JPH0319239B2 - - Google Patents

Info

Publication number
JPH0319239B2
JPH0319239B2 JP57055487A JP5548782A JPH0319239B2 JP H0319239 B2 JPH0319239 B2 JP H0319239B2 JP 57055487 A JP57055487 A JP 57055487A JP 5548782 A JP5548782 A JP 5548782A JP H0319239 B2 JPH0319239 B2 JP H0319239B2
Authority
JP
Japan
Prior art keywords
water
column
minutes
compound
glucopyranosyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57055487A
Other languages
Japanese (ja)
Other versions
JPS58172400A (en
Inventor
Haruki Takeda
Yoshio Nakagawa
Akira Kiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tanabe Co Ltd
Original Assignee
Tokyo Tanabe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tanabe Co Ltd filed Critical Tokyo Tanabe Co Ltd
Priority to JP57055487A priority Critical patent/JPS58172400A/en
Publication of JPS58172400A publication Critical patent/JPS58172400A/en
Publication of JPH0319239B2 publication Critical patent/JPH0319239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は糖質分解酵素を特異的に阻害する新規
なアミノオリゴ糖誘導体に関し、更に詳しくは下
記一般式〔〕で示されるアミノオリゴ糖誘導体
に関する。 (式中mは0〜12の整数を、nは1〜13の整数
を表わし、且つm+nが1〜13の整数であること
を表わす。) 従来、糖質分解酵素を阻害するアミノオリゴ糖
誘導体としては、アクチノプラネス属に属する菌
株が生産する物質(特公昭54−39474号及び特開
昭52−122342号)、ストレプトマイセス・エス・
ピー・A2396菌株(微工研菌寄第4275号)が生産
する物質(特開昭54−92909号)、アミロスタチン
(特公昭52−21596号、特開昭51−54990号及び特
開昭56−68694号)、ストレプトマイセス・カルブ
ス・バリエタス・TM−521菌株(微工研菌寄第
4283号)が生産する物質(特開昭56−123986号及
び特開昭56−125398号)及びオリゴスタチン
(The Journal of Antibiotics34巻11号1429頁
1981年)等が知られている。本発明はこれらの公
知物質とは化学構造において顕著に相違し、しか
も有用な糖質分解酵素阻害作用を具備する前記一
般式〔〕で示されるアミノオリゴ糖誘導体を提
供するものである。 本発明誘導体〔〕は2.0〜4.0規定希塩酸を用
いて加熱すると、血小板凝集抑制作用を持つ下記
構造式〔〕 で示される化合物(以下NSOと仮称する)及び
グルコース等に加水分解されるという特徴を有す
る。 本発明誘導体〔〕に包含される代表的な化合
物を以下に例示する。各例示化合物の冒頭に付し
た名称は本明細書においてそれら化合物の仮称名
を表わし、m,n及びm+nは前記一般式〔〕
で表わしたものを意味する。 NS1;O−〔4,6−ビスデスオキシ−4−
(2,3−エポキシ−3−ヒドロキシメチル−4,
5,6−トリヒドロキシシクロヘキサン−1−イ
ルアミノ)−α−D−グルコピラノシル〕−(1→
4)−α−D−グルコピラノース(mが0,nが
1の化合物) NS2;O−〔4,6−ビスデスオキシ−4−
(2,3−エポキシ−3−ヒドロキシメチル−4,
5,6−トリヒドロキシシクロヘキサン−1−イ
ルアミノ)−α−D−グルコピラノシル〕−(1→
4)−o−α−D−グルコピラノシル−(1→4)
−α−D−グルコピラノース(mが0、nが2の
化合物) NS3;O−{4,6−ビスデスオキシ−4−
〔5,6−ジヒドロキシ−2,3−エポキシ−4
−(o−α−D−グルコピラノシル−(1→4))−
3−ヒドロキシメチルシクロヘキサン−1−イル
アミノ〕−α−D−グルコピラノシル}−(1→4)
−−α−D−グルコピラノース(mが1,nが1
の化合物) NS4;O−〔4,6−ビスデスオキシ−4−
(2,3−エポキシ−3−ヒドロキシメチル−4,
5,6−トリヒドロキシシクロヘキサン−1−イ
ルアミノ)−α−D−グルコピラノシル〕−(1→
4)−O−α−D−グルコピラノシル−(1→4)
−O−α−D−グルコピラノシル−(1→4)−α
−D−グルコピラノース(mが0,nが3の化合
物) NS5;O−{4,6−ビスデスオキシ−4−
〔5,6−ジヒドロキシ−2,3−エポキシ−4
−(O−α−D−グルコピラノシル−(1→4))−
3−ヒドロキシメチルシクロヘキサン−1−イル
アミノ〕−α−D−グルコピラノシル}−(1→4)
−O−α−D−グルコピラノシル−(1→4)−α
−D−グルコピラノース(mが1,nが2の化合
物) NS6;O−〔4,6−ビスデスオキシ−4−
(2,3−エポキシ−3−ヒドロキシメチル−4,
5,6−トリヒドロキシシクロヘキサン−1−イ
ルアミノ)−α−D−グルコピラノシル〕−(1→
4)−O−α−D−グルコピラノシル−(1→4)
−O−α−D−グルコピラノシル−(1→4)−O
−α−Dグルコピラノシル−(1→4)−α−D−
グルコピラノース(mが0,nが4の化合物) NS7;O−{4,6−ビスデスオキシ−4−
〔5,6−ジヒドロキシ−2,3−エポキシ−4
−(O−α−D−グルコピラノシル−(1→4))−
3−ヒドロキシメチルシクロヘキサン−1−イル
アミノ〕−α−D−グルコピラノシル}−(1→4)
−O−α−D−グルコピラノシル−(1→4)−α
−D−グルコピラノース(mが1,nが3の化合
物) NS8;O−〔4,6−ビスデスオキシ−4−
(2,3−エポキシ−3−ヒドロキシメチル−4,
5,6−トリヒドロキシシクロヘキサン−1−イ
ルアミノ)−α−D−グルコピラノシル〕−(1→
4)−O−α−D−グルコピラノシル−(1→4)
−O−α−D−グルコピラノシル−(1→4)−O
−α−D−グルコピラノシル−(1→4)−O−α
−D−グルコピラノシル−(1→4)−α−D−グ
ルコピラノース(mが0,nが5の化合物) NS9;O−{4,6−ビスデスオキシ−4−
〔5,6−ジヒドロキシ−2,3−エポキシ−4
−(O−α−D−グルコピラノシル−(1→4))−
3−ヒドロキシメチルシクロヘキサン−1−イル
アミノ〕−α−D−グルコピラノシル}−(1→4)
−O−α−D−グルコピラノシル−(1→4)O
−α−D−グルコピラノシル−(1→4)−O−α
−D−グルコピラノシル−(1→4)−α−D−グ
ルコピラノース(mが1,nが4の化合物) NS10;m+nが6の化合物 NS11;m+nが7の化合物 NS12;m+nが8の化合物 NS13;m+nが9の化合物 NS14;m+nが10の化合物 NS15;m+nが11の化合物 NS16;m+nが12の化合物 NS17;m+nが13の化合物 本発明誘導体〔〕の具体的な製造法を以下に
詳述する。 本発明誘導体〔〕を含有する粗粉末の製造
法。 ストレプトマイセス・フラボクロモゲネス種に
属する菌株を培地に接種して2〜5日間種培養
し、ついで得られた培養物を生産用培地に移植し
て3〜8日間本培養する。ストレプトマイセス・
フラボクロモゲネス種に属する代表的な菌株とし
ては特公昭51−11197号公報に記載されているス
トレプトマイセス・フラボクロモゲネスNo.280(微
工研菌寄第934号)があげられる。種培養及び本
培養に使用する培地において、炭素源としてはブ
ドウ糖、シヨ糖、乳糖、麦芽糖、オートミール、
澱粉、糖蜜もしくはグリセリン又はこれらの2種
以上からなる混合物が、窒素源としてはアミノ
酸、コーンステイープリカー、肉エキス、小麦グ
ルテン、ペプトン、カゼイン加水分解物、酵母エ
キス、大豆乳もしくは無機のアンモニウム塩もし
くは硝酸塩又はこれらの2種以上からなる混合物
が適当である。また必要に応じてマグネシウム、
カルシウム、カリウム、ナトリウム、鉄、亜鉛又
はマンガン等のリン酸塩、硫酸塩又は塩酸塩等の
無機塩類を培地に添加してもよい。培養は液体培
養が適当であり、培地の組成は上述の炭素源を
0.1〜10.0%(w/v)に、窒素源を0.1〜5.0
(w/v)に設定するのが適当である。種培養及
び本培養ともに、培養開始時の培地のPH値を6.5
〜8.5に調整し、25〜40℃の温度で好気的条件下
に実施する。培養方法は通気撹拌培養、往復振盪
培養又は回転振盪培養が適当である。 上述の本培養で得られた培養物を遠心分離し、
上澄液を採取する。この遠心分離により菌体及び
不要な固形物を容易に除去できる。 ここで得られた上澄液を塩酸、硫酸又は硝酸等
の鉱酸を用いてPH1.5〜3.0に調整し、これに活性
炭を添加して30分〜2時間撹拌したのち減圧過
又は加圧過し液を得る。添加する活性炭量は
上澄液1に対し1〜10gが適当である。ここで
の処理は吸着による不純物の除去及び脱色を目的
とするものである。 つぎに上述の液を中和したのち、これに再度
活性炭を添加して撹拌する。1〜24時間放置後活
性炭を遠心分離により取する。中和は水酸化ナ
トリウム、水酸化カリウム、炭酸ナトリウム又は
アンモニア等の塩基を用いて行う。活性炭量は
液1に対し20〜50gが適当である。本発明誘導
体〔〕の大部分は活性炭に吸着される。 取した活性炭を水洗し、ついで有機溶媒を10
〜60%の割合で含有する含水有機溶媒を用いて吸
着した本発明誘導体〔〕を溶出する。有機溶媒
としてはメタノール、エタノール、イソプロパノ
ール、ノルマルプロパノール又はアセトン等が適
当である。なお、本明細書において、使用する含
水有機溶媒の水と有機溶媒との混合比率は、特に
断わらない限り含水有機溶媒の全容量に対する有
機溶媒容量の百分率で表示する。 つぎに上述の工程で得られた溶出液をそのまま
又は濃縮したのち強酸性陽イオン交換樹脂に接触
させる。接触方法はバツチ法又はカラム法のいず
れも採用できるがカラム法が好適である。強酸性
陽イオン交換樹脂としてはアンバーライトIR−
118、同IR−120B、同CG−120(以上ローム・ア
ンド・ハース社製)又はダウエツクス50W−X2
(ダウ・ケミカル社製)が適当である。ついで樹
脂を水洗し、吸着した本発明誘導体〔〕を鉱
酸、有機酸又は塩基等を、好適には鉱酸を含有す
る水溶液を用いて溶出し、溶出液を採取する。鉱
酸としては塩酸、硫酸又は硝酸等が、有機酸とし
