JPH03191268A - Generator - Google Patents

Generator

Info

Publication number
JPH03191268A
JPH03191268A JP33028589A JP33028589A JPH03191268A JP H03191268 A JPH03191268 A JP H03191268A JP 33028589 A JP33028589 A JP 33028589A JP 33028589 A JP33028589 A JP 33028589A JP H03191268 A JPH03191268 A JP H03191268A
Authority
JP
Japan
Prior art keywords
furnace
cylinder
furnace cylinder
bottom plate
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33028589A
Other languages
Japanese (ja)
Inventor
Norikazu Kubota
久保田 伯一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP33028589A priority Critical patent/JPH03191268A/en
Publication of JPH03191268A publication Critical patent/JPH03191268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

PURPOSE:To enable prevention of the occurrence of a crack at a connection part and deformation of a cylinder in a furnace and to provide a generator which facilitates maintenance and enables the increase of size by a method wherein an absorbing part for a thermal stress is arranged to the side plate of the cylinder in a furnace, and an absorbing part for a thermal stress is mounted to the periphery of the bottom plate of the cylinder in a furnace. CONSTITUTION:When, during operation of the generator, a cylinder 10 in a furnace is heated to a high temperature by a combustion device 13 and a thermal force is generated at a side plate 10A and a bottom plate 10B, most of the thermal stress is absorbed by a groove 18 and a protrusion part 15. Thereby, when the side plate 10 and the bottom plate 10B are made of different members and interconnected by a weld, a crack is prevented from occurring to a connection part 10C, deformation of the cylinder 10 in a furnace can be prevented, and maintenance of the generator can be simplified. The cylinder 10 in a furnace is formed with the side plate 10A and the bottom plate 10B, and coping with the increase of the size of the generator can be facilitated.

Description

【発明の詳細な説明】 くイ)産業上の利用分野 本発明は吸収冷凍機などに設けられる発生器に関する。[Detailed description of the invention] B) Industrial application fields The present invention relates to a generator installed in an absorption refrigerator or the like.

(0ン従来の技術 例えば実公昭60−18749号公報には缶胴内に炉筒
を備え、炉筒の外側に液室を形成し、かつ、燃焼装置を
炉筒の底板側から開口側へ向いて設け、燃焼装置により
液室の溶液を加熱するように構成した溶液加熱装置が開
示されている。
(0n Conventional technology, for example, Japanese Utility Model Publication No. 18749/1987, has a furnace cylinder inside the can body, a liquid chamber is formed outside the furnace cylinder, and the combustion device is moved from the bottom plate side of the furnace cylinder to the opening side. A solution heating device is disclosed which is arranged facing the same direction and configured to heat a solution in a liquid chamber by means of a combustion device.

(ハ)発明が解決しようとする課題 上記従来の技術において、溶液加熱装置の溶液加熱効率
を向上させるために炉筒内に炉内筒を設け、この炉内筒
の開口側を燃焼装置に向けた場合、炉内筒が燃焼装置か
ら吹き出た炎により加熱され高温になる。そして、側板
、及び底板に熱応力が働く。このため、炉内筒を設ける
場合には一体成形した炉内筒を使用することが望ましい
、しかしながら、溶液加熱装置が大型化し、炉内筒の寸
法が大きくなった場合には一体成形が困難になる。そし
て、側板と底板とを別に製造し、例えば溶接により接続
した場合には、上記熱応力により、溶接部にき裂が発生
したり、炉内筒が変形する虞れがあり、又、側板、或い
は底板が変形する虞れがあった。
(c) Problems to be Solved by the Invention In the above conventional technology, in order to improve the solution heating efficiency of the solution heating device, a furnace cylinder is provided in the furnace cylinder, and the open side of the furnace cylinder is directed toward the combustion device. In this case, the furnace inner cylinder is heated by the flames blown out from the combustion device and becomes high temperature. Then, thermal stress acts on the side plates and the bottom plate. For this reason, when providing a furnace tube, it is desirable to use an integrally molded furnace tube.However, as the solution heating device becomes larger and the dimensions of the furnace tube become larger, integral molding becomes difficult. Become. If the side plate and the bottom plate are manufactured separately and connected by welding, for example, there is a risk that cracks may occur in the welded part or the furnace cylinder may be deformed due to the thermal stress. Alternatively, there was a risk that the bottom plate would be deformed.

