JPH0319191B2 - - Google Patents

Info

Publication number
JPH0319191B2
JPH0319191B2 JP59267771A JP26777184A JPH0319191B2 JP H0319191 B2 JPH0319191 B2 JP H0319191B2 JP 59267771 A JP59267771 A JP 59267771A JP 26777184 A JP26777184 A JP 26777184A JP H0319191 B2 JPH0319191 B2 JP H0319191B2
Authority
JP
Japan
Prior art keywords
whiskers
particles
nitrogen gas
sintered body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59267771A
Other languages
Japanese (ja)
Other versions
JPS61146754A (en
Inventor
Yoshuki Yasutomi
Kosuke Nakamura
Moroo Nakagawa
Seiji Watabiki
Mitsuo Taguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59267771A priority Critical patent/JPS61146754A/en
Publication of JPS61146754A publication Critical patent/JPS61146754A/en
Publication of JPH0319191B2 publication Critical patent/JPH0319191B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、複合セラミツクスの製造法に係り、
特に高靭性、高温強度を必要とする構造用複合セ
ラミツクスの製造法に関する。 〔発明の背景〕 一般に、エンジンやタービンなどの構造材料に
適するエンジニアリングセラミツクスとしては、
耐熱性や耐熱衝撃性が優れた窒素珪素や炭化珪素
などが知られている。しかし、窒素珪素や炭化珪
素は、共有結合性の強い化合物であるため、単独
では焼結が困難であり、高密度の焼結体を得るた
めには焼結助剤の添加が必要である。例えば、炭
化珪素をホツトプレスで焼結する場合の焼結助剤
としては、硼素、硼素化合物、アルミニウムある
いはアルミニウム化合物などが知られている。ま
た、炭化珪素を常圧で焼結する場合には、炭素を
添加することで高密度焼結体が得られることが知
られている。しかし常圧焼結法の場合、炭化珪素
が分解しやすく、そのために成形体が充分に緻密
化せず、特に複雑形状品、大寸法品の場合には問
題となつていた。また、これら焼結助剤によるガ
ラス相は高温において軟化するため、高温におけ
る焼結体の強度が著しく低下する。この高温での
強度低下を防止するため、焼結助剤の添加量をで
きるだけ少なくしたり、焼結助剤に起因する粒界
のガラスを結晶化させるなどの検討が行なわれて
いるが、完全な解決には至つていない。 一方、焼結助剤とは別に、SiC、シリコンナイ
トライド等の高強度繊維(ウイスカー)混合によ
る複合化によつて高温強度を高める繊維強化法も
考えられている(窯業協会誌、91、〔11〕、1983、
P491)。 この方法が有効な理由は、 (1):ウイスカーがセラミツクス中の微小な傷の拡
大を停止、あるいは抑制して応力の集中を防
ぐ。 (2):ウイスカーがセラミツクスと強く結合して、
ウイスカーが応力を担う。 (3):ウイスカーがセラミツクスと弱く結合(例え
ば、物理的に付着)していればセラミツクスか
らの繊維の引き抜きによるエネルギーの吸収が
起こる。 (4):ウイスカーは弱い部分から順々に破断してい
くので破断面が複雑になる。 以上の様な効果でセラミツクスの脆さおよび耐
熱衝撃性が向上するものと考えられている。 しかし、この様な繊維強化セラミツクスの製造
において、原料混合時にウイスカーが互いに絡ま
り合い、塊状になることが問題となつている。そ
こでウイスカーをマトリツクス中に分散させる方
法として、ウイスカーを水中に投入し、機械的撹
拌や超音波照射により分散させ、フイルターを通
すことにより未分散塊や粒状物を除いた後、さら
に吸引過を行ない、グリーンシートとすること
が考えられている。ところが、それでは2次元配
合になつているため異方性が生じ易い。従つて、
ウイスカーによる高強度・高靭性複合焼結体を得
るためには、うまく3次元的に分散させることが
大きな問題となる。 〔発明の目的〕 本発明の目的は複合セラミツクスの製造法にお
いて、高靭性、高温強度を得るために、セラミツ
クス粒子をウイスカーで結合する製造法を提供す
ることにある。 〔発明の概要〕 本発明は、焼成中に成形体中の金属Si粉末から
生成するウイスカーで粒子相互間を結合するとと
もに粒子間の空隙を減少させることにより、高靭
性、高温強度を得るものである。本発明複合セラ
ミツクスの製造法の特徴は、無機化合物である酸
化物、炭化物、窒化物および酸窒化物の少なくと
も1種と、金属Siとを主材として含む混合物の成
形体を、酸素濃度10ppm以下の窒素ガス中にて金
属Siの融点未満である1100〜1400℃の温度で加熱
して焼成体粒子間に直径0.1μm〜2μm、長さ5μm
以下の針状ウイスカーを成長させ、該ウイスカー
により粒子間を結合することである。 本発明において、成形体の粒子相互間を成形体
の焼成中に生成させたウイスカーで結合した理由
は、ウイスカーを原料に予め混合、分散させてお
いた場合、ウイスカーは焼成体中の粒子間の空隙
に存在するが、全てのウイスカーが粒子と結合し
ているのではなく、塊状や単独で存在するウイス
カーが残るためである。本発明によれば、粒子間
の空隙を、成形体中の粒子から生成した多数の針
状のウイスカーが比較的真直ぐに延びて交差する
ことにより結合し、結合状態でないウイスカーは
存在しないので、高靭性、高温強度が得られるも
のである。 本発明による焼結体中の生成ウイスカーの結合
状態を第1図に示す。また、ウイスカーを原料に
予め混合、分散した場合の焼結体中のウイスカー
の結合状態を第2図に示す。 本発明において、成形体中にウイスカーを生成
させるのに酸素濃度10ppm以下の窒素ガス中、金
属Siの融点未満で加熱生長させた理由は、酸素濃
度が10ppmをこえる窒素ガス中では成形体表面に
ウイスカーが生成するからである。また、金属Si
の融点以上の温度まで加熱すると金属Siが溶融
し、表面にしみ出し、生成したウイスカーの殆ど
が焼結体の外部に飛散し、焼結体内部ではSiから
窒素珪素ウイスカーを生成させる効果が小さいか
らである。従つて、本発明の加熱条件下で成形体
の大きさにより適当な時間加熱することにより成