ては酢酸等が、塩基としては水酸化ナトリウム、
水酸化カリウム、炭酸ナトリウム又はアンモニア
水等が適当である。 得られた溶出液を中和し、脱塩したのち減圧乾
固し、残留物を凍結乾燥して粗粉末を得る。脱塩
は活性炭を用いた吸脱着処理により行う。このよ
うにして得られた粗粉末の比旋光度:〔α〕20 Dは+
150〜+175゜(C=1.0,水)であり、また該粉末
の総重量に対する構成糖含量はフエノール硫酸法
(生化学実験構座4糖質の化学(下)370頁1976年
5月10日東京化学同人発行)では58.3〜81.6%
(W/W)であつた。そのほか該粉末の糖質分解
酵素、例えば細菌液化型α−アミラーゼ及びグル
コアミラーゼに対する阻害活性はそれぞれ48〜
438単位/mg及び315〜4500単位/mgであつた。 粗粉末からの本発明誘導体〔〕の単離精製
法。 粗粉末からm+nが1〜5の化合物、例えば
NS1〜9の単離精製は、強塩基性陰イオン交換樹
脂カラム又は逆相分配カラムを使用する高速液体
クロマトグラフ法により実施できる(以下液クロ
法と略す)。強塩基性陰イオン交換樹脂カラムと
しては日立ゲル#3011−N(日立製作所(株)社製)
を固定相とするカラムが、逆相分配カラムとして
はマイクロボンダパツクCH(ウオーターズ社製)
が適当である。溶出溶媒としてはPH7.0のリン酸
緩衝液1に対してアセトニトリル0.6〜2.5(容量
比)からなる混合液又は65〜80%含水アセトニト
リルが適当である。溶出液の分画は検出器の記録
紙上に抽出される各ピークの保持時間(以下Rt
値と略す)を指標として行うと有利である。 またNS1,2及び4については、粗粉末をゲル
過する方法(以下ゲル過法と略す)又は該粉
末をアセチル化処理したのちシリカゲルカラムク
ロマトグラフ法で分離し、得られる各アセチル化
物を脱アセチル化する方法(以下アセチル化法と
略す)によつても単離精製することができる。ゲ
ル過法で使用するゲルとしてはバイオゲルP−
2(バイオラツド社製)が、溶出溶媒としては水
が適当である。アセチル化法において、粗粉末の
アセチル化はピリジン中で無水酢酸又はアセチル
クロライド等のアセチル化剤を用いて行うのが適
当である。シリカゲルに吸着したアセチル化物の
溶出は酢酸エチルエステルとベンゼンとの混合液
で、それらの混合比率を段階的に調整したものを
順次使用して行う。具体的には、まずNS1のアセ
チル化物を酢酸エチルエステルとベンゼンとの混
合比率が1:3.0〜3.5(容量比;以下同様)の混
合液で溶出し、ついでNS2のアセチル化物を混合
比率が1:2.0〜2.2の混合液で、NS4のアセチル
化物を1:1.5〜1.8の混合液でそれぞれ順次溶出
する。分離溶出したアセチル化物の脱アセチル化
はアンモニアを飽和させたメタノール又はエタノ
ール等を用いて行う。脱アセチル化して得られる
各化合物はそれぞれ別個に強酸性陽イオン交換樹
脂を使用するカラムクロマトグラフ法で精製す
る。 そのほか、NS1及び2については、活性炭カラ
ムクロマトグラフ法によつても粗粉末から有利に
単離精製することができる(以下活性炭法と略
す)。活性炭に吸着したNS1及び2の溶出は、含
水ノルマルブタノールを用い、その混合比率が3
%を上限とする直線濃度勾配溶出法(Linear
Gradient Elution Method)により実施する。 なお上述の液クロ法、ゲル過法、アセチル化
法及び活性炭法において、粗粉末を予め0.5〜1.5
規定希塩酸又は1.0〜4.0規定のトリフルオロ酢酸
水溶液で処理し、粗粉末中のm+nが6〜13の化
合物をm+nが1〜5の化合物及びグルコース又
はマルトース等の中性糖に加水分解し、ついでこ
れを強酸性陽イオン交換樹脂に吸脱着させて精製
し精製粉末としたのち、それらの方法を実施する
と目的化合物の単離精製は更に有利に進行する。 つぎに、m+nが6〜13の化合物、即ちNS10
〜17の単離精製は、粗粉末を活性炭に吸着させ該
活性炭を5〜20%含水エタノールで十分洗浄した
のち、吸着物質を35〜55%含水イソプロパノール
又は40〜60%含水エタノールで溶出し、ついで溶
出された物質を逆相分配カラムを使用する高速液
体クロマトグラフ法で処理することにより実施す
ることができる。活性炭を5〜20%含水エタノー
ルで洗浄することにより、次工程の高速液体クロ
マトグラフ法での処理において不都合な物質、例
えばm+nが1〜5の化合物及び若干の夾雑物を
除去することができ、目的物の単離精製が有利に
達成できる。高速液体クロマトグラフ法で使用す
る逆相分配カラムとしてはマイクロボンダパツク
CHカラムが、また溶出溶媒としては55〜70%含
水アセトニトリルが適当である。逆相分配カラム
からの溶出液の分画は各目的化合物のRt値を指
標として行う。 上述の製造法により得られた各化合物の理化学
的性質は第1表に示す通りであつた。各化合物の
分子量、Rt値及び糖質分解酵素阻害活性の測定
並びに各化合物の構造確認試験は以下のようにし
て行つた。 分子量の測定法 各化合物の分子量は以下の(a)〜(c)に示す方法の
いずれか又は2種以上を組合わせ、得られた結果
を総合的に判断して決定した。 (a) 質量スペクトル法 被検化合物又はそのメチル化物のFD又はEIマ
ススペクトルを測定し、検出した分子イオンピー
クから分子量を算出した。被検化合物のメチル化
物は箱守法(Journal of Biochemistry55巻205
頁1967年)を用いて調製した。 (b) 重合度法 原田らの方法(Biochimica et Biophysica
Ac−ta237巻422頁1971年)により被検化合物の
重合度(Average Degree of polymerization)
を測定し、重合度から分子量を求めた。 (c) ガスクロマトグラフ分析法 被検化合物5.0mgを正確に秤量し、これに2規
定希塩酸2mlを添加して1.0〜3.0時間加熱還流
し、被検化合物をNSOとグルコースに加水分解
する。加水分解後の反応液を水で希釈してPH1.5
に調整し、これをダウエツクス50W−X2(H+型)
のカラム(直径0.6×8cm)に通し、NSOは固定
相に吸着させグルコースはそのまま流出させる。
グルコースの流出は水100mlを用いて行う。固定
相に吸着したNSOは3規定アンモニア水溶液で
完全に溶出する。得られる溶出液中のNSOのモ
ル数はガスクロマトグラフ法で定量する。定量は
絶対検量線法で行う。一方、流出液中のグルコー
スのモル数も同様にガスクロマトグラフ法で定量
する。グルコースの定量値は、予め被検化合物に
相応するマルトオリゴ糖を上述の加水分解条件及
びカラム条件で処理した場合における生成グルコ
ースの損失率を同条件のガスクロマトグラフ法で
測定し、その損失率を基に修正を行う。ガスクロ
マトグラフ法での条件は以下のように設定する。 試薬:TMS−PZ(東京化成工業(株)社製;トリメ
チルシリル化剤) カラム:3%SE−30、クロモソルブW−HP
(60/80)(直径3.0×1000mm;ガスクロ工業
(株)社製) カラム温度:130〜230℃(10℃/分の昇温法によ
る。) 注入部温度:260℃ キヤリヤーガス:ヘリウム 流速:40ml/分 上述のようにして得られたNSO及びグルコー
スのモル数からそれらのモル比を算出し、このモ
ル比から被検化合物の分子量を求めた。なおここ
で得られたモル比は被検化合物の構造確認のため
のデータ≠の一部として使用した。 Rt値測定法 Rt値は高速液体クロマトグラフ法により以下
の条件A又はBのうち少なくとも一方を採用して
測定した。高速液体クロマトグラフとしては日立
638−50型(日立製作所(株)社製)を、検出器とし
てはShodex RISE−11型高感度示差屈折計(昭
和電工(株)社製)を用いた。なお、後述の製造例に
おいて単離精製手段として高速液体クロマトグラ
フ法を採用した際の機器もこれらと同一のものを
採用した。 (a) 条件A カラム:日立#3011−N(直径2.6×500mm) カラム温度:50℃ 溶出溶媒:アセトニトリル−0.02モルリン酸緩衝
液(PH7.0)混合液(容量比3:2) 流速:1.5ml/分 (b) 条件B カラム:マイクロボンダパツクCH(直径3.9×300
mm) カラム温度:20℃ 溶出溶媒:65%含水アセトニトリル 流速:20ml/分 構造確認試験法 (a) NS1〜9の構造確認法 メチル化分析法(化学の領域増刊132号29頁
1981年)に従つて、被検化合物を1,2,3,
5,6−ペンタ−O−メチル−4−モノ−O−ア
セチルグルシトール,2,3,4,6−テトラ−
O−メチル−1,5−ジ−O−アセチルグルシト
ールもしくは2,3,6−トリ−O−メチル−
1,4,5−トリ−O−アセチルグルシトール又
はこれらの混合物に変換し、それらを定量するこ
とにより構造確認を行つた。 (b) NS10〜17の構造確認法 被検化合物30mgを40ミリモル酢酸緩衝液(PH
4.9)1mlに溶解し、これに同種緩衝液2mlに10
mgのβ−アミラーゼ(シグマ社製)を溶解した溶
液を添加し、37℃で6時間反応させる。反応後湯
浴上で5分間煮沸しβ−アミラーゼを失活させ、
ついで反応液を遠心分離して上澄液を採取する。
この上澄液に希塩酸を加えPH1.5に調整し、これ
をダウエツクス50W−X2のカラム(直径1.0×15
cm)に通す。カラムの固定相を十分に水洗したの
ち該固定相に吸着した塩基性物質を2規定アンモ
ニア水溶液で溶出する。得られる溶出液を活性炭
処理により脱塩し、ついで減圧乾固して残留物を
得る。この残留物を2mlの65%含水アセトニトリ
ルに溶解し、これを上述のRt値測定法条件Bで
分析し、β−アミラーゼによつて分解生成された
各塩基性物質のRt値及びそれらの物質の相対的
重量比を測定及び定量する。このRt他値及び相
対的重量比から被検化合物の構造確認を行つた。 糖質分解酵素阻害活性測定法 (a) α−アミラーゼ阻害活性の測定法 可溶性澱粉を0.4%(W/V)含有する0.2モル
酢酸緩衝液(PH5.5)2mlに、水又は被検化合物
の水溶液1mlを加え37℃で15分間放置した後、細
菌液化型α−アミラーゼ(結晶標品、シグマ社
製)を0.00004%(W/V)含有する0.2モル酢酸
緩衝液(PH5.5)1mlを加え、37℃で7.5分間反応
させる。ついで1規定希塩酸5mlを加え室温で10
分間放置する。この反応液より1mlを取出し、
0.0005規定ヨウ素水溶液10mlを加え、660nmにお
ける吸光度を測定する。被検化合物を含まない反
応系において、反応初期の1分間に可溶性澱分の
ヨウ素による発色を10%減少させる酵素量を1単
位として表わし、1単位のα−アミラーゼ活性を
50%阻害する被検化合物の活性を0.5単位(単位
は以下AIUと略す)と定義した。 (b) グルコアミラーゼ阻害活性の測定法 グルコアミラーゼ(リゾープス・ニベウス由来
の結晶標品、生化学工業(株)社製)を0.001%
(W/V)含有する0.2モル酢酸緩衝液(PH5.0)
0.4mlに水又は被検化合物の水溶液0.1mlを加え、
40℃で10分間反応させた後、可溶性澱粉2.5%
(W/V)を含有する0.2規定酢酸緩衝液(PH5.0)
0.5mlを加え、40℃で15分間反応させる。ついで
これに3,5−ジニトロサリチル酸試薬(W.
