JPH0319169B2 - - Google Patents

Info

Publication number
JPH0319169B2
JPH0319169B2 JP7621285A JP7621285A JPH0319169B2 JP H0319169 B2 JPH0319169 B2 JP H0319169B2 JP 7621285 A JP7621285 A JP 7621285A JP 7621285 A JP7621285 A JP 7621285A JP H0319169 B2 JPH0319169 B2 JP H0319169B2
Authority
JP
Japan
Prior art keywords
uranium
organic phase
nitric acid
water
gadolinium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7621285A
Other languages
Japanese (ja)
Other versions
JPS61236615A (en
Inventor
Chuzaburo Tanaka
Teruyoshi Yama
Yoshiki Myajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60076212A priority Critical patent/JPS61236615A/en
Publication of JPS61236615A publication Critical patent/JPS61236615A/en
Publication of JPH0319169B2 publication Critical patent/JPH0319169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は酸化ガドリニウムを含有する核燃料ス
クラツプからウランを回収する方法に関する。 〔従来の技術〕 沸騰水型軽水炉(BWR)において、燃料の燃
焼度を上げて経済性を向上させるために、酸化ウ
ラン(UO2)燃料としてウラン濃縮度の高いもの
を用いる方法が為されている。この燃料は燃焼初
期の余剰反応を抑え、出力を安定させるため、中
性子の吸収力を大きい酸化ガドリニウム
(Gd2O3)を数%含有せしめている。このような
核燃料はUO2粉末とGd2O3粉末を混合して均質化
した後円柱状に圧縮成形し、焼結して製造されて
いる。ところでこのような成形工程において多少
のスクラツプが発生することは避けられない。
Gd2O3を含まないスクラツプであれば、鉱酸に溶
解して粗ウラニル化合物を得、これを有機溶媒抽
出法で精製し、アンモニアを加えて重ウラン酸ア
ンモニウム(ADU)とし、このADU沈澱物を仮
焼し、還元すればUO2として回収できるのである
が、Gd2O3を含有するスクラツプをこの方法で処
理すると、ガドリニウムもウランと一緒に溶解、
抽出されるため、得られるUO2粉末中のガドリニ
ウム濃度が高くなる。このためGd2O3含有スクラ
ツプは従来再利用されないまゝ保管を余儀なくさ
れていた。 一方、加圧水型軽水炉(PWR)においては、
従来酸化硼素を添加した一次冷却水、酸化硼素を
充填したバーナブルポイズン棒などにより出力を
調整するようにしていたが、この酸化硼素は再処
理に手間が掛るため、燃料中にGd2O3を含有させ
る方式に変更することが計画されている。 今後ウラン燃料が上記のようにGd2O3を含有す
るものに変更になるとペレツト加工工程から発生
するスクラツプも大幅に増えるのでこれを再利用
するための技術の確立が強く要請されている。 〔発明が解決しようとする問題点〕 本発明は上記事情に鑑みて為されたものであ
り、Gd2O3を含有するウラン燃料スクラツプから
純度の良好なウランを回収する方法を提供せんと
するものである。 〔問題点を解決するための手段〕 この目的を達成するため本発明の方法は、該ス
クラツプを硝酸又は塩酸に溶解し、溶解液からウ
ランを溶媒抽出し、ウランを含む有機相を水又は
希硝酸又は希塩酸で洗浄した後、該有機相からウ
ランを水又は希硝酸又は希塩酸で逆抽出する点に
特徴がある。 〔作用〕 ウラン燃料スクラツプを硝酸に溶解すると、酸
化ウランは次式 UO2+4HNO3→ UO2(NO32+2NO2+2H2O 又は、3U3O8+20HNO3→ 9UO(NO32+10H2O+2NO↑ により硝酸ウラニルUO2(NO32となつて溶出す
る。この硝酸ウラニルを硝酸溶液から分離するに
は有機溶媒による溶媒抽出法が用いられ、該溶媒
として例えばトリブチルフオスフエート(TBP)
を用いることができる。TBPによる硝酸ウラニ
ルの抽出反応は次式に従うと云われているが、 UO2(NO32+2TBPUO2(NO32・2TBP 硝酸ウラニルをTBPで充分に抽出するために
は、硝酸ウラニルに対するTBPのモル比
(TBP/U)を2以上とする必要がある。この
TBP/U比は大きい程ウラン抽出率が高くなる
が、ガドリニウムやその他の不純物の抽出率も上
昇するので、あまりTBP/U比を大きくできず、
TBP/U比は2〜3が適当である。 しかしながらこのような抽出条件を選定しても
なおガドリニウムが有機相に混入しており、その
まゝ水又は希硝酸又は希塩酸で逆抽出するとガド
リニウムを多く含んだUO2(NO32が回収されて
しまう。そこで本発明は、逆抽出の前に洗浄工程
を付加した。即ちUO2(NO32・2TBPを含有す
る有機相を水又は希硝酸又は希塩酸で洗浄するの
である。この洗浄は基本的には逆抽出であり、
UO2(NO32も水相に移動する。しかし有機相の
容量に対する水又は希硝酸の量を相対的に低くす
るとガドリニウムが優先的に水相に移行し、有機
相中のガドリニウムを効果的に減少することがで
きる。 この洗浄時の容積比(水相/有機相)は、1/
10以下とする。又、この洗浄において、使用する
水相の総容量が同じならば数回に分割して洗浄に
供する方がガドリニウム除去に効果的である。も
ちろんこの洗浄工程はパルスカラムのような連続
抽出装置によつて行なうことができる。 このような洗浄工程を行なつた後、UO2
(NO32を水又は希鉱酸で逆抽出すればガドリニ
ウム含有量の少ない硝酸ウラニル水溶液が得ら
れ、これをアンモニアで処理してADUを沈澱せ
しめ、該沈澱を仮焼し、還元すればUO2粉末が得
られる。洗浄工程を充分に行なえばUO2粉末中の
ガドリニウム濃度を1ppm以下にすることも可能
である。 なお、洗浄及び逆抽出に希酸を用いる場合は、
スクラツプを溶解した酸と同じ酸を用いると、酸
の回収や循環系の構成を容易に出来、スクラツプ
を硝酸や塩酸で溶解の際、ウランの抽出率を向上
させるためにNaNO3等の塩析剤を添加すること
があるが、それ自体は公知の技術であり、本発明
においてもこの技術を適用しても何ら差支えはな
い。 〔実施例〕 実施例 1 Gd2O3をGdとして3重量%程度含有するUO2
スクラツプをNaNO3を添加した硝酸に溶解し、
ウラン192.6g/、ガドリニウム27000ppm、遊
離硝酸1N、NaNO31Nの溶液を得た。該溶液を
6個の分液ロートに分け、TBP/ウランのモル
比を2.0、2.4、2.8、3.0、5.0及び10.0となるよう
