison was made with Example 2 of the present invention. That is, 21.9 parts of resin A(2), 28% ammonia water
2.1 parts cobalt naphthenate solution (metal content 4
%), 0.1 part of manganese naphthenate solution (metal content 5%) was added, and after thoroughly mixing with a strong tabletop stirrer, 58.2 parts of deionized water was added.
An aqueous resin solution was obtained. Add 17.5 parts of rutile-type titanium oxide to this aqueous resin solution, mix uniformly, and then disperse in a three-roll mill, resulting in a pigment-to-resin ratio of 1:1 and a solid content of approximately 35%.
produced white enamel. This white enamel was diluted to about 1500 centipoise by adding deionized water and tested in the same manner as in Example 2, with the results shown in Table 5. Compared to Example 2, there are no problems with the coating film gloss, occurrence of flash rust, and smoothness, but the sag limit film thickness is small and it is not suitable for thick film coating, and the time required for drying to the touch and semi-curing is lower. A common shortcoming of water-soluble paints was their long drying and curing properties. Comparative Examples 2 and 3 Two types of commercially available emulsion-type water-based paints that cure at room temperature were obtained, diluted with deionized water to about 1500 centipoise, and tested in the same manner as in Example 2. Comparative Example 2 used water-based wide white, and Comparative Example 3 used water-based glossy paint white. The results are shown in Table 5. Compared to the examples of the present invention (Table 3), there are no problems in sagging limit film thickness, touch dry time, half-curing time, and smoothness, but the film gloss is inferior and flash last occurs in the early drying stage. This caused the white paint film to yellow in spots, a common defect with emulsion types. As described above, the room temperature curable aqueous coating composition using the aqueous resin dispersion of the present invention comprises a resin (A) having an acid value, a hydroxyl value, and a number average molecular weight within a specific range;
Since (B) is used in a certain ratio, it can have the characteristics of both water-soluble type and emulsion type compared to conventional paints.

【表】【table】

Claims (1)

【特許請求の範囲】 1 α,β−エチレン不飽和酸と他の重合性不飽
和単量体との共重合樹脂100部に、乾性油脂肪酸
又は半乾性油脂肪酸から選ばれた不飽和脂肪酸の
グリシジルエステル10〜200部を反応させて得ら
れる。 樹脂(A):20酸価150、水酸基価15〜150、数
平均分子量1000〜200000、および 樹脂(B):0酸価<20、水酸基価15〜150、数
平均分子量1000〜200000 から成り、 樹脂(A)対樹脂(B)の比率が固形分換算重量比で
20/80〜90/10の範囲にあつて、 塩基により中和し、水性媒体中に溶解又は懸濁
させて成る水性樹脂分散体。
[Scope of Claims] 1 100 parts of a copolymer resin of α,β-ethylenically unsaturated acid and other polymerizable unsaturated monomers is added with an unsaturated fatty acid selected from drying oil fatty acids or semi-drying oil fatty acids. Obtained by reacting 10 to 200 parts of glycidyl ester. Resin (A): 20 acid value <20, hydroxyl value 15-150, number average molecular weight 1000-200000, and resin (B): 0 acid value <20, hydroxyl value 15-150, number average molecular weight 1000-200000, The ratio of resin (A) to resin (B) is the solid content weight ratio.
An aqueous resin dispersion in the range of 20/80 to 90/10, which is neutralized with a base and dissolved or suspended in an aqueous medium.
JP21711783A 1983-11-19 1983-11-19 Room temperature curing aqueous coating composition Granted JPS60110765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21711783A JPS60110765A (en) 1983-11-19 1983-11-19 Room temperature curing aqueous coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21711783A JPS60110765A (en) 1983-11-19 1983-11-19 Room temperature curing aqueous coating composition

Publications (2)

Publication Number Publication Date
JPS60110765A JPS60110765A (en) 1985-06-17
JPH0319245B2 true JPH0319245B2 (en) 1991-03-14

Family

ID=16699117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21711783A Granted JPS60110765A (en) 1983-11-19 1983-11-19 Room temperature curing aqueous coating composition

Country Status (1)

Country Link
JP (1) JPS60110765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182955A (en) * 2004-12-28 2006-07-13 Nippon Paint Co Ltd Water-based curing type antifouling coating composition, antifouling coating film and underwater structure
JP2006182956A (en) * 2004-12-28 2006-07-13 Nippon Paint Co Ltd Water-based curing type antifouling coating composition containing antifouling paste
JP2007169449A (en) * 2005-12-21 2007-07-05 Nippon Paint Co Ltd Water-based curable antifouling coating, antifouling coating film, underwater structure, and method for reducing underwater friction

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090894A (en) * 1998-12-18 2000-07-18 Ppg Industries Ohio, Inc. Hydroxy-functional copolymer by reacting epoxy with ≧C8 monocarboxylic acid/dicarboxylic ester copolymer
GB0025212D0 (en) 2000-10-14 2000-11-29 Avecia Bv Vinyl polymer compositions
JP4944302B2 (en) * 2001-01-31 2012-05-30 株式会社ブリヂストン Method for producing thermoplastic elastomer composition
EP3808823A1 (en) * 2019-10-14 2021-04-21 Hexion Research Belgium SA Glycidyl esters of alpha, alpha branched acids from renewable sources and formulation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182955A (en) * 2004-12-28 2006-07-13 Nippon Paint Co Ltd Water-based curing type antifouling coating composition, antifouling coating film and underwater structure
JP2006182956A (en) * 2004-12-28 2006-07-13 Nippon Paint Co Ltd Water-based curing type antifouling coating composition containing antifouling paste
JP2007169449A (en) * 2005-12-21 2007-07-05 Nippon Paint Co Ltd Water-based curable antifouling coating, antifouling coating film, underwater structure, and method for reducing underwater friction

Also Published As

Publication number Publication date
JPS60110765A (en) 1985-06-17

Similar Documents

Publication Publication Date Title
US4151143A (en) Surfactant-free polymer emulsion coating composition and method for preparing same
US4916171A (en) Polymers comprising alkali-insoluble core/alkali-soluble shell and copositions thereof
GB2206591A (en) Aqueous coating compositions
JPH0315507B2 (en)
US4368287A (en) Emulsifier and compositions comprising same
JPH0319245B2 (en)
JP2531124B2 (en) Method for producing resin aqueous dispersion
JP4096345B2 (en) Vinyl-modified epoxy ester and aqueous coating agent
JPS6031347B2 (en) aqueous coating composition
JPS5819303A (en) Synthetic resin aqueous dispersion, manufacture and use
JPS6146503B2 (en)
JPS6038427B2 (en) Aqueous coating composition
JPS62127363A (en) Water paint composition for outer surface of can
JP4466298B2 (en) Aqueous resin composition and paint using the same
JP2003253193A (en) Resin composition for aqueous coating and aqueous coating
JP2000086972A (en) Water-based coating material composition for coating outer surface of can for food
JPS6220230B2 (en)
JPS60156707A (en) Preparation of aqueous resin
JPH11124540A (en) Resin composition for water-base coatings and water-base coating
JPH0131533B2 (en)
JPH03250079A (en) Resin composition for water-based coating material, and water-based coating material prepared therefrom
JPS6059940B2 (en) Method for producing aqueous dispersion coating composition
JPH0768147A (en) Water dispersant and aqueous dispersion
JPH0662805B2 (en) Aqueous composition
JPS6059941B2 (en) Method for producing aqueous dispersion coating composition