形体中にウイスカーをより多く生成させることが
できる。 また本発明では、焼成体粒子100重量部に対し、
ウイスカーが1〜70重量部、好ましくは10〜30重
量部含まれることが好ましい。この理由は、ウイ
スカーが10重量部〜70重量部では靭性がほとんど
変わらず、1重量部未満及び71重量部以上では従
来以上の顕著な効果がみられないからである。 さらに本発明では、焼成のための加熱温度が、
1100〜1400℃であることが好ましい。 〔発明の実施例〕 実施例 1 平均粒径16μmの炭化珪素50gと、窒素珪素ウ
イスカーを生成させるための平均粒径1μmの金
属シリコン21〜80gの混合粉末に、成形助剤とし
てポリビニルブチラール10%溶液を100c.c.添加し、
ポツトミルで24時間混合し、次に室温で乾燥させ
供試原料とした。これらの原料をメカニカルプレ
スを用いて成形圧力250Kg/cm2で、それぞれ直径
50mm、厚さ30mmのものに成形した。この各成形体
から成形助剤を分散揮散させた後、酸素濃度
3ppmの窒素ガス中、1100℃で10時間、次いで
1200℃で20時間、次いで1300℃で10時間、次いで
1350℃で5時間以上保持後炉冷した。ここで各昇
温速度は10℃/minである。 得られた焼結体の試験結果を第1表に示す。破
壊靭性値(KIC)は3×4×40mm(三点曲げ試験
のスパン30mm)の試験片にダイヤモンドホイール
で0.5mmの切り欠きを入れたノツチドビーム法で
測定した。 比較の為に酸素濃度30ppmの窒素ガス中で同様
に熱処理したものを第2表No.1に示す。また、従
来のように始めから窒化珪素ウイスカーを原料に
混合、分散させて、熱処理したものを第2表No.2
に示す。
[Field of Application of the Invention] The present invention relates to a method for manufacturing composite ceramics,
In particular, it relates to a method for producing structural composite ceramics that require high toughness and high-temperature strength. [Background of the Invention] In general, engineering ceramics suitable for structural materials such as engines and turbines include:
Nitrogen silicon, silicon carbide, and the like are known to have excellent heat resistance and thermal shock resistance. However, since silicon nitrogen and silicon carbide are compounds with strong covalent bonds, it is difficult to sinter them alone, and it is necessary to add a sintering aid to obtain a high-density sintered body. For example, boron, boron compounds, aluminum, aluminum compounds, and the like are known as sintering aids when silicon carbide is sintered by hot pressing. Furthermore, when silicon carbide is sintered under normal pressure, it is known that a high-density sintered body can be obtained by adding carbon. However, in the case of the pressureless sintering method, silicon carbide easily decomposes, so that the molded body is not sufficiently densified, which is a problem especially in the case of products with complex shapes or large dimensions. Furthermore, since the glass phase created by these sintering aids softens at high temperatures, the strength of the sintered body at high temperatures decreases significantly. In order to prevent this decrease in strength at high temperatures, efforts are being made to reduce the amount of sintering aid added and to crystallize the glass at the grain boundaries caused by the sintering aid. No solution has been reached. On the other hand, apart from sintering aids, a fiber reinforcement method is also being considered that increases high-temperature strength by combining high-strength fibers (whiskers) such as SiC and silicon nitride (Journal of Ceramics Association, 91, [ 11], 1983,
P491). The reason this method is effective is (1): Whiskers stop or suppress the expansion of minute scratches in ceramics, preventing stress concentration. (2): Whiskers strongly bond with ceramics,