にTBPを加え、溶媒抽出した。該水相中のウラ
ン及び有機相中のガドリニウム濃度の分析結果を
第1表に示す。(ガドリニウム、その他の濃度表
示は実施例1〜3において全てUベースの濃度で
ある。)
[Industrial Field] The present invention relates to a method for recovering uranium from nuclear fuel scrap containing gadolinium oxide. [Prior art] In order to increase the burnup of the fuel and improve economic efficiency in boiling water light water reactors (BWRs), a method has been developed to use highly enriched uranium oxide (UO 2 ) fuel. There is. This fuel contains several percent of gadolinium oxide (Gd 2 O 3 ), which has a high neutron absorption ability, in order to suppress surplus reactions in the early stages of combustion and stabilize output. Such nuclear fuel is manufactured by mixing UO 2 powder and Gd 2 O 3 powder, homogenizing the mixture, compression molding it into a cylindrical shape, and sintering it. However, it is inevitable that some scrap will occur during such a molding process.
If the scrap does not contain Gd 2 O 3 , it is dissolved in mineral acid to obtain a crude uranyl compound, which is purified by organic solvent extraction, ammonia is added to produce ammonium deuterate (ADU), and this ADU is precipitated. UO 2 can be recovered by calcining and reducing the material, but when scrap containing Gd 2 O 3 is treated with this method, gadolinium is dissolved together with uranium.
Because of the extraction, the concentration of gadolinium in the resulting UO2 powder is high. For this reason, Gd 2 O 3 -containing scrap has conventionally been forced to be stored without being reused. On the other hand, in a pressurized water reactor (PWR),
Conventionally, the output was adjusted using primary cooling water added with boron oxide, burnable poison rods filled with boron oxide, etc., but since this boron oxide requires time and effort to reprocess, Gd 2 O 3 is added to the fuel. It is planned to change to a method that includes In the future, if uranium fuel is changed to one containing Gd 2 O 3 as mentioned above, the amount of scrap generated from the pellet processing process will increase significantly, so there is a strong need to establish a technology to reuse this. [Problems to be solved by the invention] The present invention has been made in view of the above circumstances, and aims to provide a method for recovering uranium of good purity from uranium fuel scrap containing Gd 2 O 3 . It is something. [Means for Solving the Problems] To achieve this objective, the method of the present invention involves dissolving the scrap in nitric acid or hydrochloric acid, extracting uranium from the solution with a solvent, and extracting the uranium-containing organic phase with water or diluted It is characterized in that after washing with nitric acid or dilute hydrochloric acid, uranium is back-extracted from the organic phase with water or dilute nitric acid or dilute hydrochloric acid. [Operation] When uranium fuel scrap is dissolved in nitric acid, uranium oxide is converted to the following formula: UO 2 +4HNO 3 → UO 2 (NO 3 ) 2 +2NO 2 +2H 2 O or 3U 3 O 8 +20HNO 3 → 9UO (NO 3 ) 2 +10H It elutes as uranyl nitrate UO 2 (NO 3 ) 2 due to 2 O + 2NO↑. To separate this uranyl nitrate from a nitric acid solution, a solvent extraction method using an organic solvent is used, such as tributyl phosphate (TBP).
