JPH03192409A - Non-linear variable temperature compensating circuit - Google Patents

Non-linear variable temperature compensating circuit

Info

Publication number
JPH03192409A
JPH03192409A JP1333510A JP33351089A JPH03192409A JP H03192409 A JPH03192409 A JP H03192409A JP 1333510 A JP1333510 A JP 1333510A JP 33351089 A JP33351089 A JP 33351089A JP H03192409 A JPH03192409 A JP H03192409A
Authority
JP
Japan
Prior art keywords
diode
temperature
linear
thermistor
variable resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1333510A
Other languages
Japanese (ja)
Other versions
JP2789745B2 (en
Inventor
Tadahiko Togashi
富樫 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1333510A priority Critical patent/JP2789745B2/en
Publication of JPH03192409A publication Critical patent/JPH03192409A/en
Application granted granted Critical
Publication of JP2789745B2 publication Critical patent/JP2789745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To easily obtain the optimum temperature compensating voltage of a circuit equipped with a non-linear temperature characteristic by providing a thermistor connected to the anode of a diode and a variable resistor. CONSTITUTION:A diode 2 and a thermistor 5 are connected from a positive power source +V through a resistor 1 and the diode 2 and the thermistor 5 are connected to a variable resistor 3. The sliding terminal of the variable resistor 3 is connected to a negative power source -V. In such a case, for the control voltage, namely, the temperature compensating voltage Vo of a circuit 4 equipped with the non-linear temperature characteristic, a current I to flow to the diode 2 is changed by changing a current I to flow to the thermistor 5 according to the temperature, and therefore, by controlling a current in the non-linear part of a V-I characteristic for the diode 2, inclination can be obtained to each temperature. Then, the inclination of the non-linear characteristic can be controlled as a whole by controlling the sliding terminal of the variable resistor 3. Thus, the optimum temperature compensating voltage can be easily obtained for the circuit equipped with the non-linear temperature characteristic.

Description

【発明の詳細な説明】 口産業上の利用分野〕 本発明は、温度補償回路に関し、温度特性が非直線とな
る回路で、特に非直線が一定しない回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a temperature compensation circuit, and more particularly to a circuit whose temperature characteristics are nonlinear, and particularly to a circuit whose nonlinearity is not constant.

〔従来の技術〕[Conventional technology]

従来、この種の温度補償回路は第2図に示すように正の
電源子Vに接続する抵抗器1を介しタイオード2のアノ
ードと接続され、一方のカソードは直列に抵抗器3を介
し負の電源−■に接続される構成となっていた。更に前
記抵抗器1とダイオード2のアノードとを接続する点の
最適な温度補償電圧■。を非直線の温度特性をもつ回路
4に接続される構成となっていた。
Conventionally, this type of temperature compensation circuit is connected to the anode of a diode 2 through a resistor 1 connected to a positive power source V, as shown in FIG. It was configured to be connected to the power supply -■. Furthermore, the optimum temperature compensation voltage (2) at the point where the resistor 1 and the anode of the diode 2 are connected. was connected to a circuit 4 having non-linear temperature characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の温度補償回路は、第2図のダイオード2
の温度特性より得られる電圧■。が第3図に示すように
点線1のように直線となってしまう。しかし、非直線の
温度特性をもつ回路4の温度対最適な温度補償電圧■。
The conventional temperature compensation circuit described above has a diode 2 in FIG.
The voltage obtained from the temperature characteristics of ■. However, as shown in FIG. 3, it becomes a straight line as shown by dotted line 1. However, the optimum temperature compensation voltage vs. temperature for circuit 4, which has a non-linear temperature characteristic.

の特性は線2のようになっているため、最適な温度補償
電圧v0は得られず非直線の温度特性をもつ回路4の特
性は温度により大幅に劣化するという欠点がある。
Since the characteristics are as shown in line 2, the optimum temperature compensation voltage v0 cannot be obtained, and the characteristics of the circuit 4, which has non-linear temperature characteristics, deteriorate significantly depending on the temperature.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の非直線形可変温度補償回路は、正の電源より抵
抗器を介しダイオードのアノードと接続され一方のカソ
ードは可変抵抗器に接続される。
The non-linear variable temperature compensation circuit of the present invention is connected from a positive power source to the anode of a diode through a resistor, and one cathode is connected to a variable resistor.

更に前記ダイオードのアノードと一方の可変抵抗器の両
端にサーミスタが接続されかつ可変抵抗器の摺動端子は
負の電源と接続されている。つまり、タイオードと並列
接続されたサーミスタの抵抗値が温度で変化することに
よりダイオードに流れる順方向電流つまりダイオードの
V−工時性の非直線部分の電流を変化させ、温度によっ
て傾きを調整し、かつ可変抵抗器により非直線の傾きも
調整できることを有している。
Furthermore, a thermistor is connected to both ends of the anode of the diode and one variable resistor, and the sliding terminal of the variable resistor is connected to a negative power source. In other words, the resistance value of the thermistor connected in parallel with the diode changes with temperature, thereby changing the forward current flowing through the diode, that is, the current in the non-linear part of the diode's V-workability, and adjusting the slope depending on the temperature. Moreover, the non-linear slope can also be adjusted using a variable resistor.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

第1図において、本実施例は正の電源子■より抵抗器1
を介しタイオート2及びサーミスタ5が接続され、各々
のタイオード2及びサーミスタ5は可変抵抗器3に接続
され、一方可変抵抗器の摺動端子は負の電源−■に接続
された構成である。
In Figure 1, in this embodiment, the resistor 1 is connected to the positive power supply terminal ■.
The diode 2 and thermistor 5 are connected through the diode 2 and thermistor 5, and each diode 2 and thermistor 5 are connected to the variable resistor 3, while the sliding terminal of the variable resistor is connected to the negative power supply -2.

前記構成による非直線形可変温度補償回路において、非
直線の温度特性をもつ回路4の制御電圧、つまり、各温
度に対する最適な温度補償電圧■。
In the non-linear variable temperature compensation circuit having the above configuration, the control voltage of the circuit 4 having non-linear temperature characteristics, that is, the optimum temperature compensation voltage (2) for each temperature.

の特性は第3図の線2のように非直線性となっている。The characteristic is non-linear as shown by line 2 in FIG.

この第3図の線2を補償するために、ダイオード゛2に
流れる電流を可変抵抗器3により調整し、ダイオードの
V−I特性の順方向電流の非直線部分の電流■となる様
にする。又、ダイオード2のアノードと前記可変抵抗器
3とに接続されたサーミスタ5の抵抗値がある温度によ
って変化することによりサーミスタ5に流れる電流■1
も変化する。このことから、温度が低い状態になるとサ
ーミスタ5の抵抗値は大きくなってサーミスタ5に流れ
る電流工、は小さくなり、ダイオード2に流れる電流I
は大きくなってダイオード2の■−■特性の温度特性傾
斜は大きくなり、第3図の低い温度の方で傾斜が大きく
なっている。又、逆に温度が高いときはサーミスタ5の
抵抗値は小さくなり、サーミスタ5に流れる電流■1は
大きくなりダイオード2に流れる電流■は小さくなりタ
イオード2のV−I特性の順方向電流の温度特性の傾斜
が小さくなり、第3図の線3の様に温度が高くなるにし
たがって傾きが小さくなってくる。
In order to compensate for this line 2 in Figure 3, the current flowing through the diode 2 is adjusted by the variable resistor 3 so that the current becomes the non-linear portion of the forward current of the diode's V-I characteristic. . Also, the resistance value of the thermistor 5 connected to the anode of the diode 2 and the variable resistor 3 changes depending on a certain temperature, so that a current flows through the thermistor 5 (1).
also changes. From this, when the temperature becomes low, the resistance value of the thermistor 5 increases, the current I flowing through the thermistor 5 decreases, and the current I flowing through the diode 2 decreases.
becomes larger, and the temperature characteristic slope of the ■-■ characteristic of the diode 2 becomes larger, and the slope becomes larger at lower temperatures as shown in FIG. Conversely, when the temperature is high, the resistance value of the thermistor 5 decreases, the current ■1 flowing through the thermistor 5 increases, and the current ■ flowing through the diode 2 decreases, resulting in the temperature of the forward current of the V-I characteristic of the diode 2. The slope of the characteristic becomes smaller as the temperature increases, as shown by line 3 in FIG.

又、非直線を持つ回路4は常に第3図の線2の様に一定
の特性を持っているとは限らない。したがって非直線の
温度特性をもつ回路4の制御電圧つまり最適な温度補償
電圧■。は温度によりサーミスタ5に流れる電流工、を
変化させることによりタイオード2に流れる電流工を変
化させることでダイオード2のV−I特性の非直線部分
の電流を制御することによって各温度に対する傾きが得
られ、かつ負の電源−■と接続する可変抵抗器3の摺動
端子を調整することにより非直線特性全体の傾きも制御
することができる。
Furthermore, the circuit 4 having non-linearity does not always have constant characteristics as shown by the line 2 in FIG. Therefore, the control voltage of the circuit 4 which has non-linear temperature characteristics, that is, the optimum temperature compensation voltage ■. By changing the current flowing through the thermistor 5 depending on the temperature, and by changing the current flowing through the diode 2, the slope for each temperature can be obtained by controlling the current in the non-linear part of the V-I characteristic of the diode 2. The slope of the entire nonlinear characteristic can also be controlled by adjusting the sliding terminal of the variable resistor 3 which is connected to the negative power source -1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ダイオードのアノードと
一方のカソードと接続する可変抵抗器との間に並列接続
されたサーミスタの抵抗値が温度により変化することに
よりダイオードに流れる電流が変化し、ダイオードのV
−I特性の非直線部分の電流を制御することによって傾
きを変化させ、更に負の電源と接続する可変抵抗器の摺
動端子を調整することにより非直線特性全体の傾きも調
整することで非直線の温度特性をもつ回路の最適温度補
償電圧を容易に得ることができる効果がある。
As explained above, in the present invention, the resistance value of the thermistor connected in parallel between the anode of the diode and the variable resistor connected to one cathode changes depending on the temperature, so that the current flowing through the diode changes. V of
- The slope is changed by controlling the current in the non-linear part of the I characteristic, and the slope of the entire non-linear characteristic is also adjusted by adjusting the sliding terminal of the variable resistor connected to the negative power supply. This has the effect of easily obtaining the optimum temperature compensation voltage for a circuit with linear temperature characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は従来
例を示す回路図、第3図は温度対制御電圧の関係を示し
た図である。 l・・・・・・抵抗器、2・・・・・・ダイオード、3
・・・・・・可変抵抗器、4・・・・・・非直線の温度
特性をもつ回路、5・・・・・・サーミスタ、fV・・
・・・・正の電源、−■負の電源、v。・・・・・・制
御電圧、I、1.・・・・・・電流。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing a conventional example, and FIG. 3 is a diagram showing the relationship between temperature and control voltage. l...Resistor, 2...Diode, 3
...Variable resistor, 4...Circuit with non-linear temperature characteristics, 5...Thermistor, fV...
...Positive power supply, -■ Negative power supply, v. ...Control voltage, I, 1.・・・・・・Current.

Claims (1)

【特許請求の範囲】[Claims] 第1の電源が抵抗器を介してダイオードの一方の端子に
接続され、前記ダイオードの他方の端子は可変抵抗器に
接続され、更に前記ダイオードと前記可変抵抗器の直列
回路に並列にサーミスタが接続され、かつ可変抵抗器の
摺動端子は第2の電源と接続されることを特徴とする非
直線可変温度補償回路。
A first power source is connected to one terminal of the diode through a resistor, the other terminal of the diode is connected to a variable resistor, and a thermistor is further connected in parallel to the series circuit of the diode and the variable resistor. and a sliding terminal of the variable resistor is connected to a second power source.
JP1333510A 1989-12-22 1989-12-22 Non-linear variable temperature compensation circuit Expired - Lifetime JP2789745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1333510A JP2789745B2 (en) 1989-12-22 1989-12-22 Non-linear variable temperature compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1333510A JP2789745B2 (en) 1989-12-22 1989-12-22 Non-linear variable temperature compensation circuit

Publications (2)

Publication Number Publication Date
JPH03192409A true JPH03192409A (en) 1991-08-22
JP2789745B2 JP2789745B2 (en) 1998-08-20

Family

ID=18266852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1333510A Expired - Lifetime JP2789745B2 (en) 1989-12-22 1989-12-22 Non-linear variable temperature compensation circuit

Country Status (1)

Country Link
JP (1) JP2789745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002041154A (en) * 2000-07-27 2002-02-08 Nec Eng Ltd Temperature compensating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002041154A (en) * 2000-07-27 2002-02-08 Nec Eng Ltd Temperature compensating circuit

Also Published As

Publication number Publication date
JP2789745B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
JP4380812B2 (en) How to generate a bandgap reference voltage
US3992622A (en) Logarithmic amplifier with temperature compensation means
JPH06282338A (en) Constant current circuit and ramp voltage generating circuit
JPH03192409A (en) Non-linear variable temperature compensating circuit
JPH02228059A (en) Nonlinear temperature compensating circuit
CA1226909A (en) Circuit assembly for temperature-dependent cathode current tracking in traveling-wave tubes
JPH0236728A (en) Gain one current limiter
JPH02260012A (en) Nonlinear temperature compensating circuit
US20060012434A1 (en) Variable gain amplifier
JPS62102310A (en) Power source device
KR100539184B1 (en) Bandgap Voltage Reference Circuit
JPS60254783A (en) Driving system of laser diode
SU497569A1 (en) Voltage regulator with overload protection and short circuit
JPS57121288A (en) Hall element
KR900007848Y1 (en) Vertical deflection circuit for a cathode-ray tube having a vertical image-position adjustment circuit
JPH0856031A (en) Light emission drive circuit of laser diode
JP2007013645A (en) Variable resistance circuit
JPH05108181A (en) Non-linear temperature compensation circuit
EP0112358A1 (en) Current mirror circuit arrangement.
CN118331364A (en) Adjustable voltage-controlled constant current source
SU1725321A1 (en) Device for current protection of power transistor
JPH0530184Y2 (en)
US20030128054A1 (en) Comparator circuit for comparing two electric voltages
JPH0461412A (en) Linealizer circuit for pin diode variable attenuator
JPH0311682B2 (en)