Whiskers carry stress. (3): If the whiskers are weakly bonded (for example, physically attached) to the ceramics, energy absorption occurs due to the pulling of the fibers from the ceramics. (4): Whiskers break in sequence starting from the weakest part, so the fracture surface becomes complex. It is believed that the above effects improve the brittleness and thermal shock resistance of ceramics. However, in the production of such fiber-reinforced ceramics, there is a problem in that the whiskers become entangled with each other during mixing of raw materials, resulting in lumps. Therefore, as a method for dispersing whiskers in a matrix, the whiskers are placed in water, dispersed by mechanical stirring or ultrasonic irradiation, passed through a filter to remove undispersed lumps and granules, and then suctioned. , it is being considered to use it as a green sheet. However, since this is a two-dimensional composition, anisotropy is likely to occur. Therefore,
In order to obtain a high-strength, high-toughness composite sintered body using whiskers, it is a big problem to properly disperse them three-dimensionally. [Object of the Invention] An object of the present invention is to provide a method for manufacturing composite ceramics in which ceramic particles are bonded with whiskers in order to obtain high toughness and high-temperature strength. [Summary of the Invention] The present invention achieves high toughness and high-temperature strength by bonding particles together and reducing voids between particles using whiskers generated from metal Si powder in a compact during firing. be. A feature of the manufacturing method of the composite ceramics of the present invention is that a molded body of a mixture mainly containing at least one of inorganic compounds such as oxides, carbides, nitrides, and oxynitrides and metal Si is prepared with an oxygen concentration of 10 ppm or less. The fired product is heated in nitrogen gas at a temperature of 1100 to 1400°C, which is below the melting point of metal Si, to form a sintered body with a diameter of 0.1 μm to 2 μm and a length of 5 μm between the particles.
The following method involves growing needle-like whiskers and bonding particles together using the whiskers. In the present invention, the reason why the particles of the molded body are bonded to each other by whiskers generated during firing of the molded body is that if the whiskers are mixed and dispersed in the raw materials in advance, the whiskers will be bonded between the particles in the fired body. Although present in the voids, not all whiskers are combined with particles, and some whiskers remain in the form of lumps or exist alone. According to the present invention, the voids between particles are bonded by a large number of needle-shaped whiskers generated from particles in the molded body extending relatively straight and intersecting, and there is no whisker that is not in a bonded state. It provides toughness and high-temperature strength. FIG. 1 shows the bonding state of whiskers produced in a sintered body according to the present invention. Further, FIG. 2 shows the bonding state of whiskers in