本発明はメンテナンスが容易であり、かつ、大型化が可
能な発生器を提供することを目的とする。
An object of the present invention is to provide a generator that is easy to maintain and can be made larger.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、炉筒(7)内にほ
ぼ水平方向に配置され、燃焼装置(13)側に開口した
炉内筒(10〉を備え、炉内筒(10)の側板(10A
)及び底板(IOB)に溝(18)及び突部(15)を
形成した発生器を提供するものである。
(d) Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a furnace cylinder (10) that is arranged in a substantially horizontal direction within the furnace cylinder (7) and that is open to the combustion device (13) side. and a side plate (10A) of the furnace cylinder (10).
) and a bottom plate (IOB) having grooves (18) and protrusions (15) formed therein.

又、炉筒り7〉内にほぼ水平方向に配置され、燃焼装置
<13)側に開口した炉内筒(10)を備え、炉内筒(
10)の側板(IOA)の適所を炉内筒(10)の軸線
とほぼ直角に波形成形し、かつ、炉内筒(10)の底板
(IOA>の外周を波形成形した発生器を提供するもの
である。
Further, the furnace cylinder (10) is arranged in a substantially horizontal direction within the furnace cylinder (7) and is open to the combustion device <13) side.
To provide a generator in which the side plate (IOA) of 10) is corrugated at a proper position approximately perpendicular to the axis of the furnace inner cylinder (10), and the outer periphery of the bottom plate (IOA) of the furnace inner cylinder (10) is corrugated. It is something.

(*)作用 発生器の運転時、炉内筒(10)が燃焼装置(13〉に
よって高温になり、側板(IOA>及び底板(IOB)
に熱応力が発生した場合に、この熱応力のほとんどは溝
(18)及び突部(15〉に吸収されるので、側板(1
0A)と底板(IOB)とを別部材にしてそれぞれを溶
接などによって接続した場合に、接続部(IOC)にき
裂が発生することを防止でき、又、炉内筒(10)が変
形することを防止でき、発生器のメンテナンスの簡略化
を図ることができ、又、炉内筒(10)を側板(LOA
)と底板(10B)とにより形成し、発生器の大型化に
容易に対応することが可能になる。
(*) When the action generator is operating, the furnace inner cylinder (10) becomes high temperature due to the combustion device (13>), and the side plate (IOA> and bottom plate (IOB)
When thermal stress occurs on the side plate (15), most of this thermal stress is absorbed by the groove (18) and the protrusion (15>).
0A) and the bottom plate (IOB) are made into separate members and are connected by welding or the like, it is possible to prevent cracks from occurring in the connection part (IOC), and also to prevent the inner cylinder (10) from deforming. This makes it possible to simplify the maintenance of the generator.
) and a bottom plate (10B), making it possible to easily accommodate upsizing of the generator.

又、発生器の運転時、炉内筒(10)が燃焼装置(13
)によって高温になり、側板(IOA)及び底板(IO
B)に熱応力が発生したとき、それぞれの熱応力は波形
成形部(23) 、 (22)によって吸収されるので
、側板(IOA)と底板(IOB)との接続部(IOC
)にき裂が発生することを防止でき、又、炉内筒り10
)が変形することを回避でき、発生器の炉内筒(10)
の点検、交換などのメンテナンスの簡略化を図ることが
可能になる。又、接続部(IOC)のき裂を回避できる
ので、側板(IOA)と底板(IOB)とを別に作り、
それぞれを接続して大型の炉内筒(10)を形成するこ
とができ、この結果、発生器の大型化に容易に対応する
ことが可能になる。
Also, when the generator is operating, the furnace cylinder (10) is connected to the combustion device (13).
), the side plate (IOA) and bottom plate (IO
When thermal stress occurs in B), each thermal stress is absorbed by the corrugated portions (23) and (22), so the connecting portion (IOC) between the side plate (IOA) and the bottom plate (IOB)
) can prevent cracks from occurring in the furnace tube 10.
) can be avoided from deforming, and the furnace cylinder (10) of the generator can be prevented from deforming.
This makes it possible to simplify maintenance such as inspection and replacement. Also, to avoid cracks at the connection part (IOC), the side plate (IOA) and bottom plate (IOB) are made separately.
Each can be connected to form a large furnace cylinder (10), and as a result, it becomes possible to easily accommodate an increase in the size of the generator.