can be used. It is said that the extraction reaction of uranyl nitrate with TBP follows the following formula: UO 2 (NO 3 ) 2 + 2TBPUO 2 (NO 3 ) 2・2TBP The molar ratio of TBP (TBP/U) needs to be 2 or more. this
The higher the TBP/U ratio, the higher the uranium extraction rate, but the extraction rate of gadolinium and other impurities also increases, so the TBP/U ratio cannot be increased too much.
A suitable TBP/U ratio is 2 to 3. However, even if such extraction conditions are selected, gadolinium is still mixed in the organic phase, and if it is directly extracted with water, dilute nitric acid, or dilute hydrochloric acid, UO 2 (NO 3 ) 2 containing a large amount of gadolinium will be recovered. It ends up. Therefore, in the present invention, a washing step is added before back extraction. That is, the organic phase containing UO 2 (NO 3 ) 2.2TBP is washed with water or dilute nitric acid or dilute hydrochloric acid. This cleaning is basically reverse extraction;
UO 2 (NO 3 ) 2 also moves into the aqueous phase. However, if the amount of water or dilute nitric acid is relatively low relative to the volume of the organic phase, gadolinium will preferentially transfer to the aqueous phase, and gadolinium in the organic phase can be effectively reduced. The volume ratio (aqueous phase/organic phase) during this washing is 1/
Must be 10 or less. In addition, in this cleaning, if the total volume of the aqueous phase used is the same, it is more effective to remove gadolinium if the cleaning is divided into several times. Of course, this washing step can be carried out using a continuous extraction device such as a pulse column. After performing such a cleaning process, the UO 2
If (NO 3 ) 2 is back-extracted with water or dilute mineral acid, an aqueous uranyl nitrate solution with low gadolinium content is obtained, which is treated with ammonia to precipitate ADU, and the precipitate is calcined and reduced. UO 2 powder is obtained. If the washing process is carried out sufficiently, it is possible to reduce the gadolinium concentration in the UO 2 powder to 1 ppm or less. In addition, when using dilute acid for cleaning and back extraction,
Using the same acid used to dissolve scrap makes it easier to recover the acid and configure the circulation system. Although an agent may be added, this itself is a known technique, and there is no problem in applying this technique to the present invention. [Example] Example 1 UO 2 containing about 3% by weight of Gd 2 O 3 as Gd
Dissolve the scraps in nitric acid supplemented with NaNO3 ,
A solution containing 192.6 g of uranium/27000 ppm of gadolinium, 1N of free nitric acid, and 1N of NaNO 3 was obtained. The solution was divided into six separating funnels, TBP was added so that the TBP/uranium molar ratio was 2.0, 2.4, 2.8, 3.0, 5.0, and 10.0, and solvent extraction was performed. Table 1 shows the analysis results of the concentrations of uranium in the aqueous phase and gadolinium in the organic phase. (Gadolinium and other concentration indications are all U-based concentrations in Examples 1 to 3.)