a sintered body when whiskers are mixed and dispersed in the raw materials in advance. In the present invention, the reason why whiskers are generated in the compact by heating and growing at a temperature below the melting point of metal Si in nitrogen gas with an oxygen concentration of 10 ppm or less is that whiskers do not form on the surface of the compact in nitrogen gas with an oxygen concentration of over 10 ppm. This is because whiskers are generated. Also, metal Si
When heated to a temperature above the melting point of the metal, Si melts and oozes out to the surface, and most of the generated whiskers scatter to the outside of the sintered body, and the effect of generating nitrogen silicon whiskers from Si inside the sintered body is small. It is from. Therefore, by heating under the heating conditions of the present invention for an appropriate time depending on the size of the molded product, more whiskers can be generated in the molded product. In addition, in the present invention, for 100 parts by weight of fired particles,
It is preferred that whiskers are contained in an amount of 1 to 70 parts by weight, preferably 10 to 30 parts by weight. The reason for this is that when the whisker contains 10 parts by weight to 70 parts by weight, there is almost no change in toughness, and if the whisker is less than 1 part by weight or more than 71 parts by weight, no more remarkable effect than before can be seen. Furthermore, in the present invention, the heating temperature for firing is
The temperature is preferably 1100 to 1400°C. [Embodiments of the Invention] Example 1 A mixed powder of 50 g of silicon carbide with an average particle size of 16 μm and 21 to 80 g of metallic silicon with an average particle size of 1 μm to generate nitrogen silicon whiskers, and 10% polyvinyl butyral as a forming aid. Add 100 c.c. of solution,
The mixture was mixed in a pot mill for 24 hours, and then dried at room temperature to provide a test material. These raw materials were molded using a mechanical press at a molding pressure of 250 kg/ cm2 , each having a diameter of
It was molded into a 50mm and 30mm thick piece. After dispersing and volatilizing the molding aid from each molded body, the oxygen concentration
10 hours at 1100℃ in 3ppm nitrogen gas, then
1200℃ for 20 hours, then 1300℃ for 10 hours, then
After being maintained at 1350°C for 5 hours or more, it was cooled in a furnace. Here, each temperature increase rate is 10°C/min. Table 1 shows the test results of the obtained sintered body. The fracture toughness value (K IC ) was measured by the notched beam method using a diamond wheel to make a 0.5 mm notch in a 3 x 4 x 40 mm (span of three-point bending test: 30 mm) test piece. For comparison, Table 2 No. 1 shows samples that were similarly heat-treated in nitrogen gas with an oxygen concentration of 30 ppm. In addition, silicon nitride whiskers are mixed and dispersed in the raw material from the beginning as in the past, and heat-treated products are shown in Table 2 No. 2.
Shown below.