(へ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
(F) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の直焚高温発生器の縦断面図、第2図は
第1図に示した発生器のA−A線断面図である。第1図
、及び第2図において、(1)は高温発生器の器胴、(
2)は器胴(1〉の下部に形成された吸収液(溶液)流
入室、(3A) 、 (3B)はそれぞれ器胴(1)の
上部に形成された蒸気室、及び蒸気流出室である。又、
(4〉はエリミネータ、(5)は蒸気流出口、(6)は
吸収液流出口である。(7)は器胴(1)内にほぼ水平
に設けられた炉筒であり、この炉筒(7)と器胴(1)
との間に溶液流通路(8)が形成きれている。又、(1
0)は炉筒(7)内にほぼ水平に配置された炉内筒であ
り、この炉内筒(10)と炉筒(7)との間には炉内筒
(10)の全周にわたり煙道(11)が形成されている
。炉内筒(10)は鋼板により形成された筒状の側板(
IOA>と、底板(IOB)とを溶接により接続して製
造したものであり、(IOC)は側板(IOA)と底板
(IOB)との接続部である。そして、側板(IOA)
の底板(IOB)近傍には炉内筒(10)の軸線とほぼ
直角に断面0字状の溝(熱応力の吸収部)(18)が形
成されている。又、底板(IOB)の外周には突部(熱
応力の吸収部) (15)が形成されている。そして、
突部(15)は断面0字状であり、曲面形状をしている
。又、煙道(11)には複数のフィン(12)・・・が
設けられている。これらのフィン(12)・・・は炉筒
(7)の内面に例えば溶接により接続されたものであり
、それぞれのフィン(12)・・・は並列に煙道に設け
られている。
FIG. 1 is a longitudinal cross-sectional view of the direct-fired high-temperature generator of the present invention, and FIG. 2 is a cross-sectional view taken along the line A--A of the generator shown in FIG. In Figures 1 and 2, (1) is the vessel body of the high temperature generator, (
2) is an absorption liquid (solution) inflow chamber formed at the bottom of the vessel body (1), and (3A) and (3B) are a steam chamber and a steam outflow chamber formed at the top of the vessel body (1), respectively. Yes. Also,
(4> is an eliminator, (5) is a steam outlet, and (6) is an absorption liquid outlet. (7) is a furnace tube installed almost horizontally in the vessel body (1); (7) and body (1)
A solution flow path (8) is formed between the two. Also, (1
0) is a furnace cylinder arranged almost horizontally within the furnace cylinder (7), and there is a space between the furnace cylinder (10) and the furnace cylinder (7) that extends around the entire circumference of the furnace cylinder (10). A flue (11) is formed. The furnace cylinder (10) has a cylindrical side plate (
IOA> and the bottom plate (IOB) are connected by welding, and (IOC) is the connection part between the side plate (IOA) and the bottom plate (IOB). And the side plate (IOA)
A groove (thermal stress absorbing portion) (18) with a zero-shaped cross section is formed near the bottom plate (IOB) of the furnace at a substantially right angle to the axis of the furnace inner cylinder (10). Further, a protrusion (thermal stress absorbing part) (15) is formed on the outer periphery of the bottom plate (IOB). and,
The protrusion (15) has a 0-shaped cross section and a curved surface. Further, the flue (11) is provided with a plurality of fins (12). These fins (12)... are connected to the inner surface of the furnace tube (7), for example, by welding, and the respective fins (12)... are provided in parallel in the flue.

第3図はフィン(12) 、 (12>と炉内筒(10
〉との接続構造を示したものであり、フィン(12) 
、 (12)の間に渡された接続板(17A>と炉内M
(10)とがビス(B)により接続されている。ここで
、接続箇所は炉内筒(10)の開口(10a)側に複数
設けられている。
Figure 3 shows the fins (12), (12>) and the furnace cylinder (10).
〉 shows the connection structure with fin (12)
, (12) between the connecting plate (17A>) and the inside of the furnace M
(10) are connected by screws (B). Here, a plurality of connection points are provided on the opening (10a) side of the furnace cylinder (10).