Rick&H.P.Segbauer,Methods of Enzymatic
Analysis 885頁1975年Varlag Chemie,
Weinheim&Acadmic Press,NewYork,
London)1mlを加えて反応を停止する。該反応
液を10分間沸騰湯浴上で加熱した後、冷却し、10
mlの水を加えて540nmで吸光度を測定する。阻害
物質を含まない反応において、1分間に0.1mgの
グルコースを遊離する酵素量を1単位として表わ
し、1単位のグルコアミラーゼ活性を50%阻害す
る被検化合物の活性を0.5単位(単位は以下GIU
と略す)と定義した。 なお、本発明誘導体〔〕を含有する粗粉末の
糖質分解酵素阻害活性の測定もここで述べた方法
で行つた。
The present invention relates to a novel amino-oligosaccharide derivative that specifically inhibits carbohydrate-degrading enzymes, and more particularly to an amino-oligosaccharide derivative represented by the following general formula []. (In the formula, m represents an integer of 0 to 12, n represents an integer of 1 to 13, and m+n represents an integer of 1 to 13.) Conventionally, aminooligosaccharide derivatives that inhibit carbohydrate degrading enzymes Examples include substances produced by strains belonging to the genus Actinoplanes (Japanese Patent Publication No. 54-39474 and Japanese Patent Application Laid-open No. 122342/1972), Streptomyces S.
Substances produced by the P.A2396 strain (Feikoken Bacterium No. 4275) (Japanese Unexamined Patent Publication No. 1983-92909), amylostatin (Japanese Unexamined Patent Publication No. 1983-21596, Unexamined Japanese Patent Publications No. 51-54990, and Unexamined Japanese Patent Unexamined Publications No. 1983) -68694), Streptomyces calbus varietus TM-521 strain
4283) (Japanese Patent Application Laid-open Nos. 123986/1986 and 125398/1982) and oligostatin (The Journal of Antibiotics Vol. 34, No. 11, p. 1429)
1981) are known. The present invention provides an amino-oligosaccharide derivative represented by the above general formula [], which is significantly different in chemical structure from these known substances and has a useful carbohydrate-degrading enzyme inhibitory effect. The derivative of the present invention [] has the following structural formula [] which has a platelet aggregation inhibiting effect when heated using 2.0-4.0 N dilute hydrochloric acid. It has the characteristic that it is hydrolyzed into the compound represented by (hereinafter tentatively referred to as NSO) and glucose. Typical compounds included in the derivatives of the present invention [] are illustrated below. The names given at the beginning of each exemplified compound represent the tentative names of those compounds in this specification, and m, n and m+n are the general formulas []
means what is expressed in . NS1; O-[4,6-bisdesoxy-4-
(2,3-epoxy-3-hydroxymethyl-4,
5,6-trihydroxycyclohexane-1-ylamino)-α-D-glucopyranosyl]-(1→
4) -α-D-glucopyranose (compound where m is 0 and n is 1) NS2;O-[4,6-bisdesoxy-4-
(2,3-epoxy-3-hydroxymethyl-4,
5,6-trihydroxycyclohexane-1-ylamino)-α-D-glucopyranosyl]-(1→
4) -o-α-D-glucopyranosyl-(1→4)
-α-D-glucopyranose (compound where m is 0 and n is 2) NS3; O-{4,6-bisdesoxy-4-
[5,6-dihydroxy-2,3-epoxy-4
-(o-α-D-glucopyranosyl-(1→4))-
3-Hydroxymethylcyclohexane-1-ylamino]-α-D-glucopyranosyl}-(1→4)
--α-D-glucopyranose (m is 1, n is 1
compound) NS4; O-[4,6-bisdesoxy-4-
(2,3-epoxy-3-hydroxymethyl-4,
5,6-trihydroxycyclohexane-1-ylamino)-α-D-glucopyranosyl]-(1→
4) -O-α-D-glucopyranosyl-(1→4)
-O-α-D-glucopyranosyl-(1→4)-α
-D-glucopyranose (compound where m is 0 and n is 3) NS5; O-{4,6-bisdesoxy-4-
[5,6-dihydroxy-2,3-epoxy-4
-(O-α-D-glucopyranosyl-(1→4))-
3-Hydroxymethylcyclohexane-1-ylamino]-α-D-glucopyranosyl}-(1→4)
-O-α-D-glucopyranosyl-(1→4)-α
-D-glucopyranose (compound where m is 1 and n is 2) NS6;O-[4,6-bisdesoxy-4-
(2,3-epoxy-3-hydroxymethyl-4,
5,6-trihydroxycyclohexane-1-ylamino)-α-D-glucopyranosyl]-(1→
4) -O-α-D-glucopyranosyl-(1→4)
-O-α-D-glucopyranosyl-(1→4)-O
-α-D glucopyranosyl-(1→4)-α-D-
Glucopyranose (compound where m is 0 and n is 4) NS7; O-{4,6-bisdesoxy-4-
[5,6-dihydroxy-2,3-epoxy-4
-(O-α-D-glucopyranosyl-(1→4))-
3-Hydroxymethylcyclohexane-1-ylamino]-α-D-glucopyranosyl}-(1→4)
-O-α-D-glucopyranosyl-(1→4)-α
-D-glucopyranose (compound where m is 1 and n is 3) NS8;O-[4,6-bisdesoxy-4-
(2,3-epoxy-3-hydroxymethyl-4,
5,6-trihydroxycyclohexane-1-ylamino)-α-D-glucopyranosyl]-(1→
4) -O-α-D-glucopyranosyl-(1→4)
-O-α-D-glucopyranosyl-(1→4)-O
-α-D-glucopyranosyl-(1→4)-O-α
-D-glucopyranosyl-(1→4)-α-D-glucopyranose (compound where m is 0 and n is 5) NS9; O-{4,6-bisdesoxy-4-
[5,6-dihydroxy-2,3-epoxy-4
-(O-α-D-glucopyranosyl-(1→4))-
3-Hydroxymethylcyclohexane-1-ylamino]-α-D-glucopyranosyl}-(1→4)
-O-α-D-glucopyranosyl-(1→4)O
-α-D-glucopyranosyl-(1→4)-O-α
-D-glucopyranosyl-(1→4)-α-D-glucopyranose (compound where m is 1 and n is 4) NS10; compound where m+n is 6 NS11; compound where m+n is 7 NS12; compound where m+n is 8 NS13 ; Compound where m+n is 9 NS14; Compound where m+n is 10 NS15; Compound where m+n is 11 NS16; Compound where m+n is 12 NS17; Compound where m+n is 13 The specific manufacturing method of the derivative of the present invention [] is detailed below. do. A method for producing coarse powder containing the derivative of the present invention []. A strain belonging to the species Streptomyces flavochromogenes is inoculated into a medium and cultured for 2 to 5 days, and then the resulting culture is transferred to a production medium and main culture is carried out for 3 to 8 days. Streptomyces
A representative strain belonging to the Flavochromogenes species is Streptomyces Flavochromogenes No. 280 (Feikoken Bacterial Serial No. 934), which is described in Japanese Patent Publication No. 11197/1983. In the medium used for seed culture and main culture, carbon sources include glucose, sucrose, lactose, maltose, oatmeal,
Starch, molasses or glycerin or a mixture of two or more of these, nitrogen sources include amino acids, cornstarch liquor, meat extract, wheat gluten, peptone, casein hydrolyzate, yeast extract, soy milk or inorganic ammonium salts. Alternatively, nitrates or a mixture of two or more of these are suitable. Magnesium, if necessary,
Inorganic salts such as phosphates, sulfates or hydrochlorides of calcium, potassium, sodium, iron, zinc or manganese may be added to the medium. Liquid culture is suitable for culture, and the composition of the medium is based on the carbon source mentioned above.
0.1-10.0% (w/v), nitrogen source 0.1-5.0%
(w/v) is appropriate. For both seed culture and main culture, the pH value of the medium at the start of culture is 6.5.
Carry out under aerobic conditions at a temperature of 25-40 °C, adjusted to ~8.5 °C. Appropriate culture methods include aerated agitation culture, reciprocating shaking culture, or rotary shaking culture. Centrifuge the culture obtained in the main culture described above,
Collect the supernatant. By this centrifugation, bacterial cells and unnecessary solid matter can be easily removed. The supernatant liquid obtained here was adjusted to pH 1.5 to 3.0 using mineral acids such as hydrochloric acid, sulfuric acid, or nitric acid, and activated carbon was added to this and stirred for 30 minutes to 2 hours, followed by vacuum or pressurization. Obtain the filtrate. The appropriate amount of activated carbon to be added is 1 to 10 g per 1 part of the supernatant liquid. The purpose of this treatment is to remove impurities and decolorize by adsorption. Next, after neutralizing the above liquid, activated carbon is added thereto again and stirred. After standing for 1 to 24 hours, the activated carbon is collected by centrifugation. Neutralization is carried out using a base such as sodium hydroxide, potassium hydroxide, sodium carbonate or ammonia. The appropriate amount of activated carbon is 20 to 50 g per liquid. Most of the derivative of the present invention [ ] is adsorbed on activated carbon. The collected activated carbon was washed with water, and then an organic solvent was added for 10 minutes.
The adsorbed derivative of the present invention [ ] is eluted using a water-containing organic solvent containing ~60%. Suitable organic solvents include methanol, ethanol, isopropanol, normal propanol, and acetone. In this specification, the mixing ratio of water and organic solvent in the water-containing organic solvent used is expressed as a percentage of the organic solvent volume to the total volume of the water-containing organic solvent, unless otherwise specified. Next, the eluate obtained in the above step is brought into contact with a strongly acidic cation exchange resin, either as it is or after being concentrated. As the contact method, either a batch method or a column method can be employed, but the column method is preferable. Amberlite IR- is a strong acidic cation exchange resin.
118, IR-120B, CG-120 (manufactured by Rohm and Haas) or Dowex 50W-X2
(manufactured by Dow Chemical Company) is suitable. The resin is then washed with water, and the adsorbed derivative of the present invention [] is eluted using a mineral acid, organic acid, or base, preferably an aqueous solution containing a mineral acid, and the eluate is collected. Mineral acids include hydrochloric acid, sulfuric acid, or nitric acid, organic acids include acetic acid, and bases include sodium hydroxide,
Potassium hydroxide, sodium carbonate or aqueous ammonia are suitable. The obtained eluate is neutralized, desalted, and dried under reduced pressure, and the residue is freeze-dried to obtain a coarse powder. Desalination is performed by adsorption/desorption treatment using activated carbon. Specific rotation of the coarse powder thus obtained: [α] 20 D is +
150 to +175° (C = 1.0, water), and the constituent sugar content based on the total weight of the powder was determined by the phenol sulfuric acid method (Biochemistry Experimental Structure 4 Chemistry of Carbohydrates (Part 2), page 370, May 10, 1976) (Published by Tokyo Kagaku Doujin) 58.3-81.6%
It was (W/W). In addition, the inhibitory activity of the powder against carbohydrate degrading enzymes, such as bacterial liquefaction α-amylase and glucoamylase, is 48 to 48%, respectively.
They were 438 units/mg and 315-4500 units/mg. Method for isolating and purifying the derivative of the present invention [] from crude powder. Compounds with m+n of 1 to 5 from coarse powder, e.g.
Isolation and purification of NS1-9 can be carried out by high performance liquid chromatography using a strongly basic anion exchange resin column or a reversed phase distribution column (hereinafter abbreviated as liquid chromatography). As a strong basic anion exchange resin column, Hitachi Gel #3011-N (manufactured by Hitachi, Ltd.)
Microbondapak CH (manufactured by Waters) is a reverse phase distribution column.
is appropriate. As the elution solvent, a mixture of 0.6 to 2.5 (volume ratio) of acetonitrile to 1 part of phosphate buffer having a pH of 7.0 or 65 to 80% aqueous acetonitrile is suitable. The fractionation of the eluate is determined by the retention time (hereinafter Rt) of each peak extracted on the detector recording paper.
It is advantageous to use the value (abbreviated as "value") as an index. Regarding NS1, 2, and 4, the method is to gel-filter the coarse powder (hereinafter abbreviated as gel-filtration method) or to acetylate the powder and then separate it by silica gel column chromatography, and deacetylate each acetylated product. It can also be isolated and purified by a method of oxidation (hereinafter abbreviated as acetylation method). The gel used in the gel filtration method is Biogel P-
2 (manufactured by Bio-Rad), but water is suitable as the elution solvent. In the acetylation method, the acetylation of the coarse powder is suitably carried out in pyridine using an acetylating agent such as acetic anhydride or acetyl chloride. Elution of the acetylated product adsorbed on the silica gel is carried out using a mixed solution of ethyl acetate and benzene, the mixing ratio of which is adjusted in stages. Specifically, first, the acetylated product of NS1 was eluted with a mixture of acetic acid ethyl ester and benzene at a mixing ratio of 1:3.0 to 3.5 (volume ratio; the same applies hereinafter), and then the acetylated product of NS2 was eluted with a mixed solution of ethyl acetate and benzene at a mixing ratio of 1:3.0 to 3.5. : Sequentially elute the acetylated product of NS4 with a mixture of 2.0 to 2.2 and 1:1.5 to 1.8. Deacetylation of the separated and eluted acetylated product is performed using methanol or ethanol saturated with ammonia. Each compound obtained by deacetylation is separately purified by column chromatography using a strongly acidic cation exchange resin. In addition, NS1 and 2 can be advantageously isolated and purified from crude powder by activated carbon column chromatography (hereinafter abbreviated as activated carbon method). For elution of NS1 and 2 adsorbed on activated carbon, water-containing normal butanol was used, and the mixing ratio was 3.
Linear concentration gradient elution method with an upper limit of %
Gradient Elution Method). In addition, in the above-mentioned liquid chromatography method, gel filtration method, acetylation method, and activated carbon method, the coarse powder is
Treatment with normal dilute hydrochloric acid or 1.0 to 4.0 normal trifluoroacetic acid aqueous solution to hydrolyze compounds with m+n of 6 to 13 in the coarse powder into compounds with m+n of 1 to 5 and neutral sugars such as glucose or maltose, and then If this is adsorbed and desorbed onto a strongly acidic cation exchange resin to be purified into a purified powder and then those methods are carried out, the isolation and purification of the target compound will proceed more advantageously. Next, a compound where m+n is 6 to 13, that is, NS10
The isolation and purification of ~17 involves adsorbing the crude powder onto activated carbon, thoroughly washing the activated carbon with 5-20% aqueous ethanol, and then eluting the adsorbed substance with 35-55% aqueous isopropanol or 40-60% aqueous ethanol. This can then be carried out by treating the eluted material with high performance liquid chromatography using a reverse phase partition column. By washing the activated carbon with 5 to 20% aqueous ethanol, it is possible to remove substances that are inconvenient in the next step of high performance liquid chromatography, such as compounds with m+n of 1 to 5 and some impurities. Isolation and purification of the target product can be advantageously achieved. Micro Bonder Pack is a reversed phase distribution column used in high performance liquid chromatography.
A CH column is suitable, and acetonitrile containing 55 to 70% water is suitable as the elution solvent. Fractionation of the eluate from the reverse phase distribution column is performed using the Rt value of each target compound as an index. The physicochemical properties of each compound obtained by the above production method were as shown in Table 1. Measurement of the molecular weight, Rt value, and carbohydrate degrading enzyme inhibitory activity of each compound, as well as a structure confirmation test for each compound, were performed as follows. Method for Measuring Molecular Weight The molecular weight of each compound was determined by using any of the methods shown in (a) to (c) below or by combining two or more methods and comprehensively judging the obtained results. (a) Mass spectrometry FD or EI mass spectra of the test compound or its methylated product were measured, and the molecular weight was calculated from the detected molecular ion peak. The methylated product of the test compound was determined using the Hakomori method (Journal of Biochemistry Vol. 55, 205).
p. 1967). (b) Degree of polymerization method Harada et al.'s method (Biochimica et Biophysica
AC-TA Vol. 237, p. 422, 1971) to determine the average degree of polymerization of the test compound.
was measured, and the molecular weight was determined from the degree of polymerization. (c) Gas chromatographic analysis method: Accurately weigh 5.0 mg of the test compound, add 2 ml of 2N diluted hydrochloric acid, and heat under reflux for 1.0 to 3.0 hours to hydrolyze the test compound into NSO and glucose. Dilute the reaction solution after hydrolysis with water to PH1.5
Adjust this to Dowex 50W−X2 (H + type)
column (diameter 0.6 x 8 cm), NSO is adsorbed on the stationary phase and glucose is allowed to flow out as is.
Glucose efflux is performed using 100 ml of water. NSO adsorbed on the stationary phase is completely eluted with a 3N ammonia aqueous solution. The number of moles of NSO in the resulting eluate is determined by gas chromatography. Quantification is performed using the absolute calibration curve method. On the other hand, the number of moles of glucose in the effluent is similarly determined by gas chromatography. The quantitative value of glucose is determined by measuring in advance the loss rate of glucose produced when a maltooligosaccharide corresponding to the test compound is treated under the above-mentioned hydrolysis conditions and column conditions using a gas chromatography method under the same conditions, and based on the loss rate. Corrections will be made. Conditions for gas chromatography are set as follows. Reagent: TMS-PZ (manufactured by Tokyo Kasei Kogyo Co., Ltd.; trimethylsilylating agent) Column: 3% SE-30, Chromosolve W-HP
(60/80) (Diameter 3.0 x 1000mm; Gascro Industries
Co., Ltd.) Column temperature: 130 to 230°C (by heating method of 10°C/min) Injection part temperature: 260°C Carrier gas: helium Flow rate: 40ml/min NSO and glucose obtained as above Their molar ratio was calculated from the number of moles of , and the molecular weight of the test compound was determined from this molar ratio. The molar ratio obtained here was used as part of the data for confirming the structure of the test compound. Rt value measurement method The Rt value was measured by high performance liquid chromatography using at least one of the following conditions A or B. Hitachi as a high performance liquid chromatograph
A model 638-50 (manufactured by Hitachi, Ltd.) was used, and a Shodex RISE-11 high-sensitivity differential refractometer (manufactured by Showa Denko K.K.) was used as a detector. The same equipment was used when high performance liquid chromatography was used as the isolation and purification method in the production examples described below. (a) Condition A Column: Hitachi #3011-N (diameter 2.6 x 500 mm) Column temperature: 50°C Elution solvent: Acetonitrile-0.02M phosphate buffer (PH7.0) mixture (volume ratio 3:2) Flow rate: 1.5 ml/min (b) Condition B Column: Microbondapak CH (diameter 3.9 x 300
mm) Column temperature: 20℃ Elution solvent: 65% aqueous acetonitrile Flow rate: 20ml/min Structural confirmation test method (a) Structure confirmation method for NS1 to 9 Methylation analysis method (Chemistry area special issue 132, page 29
(1981), test compounds were 1, 2, 3,
5,6-penta-O-methyl-4-mono-O-acetylglucitol, 2,3,4,6-tetra-
O-methyl-1,5-di-O-acetylglucitol or 2,3,6-tri-O-methyl-
The structure was confirmed by converting it into 1,4,5-tri-O-acetylglucitol or a mixture thereof and quantifying it. (b) Structure confirmation method for NS10-17 30 mg of the test compound was added to 40 mmol acetate buffer (PH
4.9) Dissolve in 1ml and add 10ml to 2ml of homogeneous buffer.
A solution containing mg of β-amylase (manufactured by Sigma) is added and reacted at 37°C for 6 hours. After the reaction, boil for 5 minutes on a hot water bath to inactivate β-amylase.
The reaction solution is then centrifuged to collect the supernatant.
Add dilute hydrochloric acid to this supernatant to adjust the pH to 1.5, and apply it to a Dowex 50W-X2 column (diameter 1.0 x 15
cm). After thoroughly washing the stationary phase of the column with water, the basic substance adsorbed on the stationary phase is eluted with a 2N aqueous ammonia solution. The resulting eluate is desalted by treatment with activated carbon and then dried under reduced pressure to obtain a residue. This residue was dissolved in 2 ml of 65% aqueous acetonitrile, and analyzed under the Rt value measurement method condition B described above. Measure and quantify relative weight ratios. The structure of the test compound was confirmed from this Rt value and relative weight ratio. Method for measuring carbohydrate degrading enzyme inhibitory activity (a) Method for measuring α-amylase inhibitory activity Add water or a test compound to 2 ml of 0.2 molar acetate buffer (PH5.5) containing 0.4% (W/V) soluble starch. After adding 1 ml of the aqueous solution and leaving it for 15 minutes at 37°C, add 1 ml of 0.2 M acetate buffer (PH5.5) containing 0.00004% (W/V) of bacterial liquefied α-amylase (crystal sample, manufactured by Sigma). Add and react at 37°C for 7.5 minutes. Next, add 5 ml of 1N diluted hydrochloric acid and stir at room temperature for 10 minutes.
Leave for a minute. Remove 1 ml from this reaction solution,
Add 10 ml of 0.0005N iodine aqueous solution and measure the absorbance at 660 nm. In a reaction system that does not contain the test compound, one unit is the amount of enzyme that reduces the iodine-induced coloration of soluble starch by 10% during the initial minute of the reaction, and one unit of α-amylase activity is expressed as one unit.
The activity of the test compound inhibiting 50% was defined as 0.5 unit (hereinafter abbreviated as AIU). (b) Method for measuring glucoamylase inhibitory activity Glucoamylase (crystal preparation derived from Rhizopus niveus, manufactured by Seikagaku Corporation) at 0.001%
(W/V) containing 0.2M acetate buffer (PH5.0)
Add water or 0.1 ml of an aqueous solution of the test compound to 0.4 ml,
Soluble starch 2.5% after reacting at 40℃ for 10 minutes
0.2N acetate buffer (PH5.0) containing (W/V)
Add 0.5 ml and react at 40°C for 15 minutes. This was then added with 3,5-dinitrosalicylic acid reagent (W.
Rick & H.P. Segbauer, Methods of Enzymatic
Analysis 885 pages 1975 Varlag Chemie,
Weinheim & Academic Press, New York,
London) to stop the reaction. The reaction solution was heated on a boiling water bath for 10 minutes, then cooled and heated for 10 minutes.
Add ml of water and measure the absorbance at 540 nm. In a reaction that does not contain inhibitors, the amount of enzyme that releases 0.1 mg of glucose per minute is expressed as 1 unit, and the activity of the test compound that inhibits 50% of 1 unit of glucoamylase activity is 0.5 units (hereinafter referred to as GIU).
(abbreviated as). The carbohydrate degrading enzyme inhibitory activity of the crude powder containing the derivative of the present invention [] was also measured by the method described here.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 つぎに本発明誘導体〔〕の糖質分解酵素阻害
活性に基づく薬理効果をNS2の試験例をもつて示
す。 血糖低下作用 24時間絶食させたウイスター系ラツト12匹を用
いて澱粉投与後のラツトの血糖上昇に対するNS2
の抑制作用を試験した。ラツトを6匹ずつ2群に
分け、一方には澱粉2g/Kgを、他方には澱粉2
g/KgとNS250mg/Kgを経口投与し、2時間経過
後に採血して血液中のグルコース量をオルトトル
イジンホウ酸法(臨床病理12巻434頁1964年)に
より測定した。結果は第2表に示す通りであつ
た。
[Table] Next, the pharmacological effects of the derivative of the present invention [] based on the carbohydrate degrading enzyme inhibitory activity are shown using a test example of NS2. Hypoglycemic effect: Using 12 Wistar rats fasted for 24 hours, we investigated the effect of NS2 on the rise in blood sugar in rats after starch administration.
The inhibitory effect of The rats were divided into 2 groups of 6 rats each, one group received 2 g/kg of starch, and the other group received 2 g/kg of starch.
g/Kg and 250 mg/Kg of NS were orally administered, blood was collected after 2 hours, and the amount of glucose in the blood was measured by the orthotoluidine borate method (Clinical Pathology, Vol. 12, p. 434, 1964). The results were as shown in Table 2.

【表】 脂質低下作用 24時間絶食させたウイスター系ラツト12匹を用
いてNS2の脂質低下作用を試験した。ラツトを6
匹ずつ2群に分け、一方にはトライトンWR−
1339(シグマ社製)400mg/Kgを皮下投与し、他方
にはトライトンWR−1339 400mg/Kgを皮下投与
したのち1時間後にNS2 10mg/Kgを経口投与し、
ついで24時間経過後に同量のNS2を再度経口投与
した。トライトンWR−1339投与後36時間経過し
たのちに採血し、血液中の総コレステロール量を
をザツク・ヘンリー法(Zak−Henly法;
American Jounnal of Clinical Pathology27巻
583頁1957年)に準じた方法で測定した。結果は
第3表に示す通りであつた。
[Table] Lipid-lowering effect The lipid-lowering effect of NS2 was tested using 12 Wistar rats that had been fasted for 24 hours. 6 rats
Divide the fish into two groups, one with Triton WR-
1339 (manufactured by Sigma) 400 mg/Kg was administered subcutaneously, and on the other hand, Triton WR-1339 400 mg/Kg was administered subcutaneously, and 1 hour later, NS2 10 mg/Kg was administered orally.
Then, 24 hours later, the same amount of NS2 was orally administered again. Blood was collected 36 hours after administration of Triton WR-1339, and the total amount of cholesterol in the blood was measured using the Zak-Henly method.
American Journal of Clinical Pathology Volume 27
583, p. 1957). The results were as shown in Table 3.

【表】 以上の試験例から明らかなように、本発明誘導
体〔〕は糖尿病、高脂血症又は肥満等の治療薬
又は予防薬として有用な化合物である。 本発明を製造例及び参考例をもつて更に説明す
る。 製造例 1 粗粉末の製造 オートミール3.0%(W/V)、ペプトン1.0%
(W/V)及び塩化ナトリウム0.5%(W/V)を
含有するPH7.8に調整された無菌の液体培地にス
トレプトマイセス・フラボクロモゲネスNo.280菌
を接種し、約30℃で2日間回転振盪培養し種培養
物1630mlを得た。この種培養物を予め無菌処理さ
れた上述の液体培地と同様な組成を有する生産用
培地150に移植し、300容量のジヤーフアーメ
ンターを用いて約30℃で6日間本培養した。本培
養開始時のPHは7.4、通気量は150/分、回転速
度は250r.p.m.で行つた。 つぎに、本培養して得られた培養物を遠心分離
し、上澄液133を得た。この上澄液を12規定希
硫酸を用いてPH2.5に調整し、これに670gの活性
炭を添加して1時間撹拌したのち加圧過し、
液131を得た。 この液を10規定水酸化ナトリウム水溶液で中
和し、これに4600gの活性炭を添加して撹拌し、
12時間放置した。放置後活性炭を遠心分離により
取した。 取した活性炭を水洗し、ついで吸着物質を50
%含水イソプロパノールで溶出し、溶出液104
を採取した。この溶出液をダウエツクス50W−
X2(H+型)のカラム(直径8.0×100cm)に通し、
固定相を十分水洗いしたのち吸着した物質を2規
定希塩酸で溶出し、溶出液21を採取した。 この溶出液を10規定水酸化ナトリウム水溶液を
用いて中和し、活性炭処理して脱塩したのち減圧
乾固し、ついで凍結乾燥して本発明化合物〔〕
を含有する淡黄色の粗粉末148gを得た。粗粉末
の理化学的性質は以下の通りであつた。 比旋光度;〔α〕20 D=+163゜(C=1.0,水) 総重量に対する構成糖含量;72.6% 糖質分解酵素阻害活性;309AIU・mg 1412GIU/mg NS1〜9の単離精製(液クロ法) 上述の粗粉末20.0gを1規定希塩酸200mlに溶
解し、約128℃で10分間撹拌し加水分解を行つた。
得られた反応液を水で希釈し、PH1.5に調整し、
これをダウエツクス50W−X2(H+型)のカラム
(直径4.0×25cm)に通したのち十分に水洗いし
た。カラムの固定相に吸着した物質を1規定アン
モニア水溶液で溶出し、これを減圧乾固したとこ
ろ精製粉末7.2gを得た。この精製粉末を約200ml
の水に溶解し、これを活性炭カラム(直径6.0×
50cm)に通した。固定相を5%含水エタノールで
洗浄し、ついで固定相に吸着した物質を40%含水
エタノールで溶出した。得られた溶出液を減圧乾
固し、白色粉末3.8gを得た。この粉末を70%含
水アセトニトリル55mlに溶解し、これをマイクロ
ボンダパツクCHカラム(直径3.9×300mm)を使
用する高速液体クロマトグラフ法(流速2.0ml/
分、溶出溶媒70%含水アセトニトリル)により
Rt値を指標として分画した。指標としたRt値は
それぞれ4.8分、5.9分、6.9分、7.7分、8.9分、9.9
分、11.2分、12.2分及び14.5分であつた。得られ
た各分画液を各々約5ml容量になるまで減圧濃縮
し、ついで遠心分離して上澄液を採取した。この
各上澄液を減圧乾固し、得られた残留物をそれぞ
れ一昼夜真空乾燥したところ、450mgのNS1,275
mgのNS2、140mgのNS3、360mgのNS4、216mgの
NS5、204mgのNS6、128mgのNS7、150mgのNS8
及び66mgのNS9をそれぞれ白色粉末として得た。 製造例 2 NS1,2及び4の単離精製(ゲル過法) 製造例1のの工程で得られた粗粉末700mgを
2規定トリフルオロ酢酸水溶液7mlに溶解し、約
120℃で20分間撹拌下に加水分解した。得られた
反応液を水で希釈しPH7に調整した。この調整液
をダウエツクス50W−X2(H+型)のカラム(直
径2.0×10cm)に通し、固定相を十分水で洗浄し
たのち、該固定相に吸着した物質を1規定アンモ
ニア水溶液で溶出した。得られた溶出液を減圧乾
固したところ精製粉末360mgを得た。この精製粉
末を2mlの水に溶解し、これをバイオゲルP−2
(400メツシユ)のカラム(直径1.6×100cm)を用
いてゲル過を行つた。溶出溶媒は水を使用し、
流速は2.0ml/時、カラム温度は55℃になるよう
に設定した。ついで前述のRt値測定法条件Bで
測定したRt値がそれぞれ3.3分、3.9分及び4.6分で
あつた分画液を採集した。採集した各分画液を減
圧乾固し、一昼夜真空下で乾燥したところ40mgの
NS1,19mgのNS2及び10mgのNS4をそれぞれ白色
粉末として得た。 製造例 3 NS1,2及び4の単離精製(アセチル化法) 製造例1のの工程で得られた粗粉末2.0gを
2規定のトリフルオロ酢酸水溶液40ml中で2時
間、約95℃に加熱して加水分解した。得られた反
応液を水でPH1.1まで希釈し、これをアンバーラ
イトIR−118のカラム(直径2.0×20cm)に付し、
十分水洗後、固定相に吸着した物質を1規定のア
ンモニア水溶液で溶出した。この溶出液を減圧乾
固したところ精製粉末0.8gを得た。この粉末を
40mlの無水酢酸−ピリジン混合液(容量比1:
1)に溶解し、室温で一昼夜放置してアセチル化
した。この反応液に氷水400mlを注入し30分間撹
拌したのち、これにクロロホルム150mlを添加し
た。ついでクロロホルム層を分取し、該層を水
300ml、0.05規定希塩酸300ml及び水300mlで順次
洗浄し、無水硫酸ナトリウムで乾燥した。このよ
うにして得られたクロロホルム溶液を減圧乾固し
たところ、精製粉末のアセチル化物1.4gを得た。
このアセチル化物をベンゼン10mlに溶解し、これ
を固定相として100gのシリカゲル(230〜400メ
ツシユ)を用いたカラムに通した。固定相に吸着
した物質を酢酸エチルエステル−ベンゼン混合液
(容量比1:3.0)で溶出し、得られた溶出液を減
圧乾固したところNS1のアセチル化物310mgを得
た。ついで同様にして該固定相に残存する吸着物
質を順次、混合溶量比を1:2.0及び1:1.8に調
製した酢酸エチルエステル−ベンゼン混合液で溶
出し、NS2及び4のアセチル化物をそれぞれ113
mg及び73mg得た。各化合物のアセチル化物をそれ
ぞれ過剰量のアンモニア飽和メタノール溶液中
で、室温下12時間撹拌することにより脱アセチル
化した。この反応液を減圧乾固し、得られた各残
留物を0.05規定希塩酸3mlにそれぞれ溶解した。
得られた各溶液を別個にダウエツクス50W−X2
(H+型)のカラム(直径2.0×20cm)に通し、固
定相を十分に水洗したのち吸着物質を1規定アン
モニア水溶液で溶出した。各溶出液を減圧乾固
し、真空下で一昼夜乾燥したところ、165mgの
NS1、60mgのNS2及び38mgのNS4をそれぞれ白色
粉末として得た。 製造例 4 NS1及び2の単離精製(活性炭法) 製造例1のの工程で得られた粗粉末10.0gを
2規定のトリフルオロ酢酸水溶液500mlに溶解し、
撹拌下に2.5時間約95℃に加熱して加水分解した。
得られた反応液を水でPH2.0になるよう希釈し、
これをアンバーライトIR−118のカラム(直径4.0
×25cm)に通し、固定相を十分に水洗したのち吸
着物質を1規定アンモニア水溶液で溶出した。こ
の溶出液を減圧乾固し、得られた精製粉末を水
200mlに溶解し、ついでこれを活性炭カラム(直
径4.5×45cm)に通した。このカラム固定相に吸
着した物質を、混合比率3%を上限とする含水ノ
ルマルブタノールで直線濃度勾配溶出法により溶
出した。ついで前述のRt値測定法条件BでのRt
値が3.3分及び3.9分を示した分画液を各々採集し
た。採集した両分画液を別個に減圧乾固し、真空
下に一昼夜乾燥したところ、510mgのNS1及び320
mgのNS2の白色粉末を得た。 製造例 5 NS10〜17の単離精製 製造例1のの工程で得られた粗粉末5.0gを
水70mlに溶解し、これを活性炭カラム(直径4.0
×60cm)に通した。固定相を10%含水エタノール
で十分に洗浄し、該相に吸着した物質を50%含水
イソプロパノールで溶出し、これを減圧乾降固し
たところ白色粉末4.1gを得た。この粉末を65%
含水アセトニトリル82mlに溶解し、これをマイク
ロボンダパツクCHカラム(直径3.9×300mm)を
使用する高速液体クロマトグラフ法(流速2.0
ml/分、溶出溶媒65%含水アセトニトリル)によ
りRt値を指標として分画した。指標としたRt値
はそれぞれ7.5〜8.8分、9.2〜10.6分、10.9〜12.6
分、13.0〜15.1分、15.7〜18.0分、18.6〜21.3分、
21.7〜25.5分及び26.2〜30.6分であつた。得られ
た各分画液を各々約5ml容量になるまで濃縮し、
ついで遠心分離して各上澄液を採取した。この各
上澄液を減圧乾固し、真空下に一昼夜乾燥したと
ころ、245mgのNS10、271mgのNS11、282mgの
NS12、310mgのNS13、174mgのNS14、69gの
NS15、42mgのNS16及び21mgのNS17をそれぞれ
白色粉末として得た。 参考例 NSOの製造 製造例1のの工程で得られた粗粉末5.0gを
2.5規定希塩酸35ml中で1.5時間加熱還流し加水分
解した。この反応液を水で希釈しPH1.5に調整し、
これをダウエツクス50W−X2(H+型)のカラム
(直径3.0×30cm)に通した。カラムの固定相を十
分に水洗したのち吸着した物質を3規定アンモニ
ア水溶液で溶出した。この溶出液を減圧乾固し、
得られた残留物を水50mlに溶解した。この溶液を
ダウエツクス1−X2(OH-型;ダウ・ケミカル社
製)のカラム(直径3.0×20cm)に通し、流出液
を採取した。カラムの固定相を水800mlで洗浄し、
洗浄液と該流出液とを一つにまとめて減圧乾固
し、白色粉末0.6gを得た。この粉末を40mlの無
水酢酸−ピリジン混合液(容量比1:1)に溶解
し、室温で12時間撹拌した。この反応液を氷水
400mlに注入し30分間撹拌したのちこれにクロロ
ホルム150mlを添加した。ついでクロロホルム層
を分取し、該層を水900ml、0.05規定希塩酸900ml
及び水900mlで順次洗浄したのち、無水硫酸ナト
リウムで乾燥した。得られたクロロホルム溶液を
減圧乾固したところ残留物1.1gを得た。この残
留物をトルエン10mlに溶解し、これを固定相とし
て120gのシリカゲル(70〜230メツシユ)を用い
たカラムに通し、固定相に吸着した物質をトルエ
ン−酢酸エチルエステル混合液(容量比2:1)
で溶出した。得られた溶出液を減圧乾固し、
NSOのヘキサアセテート490mgを得た。この化合
物を過剰量のアンモニア飽和メタノール溶液に溶
解し、30分間撹拌することにより脱アセチル化し
た。この反応液を減圧乾固し、得られた残留物を
0.05規定希塩酸10mlに溶解し、これをダウエツク
ス50W−X2(H+型)のカラム(直径2.0×20cm)
に通し、固定相を十分水洗したのち吸着物質を1
規定アンモニア水溶液で溶出した。この溶出液を
減圧乾固し、真空下で一昼夜乾燥したところ250
mgのNSOを白色粉末として得た。 元素分析(C13H21NO8として); 理論値(%) C,48.90 H,6.63 N,4.39 実測値(%) 48.88 6.78
4.38 分子量;319 EIマススペクトル m/z 319 M+ FDマススペクトル m/z 320(M+H)+ Rt値(Rt値測定法条件B);2.6分 比旋光度;〔α〕20 D=+62゜(C=0.5,水) 紫外線吸収スペクトル(水溶液); 末端吸収を示す。 赤外線吸収スペクトル(KBr錠、νnaxcm-1); 3400,2930,1080 溶剤に対する溶解性 水、メタノールに易溶、エタノール、ジメチ
ルスルホキシドに可溶、ベンゼン、ノルマルヘ
キサンに不溶 塩基性、酸性、中性の区別 塩基性 NSOのヘキサアセテートの融点; 204.5〜206℃ NSOのヘキサアセテートの核磁気共鳴スペク
トル(200MHz、CDCl3、ppm); 1.39 3H,d J=6.34 2.03〜2.10 18H 3.33 1H,d,d J1=8.30,J2=4.64 3.50 1H,d J=2.44 3.74 1H,d,d J1=8.05,J2=2.44 3.84 1H,d J=11.96 4.33 1H,d,d J1=8.05,J2=7.32 4.43 1H,d J=11.96 4.94 1H,d,d J1=6.34,J2=4.64 5.02 1H,d J=3.91 5.30 1H,d,d J1=6.84,J2=3.91 5.32 1H,d,d J1=9.77,J2=7.32 5.57 1H,d,d J1=8.30,J2=6.84
[Table] As is clear from the above test examples, the derivative of the present invention [] is a compound useful as a therapeutic or preventive agent for diabetes, hyperlipidemia, obesity, etc. The present invention will be further explained using production examples and reference examples. Production example 1 Production of coarse powder Oatmeal 3.0% (W/V), peptone 1.0%
Streptomyces flavochromogenes No. 280 was inoculated into a sterile liquid medium adjusted to pH 7.8 containing (W/V) and 0.5% (W/V) sodium chloride. The seed culture was cultured with rotary shaking for 1 day to obtain 1630 ml of seed culture. This seed culture was transferred to production medium 150, which had been aseptically treated and had the same composition as the above-mentioned liquid medium, and main culture was carried out at about 30° C. for 6 days using a 300-capacity jar fermenter. At the start of main culture, the pH was 7.4, the aeration rate was 150/min, and the rotation speed was 250 rpm. Next, the culture obtained by main culture was centrifuged to obtain a supernatant liquid 133. This supernatant liquid was adjusted to pH 2.5 using 12N diluted sulfuric acid, 670g of activated carbon was added thereto, stirred for 1 hour, and filtered under pressure.
Liquid 131 was obtained. This liquid was neutralized with a 10 N aqueous sodium hydroxide solution, and 4600 g of activated carbon was added thereto and stirred.
It was left for 12 hours. After standing, activated carbon was collected by centrifugation. The activated carbon was washed with water, and then the adsorbent was added to the
Elute with % aqueous isopropanol, eluent 104
was collected. Dowex 50W-
Pass through an X2 (H + type) column (diameter 8.0 x 100 cm),
After thoroughly washing the stationary phase with water, the adsorbed substance was eluted with 2N diluted hydrochloric acid, and eluate 21 was collected. This eluate was neutralized using a 10N aqueous sodium hydroxide solution, treated with activated carbon to desalinate, dried under reduced pressure, and then freeze-dried to obtain the compound of the present invention []
148 g of pale yellow crude powder containing . The physical and chemical properties of the coarse powder were as follows. Specific optical rotation; [α] 20 D = +163° (C = 1.0, water) Constituent sugar content relative to total weight: 72.6% Carbohydrate degrading enzyme inhibitory activity: 309 AIU・mg 1412 GIU/mg Isolation and purification of NS1 to 9 (liquid Chloro method) 20.0 g of the above coarse powder was dissolved in 200 ml of 1N diluted hydrochloric acid, and the solution was stirred at about 128° C. for 10 minutes to perform hydrolysis.
The resulting reaction solution was diluted with water and adjusted to pH 1.5.
This was passed through a Dowex 50W-X2 (H + type) column (diameter 4.0 x 25 cm) and thoroughly washed with water. The substance adsorbed on the stationary phase of the column was eluted with a 1N ammonia aqueous solution, and this was dried under reduced pressure to obtain 7.2 g of purified powder. Approximately 200ml of this purified powder
of water, and add this to an activated carbon column (diameter 6.0 x
50cm). The stationary phase was washed with 5% aqueous ethanol, and then the substances adsorbed on the stationary phase were eluted with 40% aqueous ethanol. The obtained eluate was dried under reduced pressure to obtain 3.8 g of white powder. Dissolve this powder in 55 ml of 70% aqueous acetonitrile, and apply it using high performance liquid chromatography using a Microbondapak CH column (diameter 3.9 x 300 mm) (flow rate 2.0 ml/
min, elution solvent (70% aqueous acetonitrile)
Fractionation was performed using the Rt value as an index. The Rt values used as indicators were 4.8 minutes, 5.9 minutes, 6.9 minutes, 7.7 minutes, 8.9 minutes, and 9.9, respectively.
minutes, 11.2 minutes, 12.2 minutes and 14.5 minutes. Each of the obtained fractions was concentrated under reduced pressure to a volume of about 5 ml, and then centrifuged to collect the supernatant. These supernatants were dried under reduced pressure, and the resulting residues were vacuum-dried for one day and night.
mg NS2, 140mg NS3, 360mg NS4, 216mg
NS5, 204mg NS6, 128mg NS7, 150mg NS8
and 66 mg of NS9 were obtained as white powders. Production Example 2 Isolation and purification of NS1, 2 and 4 (gel filtration method) 700 mg of the crude powder obtained in the step of Production Example 1 was dissolved in 7 ml of 2N trifluoroacetic acid aqueous solution, and approximately
Hydrolysis was carried out at 120° C. for 20 minutes with stirring. The resulting reaction solution was diluted with water and adjusted to pH 7. This adjusted solution was passed through a Dowex 50W-X2 (H + type) column (diameter 2.0 x 10 cm), the stationary phase was thoroughly washed with water, and the substance adsorbed on the stationary phase was eluted with a 1N ammonia aqueous solution. The obtained eluate was dried under reduced pressure to obtain 360 mg of purified powder. Dissolve this purified powder in 2 ml of water and add it to Biogel P-2.
Gel filtration was performed using a (400 mesh) column (diameter 1.6 x 100 cm). Water was used as the elution solvent.
The flow rate was set to 2.0 ml/hour, and the column temperature was set to 55°C. Then, fractionated solutions whose Rt values were 3.3 minutes, 3.9 minutes, and 4.6 minutes, respectively, as measured under the conditions B of the Rt value measurement method described above, were collected. Each fraction collected was dried under reduced pressure and dried under vacuum overnight, resulting in 40mg of
NS1, 19 mg of NS2 and 10 mg of NS4 were each obtained as white powders. Production Example 3 Isolation and purification of NS1, 2 and 4 (acetylation method) 2.0 g of the crude powder obtained in the step of Production Example 1 was heated to approximately 95°C for 2 hours in 40 ml of a 2N aqueous trifluoroacetic acid solution. and hydrolyzed. The resulting reaction solution was diluted with water to pH 1.1 and applied to an Amberlite IR-118 column (diameter 2.0 x 20 cm).
After sufficient water washing, the substances adsorbed on the stationary phase were eluted with a 1N ammonia aqueous solution. This eluate was dried under reduced pressure to obtain 0.8 g of purified powder. This powder
40ml of acetic anhydride-pyridine mixture (volume ratio 1:
1) and left at room temperature overnight for acetylation. After 400 ml of ice water was poured into this reaction solution and stirred for 30 minutes, 150 ml of chloroform was added thereto. Then, separate the chloroform layer and add the layer to water.
It was washed successively with 300 ml, 300 ml of 0.05N diluted hydrochloric acid, and 300 ml of water, and dried over anhydrous sodium sulfate. The chloroform solution thus obtained was dried under reduced pressure to obtain 1.4 g of a purified powder acetylated product.
This acetylated product was dissolved in 10 ml of benzene and passed through a column using 100 g of silica gel (230-400 mesh) as a stationary phase. The substance adsorbed on the stationary phase was eluted with a mixture of acetic acid ethyl ester and benzene (volume ratio 1:3.0), and the resulting eluate was dried under reduced pressure to obtain 310 mg of acetylated NS1. Then, in the same manner, the adsorbed substances remaining on the stationary phase were sequentially eluted with a mixture of acetic acid ethyl ester and benzene prepared at a mixing ratio of 1:2.0 and 1:1.8, and the acetylated products of NS2 and 4 were each eluted with 113
mg and 73 mg were obtained. The acetylated product of each compound was deacetylated by stirring in an excess amount of ammonia-saturated methanol solution at room temperature for 12 hours. This reaction solution was dried under reduced pressure, and each of the resulting residues was dissolved in 3 ml of 0.05N diluted hydrochloric acid.
Dowex 50W-X2 each solution obtained separately.
(H + type) column (diameter 2.0 x 20 cm), and after thoroughly washing the stationary phase with water, the adsorbed substance was eluted with a 1N ammonia aqueous solution. When each eluate was dried under reduced pressure and dried under vacuum overnight, 165 mg of
NS1, 60 mg of NS2 and 38 mg of NS4 were each obtained as white powders. Production Example 4 Isolation and purification of NS1 and 2 (activated carbon method) 10.0 g of the crude powder obtained in the step of Production Example 1 was dissolved in 500 ml of 2N trifluoroacetic acid aqueous solution,
Hydrolysis was carried out by heating to about 95° C. for 2.5 hours while stirring.
Dilute the resulting reaction solution with water to a pH of 2.0,
Column of Amberlite IR-118 (diameter 4.0)
After thoroughly washing the stationary phase with water, the adsorbed substances were eluted with a 1N ammonia aqueous solution. This eluate was dried under reduced pressure, and the resulting purified powder was washed with water.
This was then passed through an activated carbon column (diameter 4.5 x 45 cm). The substances adsorbed on the column stationary phase were eluted with aqueous n-butanol at a mixing ratio of 3% by linear concentration gradient elution. Next, Rt under Rt value measurement method condition B mentioned above.
The fractions showing values of 3.3 minutes and 3.9 minutes were collected, respectively. Both collected fractions were separately dried under reduced pressure and dried under vacuum for a day and night, resulting in 510 mg of NS1 and 320 mg.
mg of NS2 white powder was obtained. Production Example 5 Isolation and Purification of NS10 to NS17 5.0 g of the crude powder obtained in the step of Production Example 1 was dissolved in 70 ml of water, and this was added to an activated carbon column (diameter 4.0
×60cm). The stationary phase was thoroughly washed with 10% aqueous ethanol, and the substance adsorbed on the phase was eluted with 50% aqueous isopropanol, which was dried under reduced pressure to obtain 4.1 g of white powder. 65% of this powder
Dissolve it in 82 ml of aqueous acetonitrile and apply it to a high performance liquid chromatography method (flow rate 2.0
ml/min, elution solvent (65% aqueous acetonitrile) using the Rt value as an index. The Rt values used as indicators were 7.5 to 8.8 minutes, 9.2 to 10.6 minutes, and 10.9 to 12.6, respectively.
minutes, 13.0-15.1 minutes, 15.7-18.0 minutes, 18.6-21.3 minutes,
They were 21.7 to 25.5 minutes and 26.2 to 30.6 minutes. Each fraction obtained was concentrated to a volume of approximately 5 ml,
Then, each supernatant was collected by centrifugation. These supernatants were dried under reduced pressure and dried under vacuum overnight, resulting in 245 mg of NS10, 271 mg of NS11, and 282 mg of NS11.
NS12, 310mg NS13, 174mg NS14, 69g
NS15, 42 mg of NS16 and 21 mg of NS17 were obtained as white powders, respectively. Reference Example Production of NSO 5.0g of the coarse powder obtained in the process of Production Example 1 was
Hydrolysis was carried out in 35 ml of 2.5N diluted hydrochloric acid by heating under reflux for 1.5 hours. This reaction solution was diluted with water and adjusted to pH 1.5.
This was passed through a column (diameter 3.0 x 30 cm) of Dowex 50W-X2 (H + type). After thoroughly washing the stationary phase of the column with water, the adsorbed substances were eluted with a 3N ammonia aqueous solution. This eluate was dried under reduced pressure,
The resulting residue was dissolved in 50 ml of water. This solution was passed through a column (diameter 3.0 x 20 cm) of Dowex 1-X2 (OH - type; manufactured by Dow Chemical Company), and the effluent was collected. Wash the stationary phase of the column with 800 ml of water,
The washing liquid and the effluent were combined and dried under reduced pressure to obtain 0.6 g of white powder. This powder was dissolved in 40 ml of acetic anhydride-pyridine mixture (volume ratio 1:1) and stirred at room temperature for 12 hours. This reaction solution was poured into ice water.
After pouring into 400 ml and stirring for 30 minutes, 150 ml of chloroform was added thereto. Then, separate the chloroform layer and add the layer to 900ml of water and 900ml of 0.05N diluted hydrochloric acid.
After sequentially washing with 900 ml of water and 900 ml of water, it was dried over anhydrous sodium sulfate. The obtained chloroform solution was dried under reduced pressure to obtain 1.1 g of residue. This residue was dissolved in 10 ml of toluene, passed through a column using 120 g of silica gel (70-230 mesh) as the stationary phase, and the substance adsorbed on the stationary phase was removed with a toluene-acetic acid ethyl ester mixture (volume ratio: 2: 1)
It was eluted. The obtained eluate was dried under reduced pressure,
490 mg of NSO hexaacetate was obtained. This compound was deacetylated by dissolving it in an excess amount of ammonia saturated methanol solution and stirring for 30 minutes. This reaction solution was dried under reduced pressure, and the resulting residue was
Dissolve in 10ml of 0.05N diluted hydrochloric acid and apply it to a Dowex 50W-X2 (H + type) column (diameter 2.0 x 20cm).
After washing the stationary phase thoroughly with water, remove the adsorbed substance by
It was eluted with a normal ammonia aqueous solution. This eluate was dried under reduced pressure and dried under vacuum for a day and night.
mg of NSO was obtained as a white powder. Elemental analysis (as C 13 H 21 NO 8 ); Theoretical value (%) C, 48.90 H, 6.63 N, 4.39 Actual value (%) 48.88 6.78
4.38 Molecular weight; 319 EI mass spectrum m/z 319 M + FD mass spectrum m/z 320 (M+H) + Rt value (Rt value measurement method condition B); 2.6 min Specific optical rotation; [α] 20 D = +62° ( C=0.5, water) Ultraviolet absorption spectrum (aqueous solution); shows terminal absorption. Infrared absorption spectrum (KBr tablet, ν nax cm -1 ); 3400, 2930, 1080 Solubility in solvents Easily soluble in water and methanol, soluble in ethanol and dimethyl sulfoxide, insoluble in benzene and normal hexane Basic, acidic, medium Melting point of hexaacetate of basic NSO; 204.5-206℃ Nuclear magnetic resonance spectrum of hexaacetate of NSO (200MHz, CDCl 3 , ppm); 1.39 3H, d J = 6.34 2.03-2.10 18H 3.33 1H, d, d J 1 = 8.30, J 2 = 4.64 3.50 1H, d J = 2.44 3.74 1H, d, d J 1 = 8.05, J 2 = 2.44 3.84 1H, d J = 11.96 4.33 1H, d, d J 1 = 8.05, J 2 =7.32 4.43 1H, d J = 11.96 4.94 1H, d, d J 1 = 6.34, J 2 = 4.64 5.02 1H, d J = 3.91 5.30 1H, d, d J 1 = 6.84, J 2 = 3.91 5.32 1H , d, d J 1 = 9.77, J 2 = 7.32 5.57 1H, d, d J 1 = 8.30, J 2 = 6.84

Claims (1)

【特許請求の範囲】 1 一般式 (式中mは0〜12の整数を、nは1〜13の整数
を表わし、且つm+nが1〜13の整数であること
を表わす。)で示されるアミノオリゴ糖誘導体。
[Claims] 1. General formula (In the formula, m represents an integer of 0 to 12, n represents an integer of 1 to 13, and m+n represents an integer of 1 to 13.)
JP57055487A 1982-04-05 1982-04-05 Novel amino oligosaccharide derivative Granted JPS58172400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055487A JPS58172400A (en) 1982-04-05 1982-04-05 Novel amino oligosaccharide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055487A JPS58172400A (en) 1982-04-05 1982-04-05 Novel amino oligosaccharide derivative

Publications (2)

Publication Number Publication Date
JPS58172400A JPS58172400A (en) 1983-10-11
JPH0319239B2 true JPH0319239B2 (en) 1991-03-14

Family

ID=12999980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055487A Granted JPS58172400A (en) 1982-04-05 1982-04-05 Novel amino oligosaccharide derivative

Country Status (1)

Country Link
JP (1) JPS58172400A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3785895D1 (en) * 1986-08-13 1993-06-24 Hoechst Ag OXIRAN PSEUDOOLIGOSACCHARIDES, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AND PHARMACEUTICAL PREPARATIONS.
KR960022566A (en) * 1994-12-30 1996-07-18 김충환 Novel aminooligosaccharide derivatives and preparation method thereof
CN104082320B (en) * 2014-07-18 2016-06-22 江苏省绿盾植保农药实验有限公司 A kind of bactericidal composition composite containing amino-oligosaccharide and benzene metsulfovax and application thereof

Also Published As

Publication number Publication date
JPS58172400A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
Usui et al. A convenient synthesis of β-D-galactosyl disaccharide derivatives using the β-D-galactosidase from Bacillus circulans
EP1405858B1 (en) Process for producing sugar chain asparagine derivative
FI56698C (en) PROCEDURE FOR INSULATION AND MICROBIOLOGICAL PROCESSING OF MICROBIOLOGICAL AMINOSCOCKETS
US4772334A (en) Process for producing highly pure rhamnose from gum arabic
Weigel et al. Preparation of 6-aminohexyl D-aldopyranosides
JPH09151187A (en) 4'-demethylepipodophyllotoxin derivative
Levy et al. Isolation, structure determination, synthesis, and antifungal activity of a new native alfalfa-root saponin
JPH0319239B2 (en)
Ōmura et al. Structure of prumycin
Chang et al. A straightforward α-selective aromatic glycosylation and its application for stereospecific synthesis of 4-methylumbelliferyl α-T-antigen
Zhao et al. Stereoselective synthesis of a branched α-decaglucan
WO1993016113A1 (en) Glycosides of cyclodextrines and processes for preparation
Lee et al. Synthesis of allyl 3-deoxy-and 4-deoxy-β-D-galactopyranoside and simultaneous preparation of Gal (1→ 2)-and Gal (1→ 3)-linked disaccharide glycosides
KR950004899B1 (en) Process for preparing moranoline derivatives
Dixon et al. The specific substance from Pneumococcus type 34. The configuration of the glycosidic linkages
Jana et al. Synthesis of trisaccharide and a tetrasaccharide repeating unit corresponding to the O-antigen of Shiga toxin producing Escherichia coli O177
JPS6334878B2 (en)
JP2949509B2 (en) Sialyl lactose
JPS61101501A (en) Carcinostatic polysaccharide and its production
JP3209791B2 (en) Oxazoline derivative and method for producing the same
Sakamoto et al. Use of a recycle-type SEC method as a powerful tool for purification of thiosialoside derivatives
JP4402878B2 (en) Novel monoacetylchitooligosaccharide and method for producing the same, and method for producing chitin oligosaccharide and chitosan oligosaccharide
Jana et al. Expeditious Synthesis of the Hexasaccharide Repeating Unit of the Capsular Polysaccharide of Streptococcus pneumoniae Type 7A
EP1408118A1 (en) Enzymatic method of producing 4-0-b-d galactopyranosyl-d-xylose, 4-0-b-d-galactopyranosyl-d-xylose obtained using said method, compositions containing same and the use thereof in evaluating intestinal lactase
AU2006203198B2 (en) Sugar chain asparagine derivative