【表】【table】

【表】 本発明実施例による焼結体の試験後の破面を
SEMで観察してみると炭化珪素粒子間の空隙を
直径0.1〜2μmφ、長さ5μm程度の針状及び繊維
状の窒素珪素ウイスカーがほぼ直線的に伸びて3
次元的に交差して結合していることが分つた。 比較例第2表No.1の酸素濃度が高い窒素ガス中
で熱処理したものは、窒化珪素ウイスカーは焼結
体中にはほとんど生成せず、焼結体の表面に白色
の窒化珪素ウイスカーが生成し、焼結体の相対密
度が70%ほどしかなかつた。 比較例第2表No.2の混合ウイスカーの場合は、
塊状の窒化珪素ウイスカーが多く見られ、粒子間
の空隙を完全に結合していないことが分つた。 実施例 2 平均粒径2μmの窒化チタン50gと平均粒径1μ
mの金属シリコン50gの混合粉末、平均粒径1μ
mのアルミナ50gと平均粒径1μmと金属シリコ
ン50gの混合粉末、平均粒径1μmのSi−Al−O
−N50gの混合粉末を実施例1と同様に混合、成
形、加熱した焼結体の試験結果を第3表に示す。
[Table] Fracture surfaces of sintered bodies according to examples of the present invention after testing
When observed with a SEM, acicular and fibrous silicon nitrogen whiskers with a diameter of 0.1 to 2 μmφ and a length of about 5 μm extend almost linearly into the voids between silicon carbide particles.
It was found that they intersect and connect dimensionally. Comparative Example No. 1 in Table 2, which was heat-treated in nitrogen gas with a high oxygen concentration, hardly any silicon nitride whiskers were formed in the sintered body, and white silicon nitride whiskers were formed on the surface of the sintered body. However, the relative density of the sintered body was only about 70%. In the case of the mixed whisker No. 2 in Comparative Example Table 2,
Many lumpy silicon nitride whiskers were observed, and it was found that the voids between particles were not completely bonded. Example 2 50 g of titanium nitride with an average particle size of 2 μm and an average particle size of 1 μm
m mixed powder of 50g of metal silicon, average particle size 1μ
Mixed powder of 50g of alumina of m, average particle size of 1μm and metal silicon 50g, Si-Al-O with average particle size of 1μm
Table 3 shows the test results of a sintered body in which 50 g of -N mixed powder was mixed, molded, and heated in the same manner as in Example 1.

【表】 焼結体の試験後の破面をSEMで観察してみる
と実施例1と同様に粒子間の空隙を直径0.1〜2μ
mφ長さ5μm程度の針状及び繊維状の窒化珪素
ウイスカーがほぼ直線的に伸びて3次元的に交差
して結合していることが分つた。 実施例 3 平均粒径5μmの窒化珪素50gと窒化珪素ウイ
スカーを生成させるための平均粒径1μmの金属
シリコン33〜95g、および焼結助剤として酸化マ
グネシウムを5g添加し、ポツトミルで24時間混
合し供試原料とした。これらの原料をメカニカル
プレスを用いて成形圧力500Kg/cm2で直径100mm、
厚さ30mmのものを成形した。これを酸素濃度
3ppmの窒素ガス雰囲気中1400℃以下で数時間処
理した。この処理温度、時間は原料から生成する
ウイスカーの量により異なるが、1300℃で10時
間、次いで1400℃で5時間以上おこなつた。この
一次焼結体を1Kg/cm2の窒素ガス雰囲気中1750℃
に昇温して1時間保持し緻密化焼結をおこなつ
た。得られた焼結体の試験結果を第4表No.1〜6
に示す。破壊靭性値(KIC)は3×4×40mm(三
点曲げ試験のスパン30mm)の試験片にダイヤモン
ドホイールで0.5mmの切り欠きを入れたノツチド
ビーム法で測定した。 比較のために、金属シリコンのかわりに窒化珪
素ウイスカーを原料に混合、分散させて同様に熱
処理したものを第5表No.1に示す。また、もう一
つ比較のために、窒化珪素と金属シリコンと酸化
マグネシウムの混合粉末を1450℃で窒素ガス雰囲
気中2時間ウイスカー成長熱処理後所定形状に成
形し、その成形体を1Kg/cm2の窒素ガス雰囲気中
で1750℃に昇温して1時間保持したものを第5表
No.2に示す。
[Table] When the fracture surface of the sintered body was observed with a SEM after the test, it was found that, as in Example 1, the voids between the particles were 0.1 to 2μ in diameter.
It was found that needle-like and fibrous silicon nitride whiskers with mφ length of about 5 μm extend almost linearly and are intersected and bonded three-dimensionally. Example 3 50 g of silicon nitride with an average particle size of 5 μm, 33 to 95 g of metal silicon with an average particle size of 1 μm to generate silicon nitride whiskers, and 5 g of magnesium oxide as a sintering aid were added and mixed in a pot mill for 24 hours. It was used as a test raw material. These raw materials were molded using a mechanical press at a pressure of 500 kg/cm 2 to a diameter of 100 mm.
A piece with a thickness of 30 mm was molded. This is the oxygen concentration
The treatment was carried out for several hours at 1400°C or lower in a 3ppm nitrogen gas atmosphere. The temperature and time of this treatment varied depending on the amount of whiskers produced from the raw materials, but it was carried out at 1300°C for 10 hours, then at 1400°C for 5 hours or more. This primary sintered body was heated at 1750℃ in a nitrogen gas atmosphere of 1Kg/ cm2 .
The temperature was raised to 1 and held for 1 hour to perform densification and sintering. The test results of the obtained sintered body are shown in Table 4, Nos. 1 to 6.
Shown below. The fracture toughness value (K IC ) was measured by the notched beam method using a diamond wheel to make a 0.5 mm notch in a 3 x 4 x 40 mm (span of three-point bending test: 30 mm) test piece. For comparison, Table 5 No. 1 shows a sample in which silicon nitride whiskers were mixed and dispersed in the raw material instead of metal silicon and heat-treated in the same manner. In addition, for another comparison, a mixed powder of silicon nitride, metallic silicon, and magnesium oxide was heat-treated for whisker growth at 1450°C for 2 hours in a nitrogen gas atmosphere, and then molded into a predetermined shape. Table 5 shows the temperature raised to 1750℃ in a nitrogen gas atmosphere and held for 1 hour.
Shown in No.2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明では粒子相互間を生成物である比較的真
直ぐに伸びたウイスカーで3次元的に結合するた
めセラミツクスの靭性が向上する。これにより、
高温強度、耐熱性、耐熱衝撃性、高靭性が必要な
耐火物、エンジンやタービンなどの構造用部品を
はじめ、航空、宇宙関係、鉄鋼、海洋開発などの
分野へのセラミツクスの利用範囲が拡大する。
In the present invention, the toughness of the ceramic is improved because the particles are three-dimensionally bonded to each other by relatively straight whiskers. This results in
The scope of use of ceramics will expand to include refractories that require high-temperature strength, heat resistance, thermal shock resistance, and high toughness, and structural parts such as engines and turbines, as well as fields such as aviation, space-related, steel, and offshore development. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明と比較例とのウイスカーの結合
に違いを模式的に示したものであり、第1図は本
発明によるセラミツクスの概略拡大図、第2図は
比較例の概略拡大図である。 1……原料の無機化合物粒子、2……Siから生
成した窒化珪素粒子、3……窒化珪素ウイスカ
ー。
The drawings schematically show the differences in whisker bonding between the present invention and a comparative example, and FIG. 1 is a schematic enlarged view of the ceramics according to the present invention, and FIG. 2 is a schematic enlarged view of the comparative example. . 1... Raw material inorganic compound particles, 2... Silicon nitride particles generated from Si, 3... Silicon nitride whiskers.

Claims (1)