(13)は器胴(1)の側壁(IA)に設けられ、炎口
(13A)が炉内筒(10)の開口(10a)に向いた
バーナ、(14)は煙道(11)の下流に設けられた燃
焼ガス室であり、煙道(11)を通った燃焼ガスはこの
燃焼ガス室(14)に集まり排煙筒(図示せず)を通り
外部へ排出される。
(13) is a burner installed on the side wall (IA) of the vessel body (1), with the flame port (13A) facing the opening (10a) of the furnace cylinder (10), and (14) is the burner in the flue (11). This is a combustion gas chamber provided downstream, and the combustion gas that has passed through the flue (11) is collected in this combustion gas chamber (14) and discharged to the outside through a flue (not shown).

上記のように構成された直焚発生器において、バーナ(
13)から吹き出た燃焼火炎は炉内筒(10)内で燃焼
を終わる。そして、燃焼ガスは第1図に矢印にて示した
ように炉内筒(10)内を開口(1,Oa)に戻り、煙
道(11)に入る。さらに、燃焼ガスは各フィン(12
)・・・の間を通り、煙道(11)を通過する間に各フ
ィン(12)・・・及び炉筒〈7〉に集熱され、200
〜250℃の排ガスとして燃焼ガス室(14)へ流れ、
外部へ排出される。さらに、燃焼熱が炉内筒(10)か
らフィン(12)・・・を介して炉筒(7)へ伝わる。
In the direct firing generator configured as above, the burner (
The combustion flame blown out from 13) ends in the furnace cylinder (10). Then, the combustion gas returns to the opening (1, Oa) in the furnace cylinder (10) as shown by the arrow in FIG. 1, and enters the flue (11). Furthermore, the combustion gas flows through each fin (12
)..., and while passing through the flue (11), heat is collected on each fin (12)... and furnace tube <7>, and 200
Flows to the combustion gas chamber (14) as exhaust gas at ~250°C,
It is discharged to the outside. Furthermore, combustion heat is transmitted from the furnace tube (10) to the furnace tube (7) via the fins (12).

又、吸収液流入室(2)に流入した稀吸収液は炉筒(7
〉外側の溶液流通路(8)を第2図に矢印にて示したよ
うに上方へ流れ、その間に炉筒(7)により加熱され温
度が上昇し、稀吸収液から蒸気が分離発生する。
In addition, the dilute absorption liquid that has flowed into the absorption liquid inflow chamber (2) flows into the furnace cylinder (7).
> The solution flows upward through the outer solution flow path (8) as shown by the arrow in FIG. 2, during which time it is heated by the furnace cylinder (7), the temperature rises, and steam is separated from the dilute absorption liquid.

以上のように発生器が運転され、炉内筒(10)がバー
ナ(13)の燃焼炎により加熱されているとき、側板(
IOA>には第1図の実線矢印(20)にて示したよう
にほぼ水平方向に熱応力が働く、そして、この熱応力の
ほとんどは溝(18〉の縮みによって吸収される。又、
底板(10B)には実線矢印(21) 、 (21)に
て示したように熱応力が働く、そして、この熱応力のほ
とんどは底板(IOB)の突部(15)の縮みによって
吸収される。すなわち、発生器の運転時などに熱応力が
、側板(IOA)に底板(IOB)方向に働いた場合、
底板(IOB)に外周方向に働いた場合には溝(18)
の幅(18a)、突部(15〉の幅(15a)が狭くな
り、熱応力のほとんどが溝(18)及び突部(15)に
吸収される。又、例えば発生器の運転停止後、熱応力が
側板(10A)に開口方向に働き、かつ底板(IOB>
に中心方向に働いた場合には、溝(18)の幅(18a
)、突部(15)の幅(15a)が広くなり、熱応力の
ほとんどが溝(18)及び突部(15)に吸収される。
When the generator is operated as described above and the furnace inner cylinder (10) is heated by the combustion flame of the burner (13), the side plate (
As shown by the solid arrow (20) in Fig. 1, thermal stress acts on the IOA> in an almost horizontal direction, and most of this thermal stress is absorbed by the contraction of the groove (18>).
Thermal stress acts on the bottom plate (10B) as shown by solid arrows (21) and (21), and most of this thermal stress is absorbed by the shrinkage of the protrusion (15) of the bottom plate (IOB). . In other words, when thermal stress is applied to the side plate (IOA) toward the bottom plate (IOB) during generator operation,
Groove (18) when working in the outer circumferential direction on the bottom plate (IOB)
The width (18a) of the groove (18a) and the width (15a) of the protrusion (15>) become narrower, and most of the thermal stress is absorbed by the groove (18) and the protrusion (15).Also, for example, after the generator is stopped, Thermal stress acts on the side plate (10A) in the opening direction, and the bottom plate (IOB>
When the width of the groove (18) (18a
), the width (15a) of the protrusion (15) becomes wider, and most of the thermal stress is absorbed by the groove (18) and the protrusion (15).

上記実施例によれば、発生器の運転時、又は運転停止後
などに、熱応力が炉内筒(10)に働いた場合に、側板
(IOA)の溝(18)、及び底板(IOB>の突部(
15)、(16)が熱応力のほとんどを吸収するため、
側板(IOA)と底板(IOB>との接続部(IOC)
に働く熱応力を大幅に低減することができ、この結果、
接続部(IOC>のき裂、炉内筒(10)の変形などを
回避することができ、炉内筒(10)の点検、及びフィ
ン(12)・・・からの取り外し、取り付けなどのメン
テナンスを簡略化することができる。又、発生器が大型
になり炉内筒(10)が大きくなった場合に、炉内筒を
一体成形することなく、側板と底板とを溶接接続して炉
内筒を製造することができ、発生器の大型化に容易に対
応することができる。
According to the above embodiment, when thermal stress is applied to the furnace cylinder (10) during operation of the generator or after the operation is stopped, the groove (18) of the side plate (IOA) and the bottom plate (IOB> The protrusion (
15) and (16) absorb most of the thermal stress, so
Connection part (IOC) between side plate (IOA) and bottom plate (IOB>)
As a result, the thermal stress acting on the
It is possible to avoid cracks in the connection part (IOC), deformation of the furnace inner cylinder (10), etc., and maintenance such as inspection of the furnace inner cylinder (10) and removal and attachment from the fins (12)... In addition, when the generator becomes large and the furnace cylinder (10) becomes large, the side plate and bottom plate can be welded and connected without integrally molding the furnace cylinder. It is possible to manufacture a cylinder, and it is possible to easily accommodate an increase in the size of the generator.

尚、本発明は上記実施例に限定されるものではなく、炉
内筒(10)が上記実施例より大きい場合には例えば第
5図に示したように、底板(10B)の外周部の突部(
15)の中心側にさらに突部(16)を形成し、突部(
15) 、 (16)で熱応力を吸収するようにしても
同様の作用効果を得ることができる。又、第6図に示し
たように、底板(IOB)の外周部を波形成形し、この
波形成形部(22)で熱応力を吸収することにより、同
様の作用効果を得ることができる。又、炉内筒(10)
が大きい場合には、側板(10A)の底板(10B)と
の接続側を波形成形し、この波形成形部(23)で熱応
力を吸収することにより同様の作用効果を得ることがで
きる。
It should be noted that the present invention is not limited to the above-mentioned embodiment, and if the furnace inner cylinder (10) is larger than the above-mentioned embodiment, the protrusion on the outer periphery of the bottom plate (10B) may be used, for example, as shown in FIG. Department (
A protrusion (16) is further formed on the center side of the protrusion (15).
15) The same effect can be obtained by absorbing thermal stress using (16). Further, as shown in FIG. 6, the same effect can be obtained by corrugating the outer peripheral portion of the bottom plate (IOB) and absorbing thermal stress by the corrugated portion (22). Also, the furnace cylinder (10)
In the case where the side plate (10A) is connected to the bottom plate (10B), the same effect can be obtained by corrugating the side of the side plate (10A) that is connected to the bottom plate (10B) and absorbing thermal stress with this wave-formed portion (23).

(ト)発明の効果 本発明は以上のように構成された発生器であり、炉筒内
に炉内筒をほぼ水平方向に配置し、この炉内筒の開口側
に燃焼装置を配置し、炉内筒の底板及び側板に熱応力の
吸収部を形成したので、発生器の運転時、炉内筒が燃焼
装置に加熱され、高温になった側板、及び底板に発生し
た熱応力を側板及び底板の熱応力吸収部で吸収し、側板
と底板とを別部材で形成し、それぞれを溶接などで接続
した場合にも、側板と底板との接続部に働く熱応力を大
幅に低減することができ、この結果、上記接続部でのき
裂の発生、及び炉内筒の変形などを回避することができ
、発生器のメンテナンスの簡略化を図ることができる。
(G) Effects of the Invention The present invention is a generator configured as described above, in which a furnace cylinder is arranged in a substantially horizontal direction within the furnace cylinder, a combustion device is arranged on the opening side of the furnace cylinder, Since thermal stress absorption parts are formed in the bottom plate and side plate of the furnace cylinder, when the generator is operated, the furnace cylinder is heated by the combustion device, and the thermal stress generated in the high temperature side plate and bottom plate is absorbed by the side plate and the bottom plate. Thermal stress can be absorbed by the thermal stress absorption section of the bottom plate, and even if the side plate and bottom plate are made of separate materials and connected by welding or other means, the thermal stress acting on the connection between the side plate and the bottom plate can be significantly reduced. As a result, generation of cracks at the connection portion and deformation of the furnace cylinder can be avoided, and maintenance of the generator can be simplified.

又、炉内筒を一体成形する必要がなくなり、炉内筒の大
型化を容易に図ることができ、発生器の大型化を容易に
対応することができる。
Further, there is no need to integrally mold the furnace inner cylinder, and the furnace inner cylinder can be easily made larger, and the generator can easily be made larger.

又、炉筒内に燃焼装置側に開口した炉内筒をほぼ水平方
向に配置し、炉内筒の側板後部を軸線とほぼ直角に波形
成形し、かつ、底板の外周を波形成形することにより、
発生器の運転時などに側板、及び底板に働く熱応力のほ
とんどを、それぞれの波形成形部にて吸収することがで
き、発生器の大型化に伴う炉内筒の大型化のために、側
板と底板とを別部材で形成し、それぞれを溶接などで接
続した場合も、接続部のき裂、及び炉内筒の変形などを
回避することができ、この結果、発生器のメンテナンス
の簡略化を図ることができる。
In addition, by arranging the furnace cylinder that opens toward the combustion device side in the furnace cylinder in a substantially horizontal direction, by waving the rear part of the side plate of the furnace cylinder almost perpendicular to the axis, and by waving the outer periphery of the bottom plate. ,
Most of the thermal stress that acts on the side plates and bottom plate during generator operation can be absorbed by the respective corrugated sections. Even if the bottom plate and the bottom plate are made of separate members and connected by welding or the like, it is possible to avoid cracks at the joints and deformation of the furnace cylinder, and as a result, maintenance of the generator is simplified. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本発明の一実施例を示したもので
あり、第1図は発生器の縦断面図、第2図は第1図に示
した発生器のA−A線断面図、第3図は第2図の要部拡
大図、第4図は炉内筒の正面図、第5図、及び第6図は
それぞれ本発明の他の実施例を示す炉内筒の要部側面図
、及び要部断面図である。 (1)・・・器胴、 (7)・・・炉筒、 (1o)・
・・炉内筒、(IOA)・(11板、 (IOB)・・
・底板、 (IOC)−・・接続部、 (15)−突部
(熱応力の吸収部)、 (18)・・・W4(熱応力の
吸収部)、 (22)・・・波形成形部、(23)・・
・波形成形部。
1 to 6 show an embodiment of the present invention, FIG. 1 is a longitudinal sectional view of the generator, and FIG. 2 is a sectional view taken along line A-A of the generator shown in FIG. 1. 3 is an enlarged view of the main part of FIG. 2, FIG. 4 is a front view of the furnace cylinder, and FIGS. 5 and 6 are main parts of the furnace cylinder, respectively, showing other embodiments of the present invention. They are a side view and a sectional view of a main part. (1) ... vessel body, (7) ... furnace tube, (1o).
・Inner furnace cylinder, (IOA)・(11 plates, (IOB)・・
・Bottom plate, (IOC) - Connection part, (15) - Projection (thermal stress absorption part), (18) - W4 (thermal stress absorption part), (22) - Waveform forming part , (23)...
- Waveform shaping section.

Claims (1)

【特許請求の範囲】 1、器胴内に水平方向に配置され、外側に液室を形成し
た炉筒と、器胴に設けられ炉筒内を向いた燃焼装置とを
備えた発生器において、炉筒内にほぼ水平方向に配置さ
れ、燃焼装置側に開口した炉内筒を備え、この炉内筒の
側板に熱応力の吸収部を形成し、かつ炉内筒の底板の円
周上に熱応力の吸収部を形成したことを特徴とする発生
器。 2、器胴内に水平方向に配置され、外側に液室が形成さ
れた炉筒と、器胴に設けられ炉筒内を向いた燃焼装置と
を備えた発生器において、炉筒内にほぼ水平方向に配置
され、燃焼装置側に開口した炉内筒を備え、炉内筒の側
板の後部を炉内筒の軸線とほぼ直角に波形成形し、かつ
、炉内筒の底板の外周を波形成形したことを特徴とする
発生器。
[Scope of Claims] 1. A generator including a furnace cylinder arranged horizontally within the vessel body and having a liquid chamber formed on the outside, and a combustion device provided in the vessel body and facing inside the furnace cylinder, The furnace cylinder is arranged almost horizontally in the furnace cylinder and has an opening toward the combustion device side, and a thermal stress absorbing part is formed on the side plate of the furnace cylinder, and a heat stress absorbing part is formed on the circumference of the bottom plate of the furnace cylinder. A generator characterized by forming a thermal stress absorbing part. 2. In a generator equipped with a furnace cylinder arranged horizontally inside the furnace cylinder and having a liquid chamber formed on the outside, and a combustion device installed in the furnace cylinder and facing inside the furnace cylinder, there is a The furnace cylinder is arranged horizontally and has an opening on the combustion equipment side, and the rear part of the side plate of the furnace cylinder is corrugated almost perpendicular to the axis of the furnace cylinder, and the outer periphery of the bottom plate of the furnace cylinder is corrugated. A generator characterized by being molded.
JP33028589A 1989-12-20 1989-12-20 Generator Pending JPH03191268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33028589A JPH03191268A (en) 1989-12-20 1989-12-20 Generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33028589A JPH03191268A (en) 1989-12-20 1989-12-20 Generator

Publications (1)

Publication Number Publication Date
JPH03191268A true JPH03191268A (en) 1991-08-21

Family

ID=18230942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33028589A Pending JPH03191268A (en) 1989-12-20 1989-12-20 Generator

Country Status (1)

Country Link
JP (1) JPH03191268A (en)

Similar Documents

Publication Publication Date Title
GB2057666A (en) Heat exchangers
CN206739348U (en) A kind of combined air air preheater
JPH06193808A (en) Boiler
JPH03191268A (en) Generator
CN209672288U (en) A kind of three backhaul fire tube pan shell type steam boilers
CN209588004U (en) A kind of heat-pipe type waste heat boiler
KR20180007984A (en) Structure for preventing combustion heat loss of heat exchanger
CN203671571U (en) Boiler shell membrane type water wall structure
JPH0350163B2 (en)
ITMI940396A1 (en) HEAT EXCHANGER, IN PARTICULAR SUPPLY AIR COOLER OF AN INTERNAL COMBUSTION ENGINE
CN208332672U (en) A kind of hot wind furnace structure
CN207527572U (en) A kind of sealing structure for preventing pendant superheater dilatancy
JPH0619971Y2 (en) Heat exchanger
CN208012082U (en) Expanding surface flue gas fired-boiler
JPH0645802Y2 (en) Combustion device
JPH07293277A (en) Duct structure substance
KR20200121658A (en) Vertical cylindrical type firewood boiler
CN2339919Y (en) Horizontal-housing type internal combustion oil gas water-heating boiler
CN208670986U (en) A kind of gas steam generator that the thermal efficiency is high
ITMI20132086A1 (en) HIGH EFFICIENCY HEAT EXCHANGER FOR BOILERS AND HOT AIR GENERATORS
CN106969374A (en) A kind of combined air air preheater
JP3007836B2 (en) Multi-tube once-through boiler
JP3666777B2 (en) Boiler with heat-absorbing fins that intersect the combustion gas flow
JPS6133363Y2 (en)
KR20230112228A (en) Flue connection pipe of inner tube, wrinkle inner tube, outer tube and wrinkle outer tube