【表】【table】

【表】 第1表からTBP/Uモル比を高くすると有機
相中のGd濃度が高くなり、Gdの抽出率が高くな
つていることが判る。即ち、TBP/Uモル比は
2〜2.5が良い。 次いで実験No.2の有機相を体積比20分の1の水
で5分間洗浄し、15分間静置した後水相を除去
し、再び20分の1の水で洗浄するという具合に合
計6回の洗浄を実施し、1回の洗浄毎に有機相中
のGd濃度を分析した。 結果を第2表に示す。
[Table] It can be seen from Table 1 that when the TBP/U molar ratio is increased, the Gd concentration in the organic phase increases and the Gd extraction rate increases. That is, the TBP/U molar ratio is preferably 2 to 2.5. Next, the organic phase of Experiment No. 2 was washed with 1/20 volume of water for 5 minutes, left to stand for 15 minutes, the aqueous phase was removed, and washed again with 1/20 volume of water, for a total of 6 minutes. Washing was performed twice, and the Gd concentration in the organic phase was analyzed after each washing. The results are shown in Table 2.

【表】 第2表から洗浄によりGdが効果的に除去され
て行くことが判る。 実験No.12で得られた洗浄済有機相からウランを
水で逆抽出し、AUD法でUO2粉末とした。この
UO2の不純物濃度は次の通りであつた。Gd1以
下、Ag0.2以下、Al5以下、B0.1以下、C20以下、
Ca2以下、Cd0.5以下、Cl5以下、Cr2以下、Cu1
以下、F5以下、鉄20以下、Mo2以下、N50以下、
Ni2以下、Pb5以下、Si10以下、Sn1以下、(単位
ppm)。 このような不純物濃度は通常のUO2製品に比べ
て何ら遜色ないものであり、そのまゝ再利用が可
能なものである。 実施例 2 ウランスクラツプを硝酸溶解して得たウラン
120g/、Gd20000ppm、遊離硝酸1N、
NaNO32Nの硝酸ウラニル溶液を、直径300mm、
高さ約6000mmのパルスカラム装置により、ウラン
流入速度35Kg―V/hr、TBP/U比2.4で連続抽
出した。得られる有機相中のウランは100g/、
ガドリニウムは100ppmであつた。次いでこの有
機相を容積比10分の1の純水により、上記パルス
カラム装置を用いて連続洗浄操作を実施した結
果、有機相中のガドリニウム濃度は1ppm以下に
低下した。 実施例 3 ウラン108g/、Gd1000ppmのTBP抽出液
を、容積比0.05(1/20)、0.10(1/10)、0.15
(3/20)の純水により、実施例2と同様のパル
スカラム装置を用いて連続洗浄した。結果を第3
表に示す。
[Table] From Table 2, it can be seen that Gd is effectively removed by cleaning. Uranium was back-extracted with water from the washed organic phase obtained in Experiment No. 12 and converted into UO 2 powder using the AUD method. this
The impurity concentration of UO 2 was as follows. Gd1 or less, Ag0.2 or less, Al5 or less, B0.1 or less, C20 or less,
Ca2 or less, Cd0.5 or less, Cl5 or less, Cr2 or less, Cu1
Below, F5 or below, Iron 20 or below, Mo2 or below, N50 or below,
Ni2 or less, Pb5 or less, Si10 or less, Sn1 or less, (unit
ppm). This impurity concentration is comparable to that of ordinary UO 2 products, and it can be reused as is. Example 2 Uranium obtained by dissolving uranium scrap in nitric acid
120g/, Gd20000ppm, free nitric acid 1N,
NaNO 3 2N uranyl nitrate solution, 300 mm in diameter,
Continuous extraction of uranium was carried out using a pulse column device with a height of approximately 6000 mm at a flow rate of 35 Kg-V/hr and a TBP/U ratio of 2.4. The amount of uranium in the organic phase obtained is 100g/,
Gadolinium was 100ppm. Next, this organic phase was continuously washed with 1/10 of the volume of pure water using the pulse column apparatus described above, and as a result, the gadolinium concentration in the organic phase was reduced to 1 ppm or less. Example 3 TBP extract containing 108 g of uranium/1000 ppm of Gd was prepared at volume ratios of 0.05 (1/20), 0.10 (1/10), and 0.15.
Continuous washing was performed with (3/20) pure water using the same pulse column device as in Example 2. 3rd result
Shown in the table.

〔発明の効果〕〔Effect of the invention〕

本発明法によりGd2O3含有核燃料スクラツプか
らウランを純度良く回収できることとなり、今後
増加すると思われるGd2O3含有ウラン燃料スクラ
ツプ処理の技術を確立することができる。
By the method of the present invention, uranium can be recovered with high purity from nuclear fuel scrap containing Gd 2 O 3 , and a technology for processing uranium fuel scrap containing Gd 2 O 3 , which is expected to increase in the future, can be established.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化ガドリニウムを含有する核燃料スクラツ
プを硝酸又は塩酸に溶解し、該溶液からウランを
溶媒抽出して有機相に移行せしめ、該有機相を水
又は希硝酸又は希塩酸で且つ水相/有機相の容積
比1/10以下で洗浄した後、該有機相からウラン
を水又は希硝酸又は希塩酸で逆抽出することを特
徴とする核燃料スクラツプからウランを回収する
方法。
1 Dissolve nuclear fuel scrap containing gadolinium oxide in nitric acid or hydrochloric acid, solvent extract uranium from the solution and transfer it to an organic phase, and dissolve the organic phase in water or dilute nitric acid or dilute hydrochloric acid and reduce the volume of the aqueous phase/organic phase. A method for recovering uranium from nuclear fuel scrap, which comprises washing at a ratio of 1/10 or less and then back-extracting uranium from the organic phase with water, dilute nitric acid, or dilute hydrochloric acid.
JP60076212A 1985-04-10 1985-04-10 Method of recovering uranium from nucleus fuel scrap Granted JPS61236615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60076212A JPS61236615A (en) 1985-04-10 1985-04-10 Method of recovering uranium from nucleus fuel scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60076212A JPS61236615A (en) 1985-04-10 1985-04-10 Method of recovering uranium from nucleus fuel scrap