【特許請求の範囲】 1 無機化合物である酸化物、炭化物、窒化物お
よび酸窒化物の少なくとも1種と金属Siとを主材
として含む混合物の成形体を、酸素濃度10ppm以
下の窒素ガス中にて金属Siの融点未満である1100
〜1400℃の温度で加熱して焼成体粒子間に直径
0.1μm〜2μm、長さ5μm以下の針状ウイスカーを
成長させ、該ウイスカーにより粒子間を結合する
ことを特徴とする複合セラミツクスの製造法。 2 焼成体粒子100重量部に対し、ウイスカーが
1〜70重量部含まれる特許請求の範囲第1項記載
の複合セラミツクスの製造法。 3 前記の窒素ガス中での前記の加熱を行なつて
得た焼結体を窒素ガス雰囲気中で更に昇温保持し
て緻密化焼結する特許請求の範囲第1項又は第2
項記載の複合セラミツクスの製造法。
[Claims] 1. A molded body of a mixture mainly containing at least one of inorganic compounds such as oxides, carbides, nitrides, and oxynitrides and metal Si is placed in nitrogen gas with an oxygen concentration of 10 ppm or less. 1100, which is less than the melting point of metal Si.
The diameter between the fired body particles is heated at a temperature of ~1400℃.
A method for producing composite ceramics, which comprises growing acicular whiskers of 0.1 μm to 2 μm and 5 μm or less in length, and bonding particles together using the whiskers. 2. The method for producing a composite ceramic according to claim 1, wherein the whisker is contained in 1 to 70 parts by weight based on 100 parts by weight of the fired particles. 3. Claims 1 or 2, wherein the sintered body obtained by the heating in the nitrogen gas is further heated and held in a nitrogen gas atmosphere to sinter it for densification.
A method for producing composite ceramics as described in Section 1.
JP59267771A 1984-12-19 1984-12-19 Manufacture of composite ceramics Granted JPS61146754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267771A JPS61146754A (en) 1984-12-19 1984-12-19 Manufacture of composite ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267771A JPS61146754A (en) 1984-12-19 1984-12-19 Manufacture of composite ceramics

Publications (2)

Publication Number Publication Date
JPS61146754A JPS61146754A (en) 1986-07-04
JPH0319191B2 true JPH0319191B2 (en) 1991-03-14

Family

ID=17449355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267771A Granted JPS61146754A (en) 1984-12-19 1984-12-19 Manufacture of composite ceramics

Country Status (1)

Country Link
JP (1) JPS61146754A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185864A (en) * 1986-09-05 1988-08-01 株式会社日立製作所 Composite ceramics and manufacture
JPH07115937B2 (en) * 1989-06-07 1995-12-13 電気化学工業株式会社 Method for manufacturing silicon nitride sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957964A (en) * 1982-09-28 1984-04-03 住友電気工業株式会社 Manufacture of fiber reinforced silicon nitride sintered bo-dy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957964A (en) * 1982-09-28 1984-04-03 住友電気工業株式会社 Manufacture of fiber reinforced silicon nitride sintered bo-dy

Also Published As

Publication number Publication date
JPS61146754A (en) 1986-07-04

Similar Documents

Publication Publication Date Title
US4543345A (en) Silicon carbide whisker reinforced ceramic composites and method for making same
WO1986005480A1 (en) High density reinforced ceramic bodies and method of making same
USRE32843E (en) Silicon carbide whisker reinforced ceramic composites and method for making same
JPH07509027A (en) Method of producing boron carbide/aluminum cermet with controlled microstructure
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration
EP0754659B1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
JP3094148B2 (en) Manufacturing method of lightweight refractory
Metcalfe et al. Development and properties of a SiC fibre-reinforced magnesium aluminosilicate glass-ceramic matrix composite
JPH0319191B2 (en)
US5928583A (en) Process for making ceramic bodies having a graded porosity
US4844848A (en) Method for preparing Al2 O3 powder and products
USRE34446E (en) Silicon carbide whisker reinforced ceramic composites and method for making same
US5091344A (en) Fiber reinforced ceramics of calcium phosphate series compounds and method of producing the same
JP2974473B2 (en) Composite ceramics and manufacturing method thereof
JPH0610115B2 (en) Manufacturing method of composite ceramics
JPH0881275A (en) Production of fiber composite material having silicon carbide group
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPS61205678A (en) Manufacture of composite ceramics
JPS6345173A (en) High toughness ceramic sintered body and manufacture
JPS63256572A (en) Sic base ceramics and manufacture
JP3148559B2 (en) Ceramic fiber reinforced turbine blade and method of manufacturing the same
JPS6136176A (en) Sic-si3n4-si sintered body and manufacture
JPH0550470B2 (en)
JPS5954679A (en) Manufacture of fiber reinforced silicon nitride sintered body
JPS5812224B2 (en) Method for manufacturing silicon nitride sintered body