Publications (2)

Publication Number Publication Date
JPS61236615A JPS61236615A (en) 1986-10-21
JPH0319169B2 true JPH0319169B2 (en) 1991-03-14

Family

ID=13598867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60076212A Granted JPS61236615A (en) 1985-04-10 1985-04-10 Method of recovering uranium from nucleus fuel scrap

Country Status (1)

Country Link
JP (1) JPS61236615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768010C1 (en) * 2021-06-09 2022-03-23 Акционерное общество "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (АО "НИИ НПО "ЛУЧ") Method for cleaning uranium concentrates from gadolinium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9021264D0 (en) * 1990-09-29 1990-11-14 British Nuclear Fuels Plc Cleaning of solutions
CN104485148B (en) * 2014-11-18 2017-02-22 中国科学院福建物质结构研究所 High-efficient method of extracting uranyl ions from water
CN111549242A (en) * 2020-04-24 2020-08-18 核工业北京化工冶金研究院 Uranium purification method for alkaline residue leachate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924732A (en) * 1982-08-02 1984-02-08 Mitsubishi Rayon Co Ltd Hydrophilic porous membrane and its production
JPS59141426A (en) * 1983-01-17 1984-08-14 ローヌ‐プーラン・シミ・ド・バーズ Full collection of ureanium, yttrium, thorium and rare earthelements contained in organic phase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924732A (en) * 1982-08-02 1984-02-08 Mitsubishi Rayon Co Ltd Hydrophilic porous membrane and its production
JPS59141426A (en) * 1983-01-17 1984-08-14 ローヌ‐プーラン・シミ・ド・バーズ Full collection of ureanium, yttrium, thorium and rare earthelements contained in organic phase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768010C1 (en) * 2021-06-09 2022-03-23 Акционерное общество "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (АО "НИИ НПО "ЛУЧ") Method for cleaning uranium concentrates from gadolinium

Also Published As

Publication number Publication date
JPS61236615A (en) 1986-10-21

Similar Documents

Publication Publication Date Title
RU2431896C2 (en) Regeneration method of spent nuclear fuel and obtaining of mixed uranium-plutonium oxide
US3374068A (en) Irradiated fuel reprocessing
CA1097924A (en) Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions
US4011296A (en) Irradiated fuel reprocessing
US4059671A (en) Method for increasing the lifetime of an extraction medium used for reprocessing spent nuclear fuel and/or breeder materials
Natarajan Reprocessing of spent fast reactor nuclear fuels
US3359078A (en) Irradaiated nuclear fuel recovery
US3808320A (en) Method for reprocessing radioactive materials
CN111485125B (en) Method for recovering technetium from spent fuel post-treatment waste liquid
US3276850A (en) Method of selectively reducing plutonium values
US3708568A (en) Removal of plutonium from plutonium hexafluoride-uranium hexafluoride mixtures
CA1172438A (en) Treatment of fuel pellets
US3981960A (en) Reprocessing method of caramic nuclear fuels in low-melting nitrate molten salts
US4891163A (en) Method of processing nuclear fuel scraps
JPH0319169B2 (en)
RU2454742C1 (en) Method for processing of spent nuclear fuel of nuclear power plants
JP2551683B2 (en) Method for separating uranium and plutonium from uranium-plutonium mixed solution
JPH0453277B2 (en)
US3836625A (en) Reprocessing of spent nuclear fuel
Flanary et al. Hot-cell studies of aqueous dissolution processes for irradiated carbide reactor fuels
US2992886A (en) Method for dissolving zirconiumuranium compositions
Bradley et al. Recovery of Uranium and Thorium from Graphite Fuel Elements. I. Grind-Leach Process
Stevenson Solvent extraction processes for enriched uranium
Flanary et al. Head-end dissolution for Uc processes and Uc-Puc reactor fuels
US3046087A (en) Solvent extraction process for separating uranium and plutonium from aqueous acidic solutions of neutron irradiated uranium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees