JPH03190606A - Tool for superprecise cutting work - Google Patents

Tool for superprecise cutting work

Info

Publication number
JPH03190606A
JPH03190606A JP32583289A JP32583289A JPH03190606A JP H03190606 A JPH03190606 A JP H03190606A JP 32583289 A JP32583289 A JP 32583289A JP 32583289 A JP32583289 A JP 32583289A JP H03190606 A JPH03190606 A JP H03190606A
Authority
JP
Japan
Prior art keywords
tool
cbn
cutting
single crystal
cutting work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32583289A
Other languages
Japanese (ja)
Inventor
Junji Degawa
出川 純司
Katsuto Yoshida
克仁 吉田
Kazuo Tsuji
辻 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32583289A priority Critical patent/JPH03190606A/en
Publication of JPH03190606A publication Critical patent/JPH03190606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To obtain a CBN base tool for superprecise cutting work improved in life by making 0.001-0.5weight% of Be exist as solid solution in a cubic boron nitride monocrystal bite tip. CONSTITUTION:A cubic boron nitride(CBN) monocrystal doped with 0.001-0.5weight% of Be as solid solution is made as a bite tip, and a machine tool for superprecise cutting work is obtained. Accordingly, together with improvement in hardness and toughness of the tool, reaction of iron family metal is suppressed. Therefore, working for iron family metal required high precision can be realized with only cutting work.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄系材料の超精密加工を切削で実現できる超精
密切削加工用工具に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultra-precision cutting tool that can realize ultra-precision machining of iron-based materials by cutting.

〔従来の技術〕[Conventional technology]

超精密切削加工、すなわち切削のみで被加工物を鏡面と
する加工を行なうための工具材料としては、高硬度で耐
磨耗性に優れる物質であること、及び鋭い刃先を得るこ
とのできる単結晶であることが必要である。この点、す
べての物質中最高の硬度を誇るダイヤモンドの単結晶は
理想的な材料であり、これを用いた/V、CI+等の非
鉄金属の超精密加工では既に実用化されている。
Tool materials for ultra-precision machining, that is, machining the workpiece to a mirror surface only by cutting, must be materials with high hardness and excellent wear resistance, and single crystal materials that can obtain sharp cutting edges. It is necessary that In this respect, diamond single crystal, which boasts the highest hardness of all materials, is an ideal material, and it has already been put to practical use in ultra-precision machining of non-ferrous metals such as /V and CI+.

しかし、鉄系材料、特に鋼の場合は、その超精密切削加
工が切望されているにもかかわらず、ダイヤモンド単結
晶で加工することはできない。これはダイヤモンドが切
削加工時の温度下で鉄属金属(Fe、 N1. Co)
と化学的に反応し、異常に磨耗するためである。そこで
、鉄系材料の超精密切削加工を行なうための工具材料と
しては、ダイヤモンドに次ぐ硬度を有し、切削加工時の
温度で反応しない立方晶窒化硼素(cubic Bor
on N目ride以下cBNと略記する)単結晶が最
有力と考えられてきた。
However, ferrous materials, especially steel, cannot be processed using diamond single crystals, even though ultra-precision cutting is desired. This is because diamond is ferrous metal (Fe, N1. Co) under the cutting temperature.
This is because it chemically reacts with the metal and causes abnormal wear. Therefore, as a tool material for ultra-precision cutting of iron-based materials, cubic boron nitride (cubic boron nitride), which has a hardness second only to diamond and does not react at the temperature during cutting, is recommended.
single crystal (hereinafter abbreviated as cBN) has been considered to be the most promising.

cBNは天然には存在せず、又その大型単結晶を合成す
ることが大変難しいため、長い間その実証がなされてい
なかったが、最近になり大型の単結晶の合成が可能とな
り、それに伴いcBN単結晶工具の作成も可能となった
Since cBN does not exist in nature and it is very difficult to synthesize large single crystals, it has not been proven for a long time, but recently it has become possible to synthesize large single crystals, and as a result cBN It has also become possible to create single-crystal tools.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、実際にcBN単結晶工具で鉄系材料の超精密切
削加工を行ってみると、予想外に工具の磨耗が大きく良
好な加工面粗さの得られる切削距離(寿命)が数百mで
あり、直ちに実用化することは難しい、思われた〔例え
ば文献: FIRST INTERNATIONAL 
C0NFIERENCE ON N[iW DIAMO
ND 5CIENCEAND TεCllN0LOGY
、 PROGRAM and ABSTRACTS、 
p204(1988)、参照)。この寿命はダイヤモン
ド単結晶で非鉄金属を超精密切削加工するときの寿命数
百kmには及ぶべくもないが、対象が鉄系材料であるこ
とを考えると、もう1桁程度つまり寿命を数kmを実現
できれば、十分実用レベルに到達可能なものと考えられ
る。
However, when we actually performed ultra-precision machining of ferrous materials using cBN single crystal tools, we found that the tool wear was unexpectedly large and the cutting distance (life) at which good machined surface roughness could be obtained was only a few hundred meters. However, it seemed difficult to put it into practical use immediately [for example, literature: FIRST INTERNATIONAL
C0NFIERENCE ON N[iW DIAMO
ND 5CIENCEAND TεCllN0LOGY
, PROGRAM and ABSTRACTS,
p204 (1988), see). This lifespan is unlikely to reach the hundreds of kilometers that is required when ultra-precision cutting non-ferrous metals using diamond single crystals, but considering that the target is ferrous materials, it is about one order of magnitude longer, which means the lifespan is several kilometers. If this can be realized, it is considered that it will be possible to reach a sufficiently practical level.

すなわち、鏡面の要求される非鉄金属の用途が磁気ディ
スク等大型で又多量、低コストの要求される製品である
のに対し、鉄系材料特に鋼の用途きして考えられる金型
等は、数量、コストに対する要求はあまり厳しくな(、
又比較的小型の製品であることが多い。本発明者らの試
算では、寿命が数kmであれば、十分実用化に繋がると
思われた。
In other words, non-ferrous metals that require a mirror surface are used for large-sized products such as magnetic disks, and products that require large quantities and low cost, while molds and other materials that are considered to be used for ferrous materials, especially steel, are Requirements for quantity and cost are not very strict (,
In addition, they are often relatively small products. According to the inventors' calculations, it was thought that a lifespan of several kilometers would be sufficient for practical use.

このような検討の結果、本発明は寿命が数km程度に向
上したcBN系の超精密切削加工用工具の開発を課題と
してなされたものである。
As a result of such studies, the present invention was developed with the objective of developing a cBN-based ultra-precision cutting tool with an improved lifespan of several kilometers.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記課題を達成すべく研究努力し、特に
cBN単結晶に不純物元素をドープすることで寿命延長
をはかることを試みた結果、あのドープが非常に好結果
を与えることを見出し本発明に到った。
The inventors of the present invention have made research efforts to achieve the above-mentioned problems, and have particularly attempted to extend the lifespan of cBN single crystals by doping them with impurity elements. As a result, they have discovered that doping gives very good results. We have arrived at the present invention.

すなわち、本発明は0.001〜0.5重量%のBeを
含有してなる立方晶窒化硼素単結晶を刃先としてなる超
精密切削加工用工具である。
That is, the present invention is an ultra-precision cutting tool having a cutting edge made of a cubic boron nitride single crystal containing 0.001 to 0.5% by weight of Be.

本発明の効果を得られるトのドーピング量としては、0
.001〜0.5重量%が必要である。立方品窒化硼素
単結晶中で賑は固溶体として存在している。o、 o 
o を重量%未満ではあのドーピング効果が現れず、又
、0.5重量%を越えると、固溶体として存在する限界
を越え、cBN中にインクルージジン(包含物)として
存在するようになるため、cBNの強度が低下する。
The doping amount for obtaining the effects of the present invention is 0.
.. 0.001 to 0.5% by weight is required. The particles exist as a solid solution in the cubic boron nitride single crystal. o, o
If o is less than 0.5% by weight, the doping effect will not appear, and if it exceeds 0.5% by weight, it will exceed the limit of existing as a solid solution and will exist as an inclusion in cBN. strength decreases.

〔作用〕[Effect]

cBN中に艮をドーピングすることにより切削工具の寿
命が数km、っまり1桁程度向上する理由としては、 ■硬度の向上; 1をドーピングしないcBNの硬度が
Hv4,250であるのに対し、本発明の戊をドーピン
グしたcBNの硬度はHv5.000を示した。これは
耐磨耗性の向上を意味する。
The reasons why the life of a cutting tool can be improved by several kilometers, or about one order of magnitude, by doping cBN with Ai are as follows: ■Improvement in hardness: While the hardness of cBN without doping with 1 is Hv4,250, The hardness of the cBN doped with the present invention was Hv5.000. This means improved wear resistance.

■靭性の向上;  cBNは硬脆材料の代表的物質であ
るから非常に破砕しやすい。特に(1,1,0]面での
ヘキ開が大変激しい。賑をドープすることにより、この
ヘキ開が緩和されることは十分あり得る。実際にcBN
へのSIのドーピングによりヘキ開が緩和され、靭性が
向上したとの報告(特開昭59−199514号公報)
も知られている。
■Improvement in toughness; cBN is a typical hard and brittle material, so it is extremely easy to fracture. In particular, the cleavage on the (1,1,0] plane is very severe.It is quite possible that this cleavage can be alleviated by doping with ferrite.Actually, cBN
It has been reported that cleavage is alleviated and the toughness is improved by doping SI into
is also known.

■導電性付与;  cBN自身は絶縁体であるが、島を
ドーピングするとp型の半導体となることはよく知られ
ている。半導体となることで静電気による切削屑の付着
が低減されることによる効果も考えられる。
(2) Adding conductivity; Although cBN itself is an insulator, it is well known that doping the islands makes it a p-type semiconductor. It is also thought that the effect of reducing the adhesion of cutting debris due to static electricity by becoming a semiconductor.

0反応性の低減;  cBNは鉄属金属と反応しないと
言われているが、実際には僅かながら反応するものと考
えられるところがある。本発明者らの実験によると、曵
のドーピングにより、cBNと鉄屑金属の反応が抑制さ
れることは十分に考えられる。
0 Reduction of reactivity; Although it is said that cBN does not react with ferrous metals, in reality it is thought that it does react, albeit slightly. According to the experiments conducted by the present inventors, it is highly conceivable that the reaction between cBN and iron scrap metal is suppressed by doping.

以上のように考えられるが、現在のところ、上記■〜■
の何れが主要因であるかは、明らかでない。但し、島と
同じ<cBN中に固溶体として存在し得るSl、 S等
のドープでは、寿命の向上は見られなかった。
It is possible to think of the above, but at present, the above ■~■
It is not clear which of these is the main factor. However, no improvement in life was observed with doping of Sl, S, etc., which can exist as a solid solution in cBN, which is the same as the island.

cBN中に1をドーピングする方法としては、(al 
c B N単結晶育成時にドーピングする方法と、Tb
)既に育成されたcBN単結晶にイオンプランテーショ
ン等の手段により融イオンを打ち込む方法がある。本発
明工具に用いるあドープcBNとしては、(alの方法
で作成した方がより好ましいが、(blの方法によるも
のも使用可能である。但しくblによる場合、戊イオン
を打ち込んだ後、B−Be又はN−f3eの結合を持た
せるため、最低500℃以上の高温でアニーリングする
ことが必要である。
As a method of doping 1 into cBN, (al
c Doping method during growth of BN single crystal and Tb
) There is a method of implanting molten ions into an already grown cBN single crystal by means such as ion plantation. As for the a-doped CBN used in the tool of the present invention, it is more preferable to create it by the method of (al), but it is also possible to use the method of (bl). In order to form a bond of -Be or N-f3e, it is necessary to perform annealing at a high temperature of at least 500°C or higher.

好ましい(alの方法で艮をドーピングしたcBN単結
晶を合成する方法は以下の実施例及びNEW DIAM
OND、卸、 21 (1988)の記載に具体的に示
される。
The method of synthesizing the cBN single crystal doped with the preferable (al) method is described in the following examples and NEW DIAM
This is specifically shown in the description of OND, Wholesale, 21 (1988).

〔実施例〕〔Example〕

以下に本発明を実施例を挙げて説明するが、本発明はこ
れに限定されるところはない。
The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

実施例1 第1図に示す試料室の構成により戊をドーピングしたc
r3N単結晶を合成した。同図中、■は艮を含む原料窒
化硼素(60重量%cBN+39重量%六方品窒化硼素
+1重量%Be)、2は溶媒でコノ例では〔8重ff1
XLi3ON、+ 16重量XSI、B、N、+76重
瓜%Sr、B10a ] 、3は種子結晶cBN単結晶
(約0.3 m rn径)、4はMO製容器、5は圧力
媒体、6は黒鉛ヒーターである。又、同図右部分は室内
の温度分布を示す。
Example 1 C doped with 戊 using the configuration of the sample chamber shown in Figure 1.
An r3N single crystal was synthesized. In the same figure, ■ is the raw material boron nitride containing the material (60 wt% cBN + 39 wt% hexagonal boron nitride + 1 wt% Be), 2 is the solvent, and in this example [8-fold ff1
XLi3ON, +16 wt. It is a graphite heater. Also, the right part of the figure shows the temperature distribution in the room.

これをベルト型高圧発生装置により五万気圧に加圧する
一方、黒鉛ヒーター6に交流電流を流し、戊を含む原料
窒化硼素1と溶媒2の界面を1720℃、種子結晶cB
N単結晶3付近を1690℃とした。この状態で50時
間保持したところ、温度差により良を含む原料窒化硼素
1が溶媒を介し種子結晶cr3N単結晶3上に析出し、
約3mm径の、賑がドーピングされたcBN単結晶が生
成した。この生成融ドープcBN単結晶中の隔置をSI
MS (2次イオン質量分析器)により測定したところ
、約0.02重量%であった。該シドーブCBN単結晶
を〜−cu−Tt鑞にて鋼シャンクに鑞付けした後、#
400のレジンボンドダイヤモンド砥石にてノーズ半径
0.8mm、逃げ角3″、すくい角0°のR形状の工具
に成形した。更に、該工具の刃先を#8000のレジン
ボンドダイヤモンド砥石にて研磨し、鋭い刃先を形成し
た。
This is pressurized to 50,000 atmospheres using a belt-type high pressure generator, while an alternating current is passed through the graphite heater 6 to heat the interface between the raw material boron nitride 1 containing boron and the solvent 2 to 1720°C and seed crystal cB.
The temperature near N single crystal 3 was set to 1690°C. When this state was maintained for 50 hours, the raw material boron nitride 1 containing good particles precipitated on the seed crystal cr3N single crystal 3 through the solvent due to the temperature difference.
A doped cBN single crystal with a diameter of about 3 mm was produced. The spacing in this produced melt-doped cBN single crystal is SI
As measured by MS (secondary ion mass spectrometer), it was approximately 0.02% by weight. After brazing the Sidob CBN single crystal to a steel shank with ~-cu-Tt solder, #
The tool was formed into an R-shaped tool with a nose radius of 0.8 mm, clearance angle of 3'', and rake angle of 0° using a #400 resin bond diamond grindstone.Furthermore, the cutting edge of the tool was polished using a #8000 resin bond diamond grindstone. , forming a sharp cutting edge.

以上で得られた本発明の工具による、予め而粗さを1/
711R+iaxに調製されたSKS鋼(H*c63)
を切削速度100 m/sin 、送り速度5/jI/
rev、切り込み5pで切削加工したところ、切削距離
8000mまで0.05 uRmaxの鏡面に加工でき
た。
By using the tool of the present invention obtained above, the roughness can be reduced to 1/
SKS steel prepared to 711R+iax (H*c63)
Cutting speed 100 m/sin, feed rate 5/jI/
When cutting with rev and depth of cut of 5p, it was possible to process to a mirror surface of 0.05 uRmax up to a cutting distance of 8000 m.

ちなみに、BeをドーピングしていないcBN単結晶製
工具により同様の加工を行ったところ、0、05 ps
 Raiax以下の而粗さの得られた切削距離は250
mであった(比較例1)。
By the way, when similar processing was performed using a cBN single crystal tool that was not doped with Be, the processing speed was 0.05 ps.
The cutting distance obtained with roughness below Raiax is 250
m (Comparative Example 1).

実施例2 第1図の試料室構成において艮を加えずに合成したcB
N単結晶にイオンプランテーション方により、後に工具
の刃先となる部分の戊濃度が0.05重量%となるよう
に山イオンを注入した。
Example 2 cB synthesized without adding a barb in the sample chamber configuration shown in Figure 1
Mountain ions were implanted into the N single crystal by an ion plantation method so that the ion concentration at the portion that would later become the cutting edge of the tool was 0.05% by weight.

これを真空中1250℃で50時間処理した後、実施例
1と同じ方法により工具とした。
After treating this in vacuum at 1250° C. for 50 hours, it was made into a tool using the same method as in Example 1.

この工具により切削速度100m+/膳1n1送り速度
5/Jl/rev1切り込みIO−で5KDII鋼(H
肛60)を切削したところ、0.054R+sax以下
の而粗さを得られた切削距離は4000mであった。
With this tool, 5KDII steel (H
When the hole 60) was cut, the cutting distance at which a roughness of 0.054R+sax or less was obtained was 4000 m.

比較のために行った戊をドーピングしていないcBN単
結晶製工具のそれは180mLかなかった(比較例2)
For comparison, the cBN single crystal tool without doping had only 180 mL (Comparative Example 2)
.

以上の実施例と比較例の結果から、本発明のシドープし
たcBN単結晶刃先を有する切削工具が、cBN単結晶
のみからなる刃先の工具に比べ、■桁オーダー高い寿命
を実現できたことが明らかである。そしてこのような寿
命であれば、充分に実用できる。
From the results of the above examples and comparative examples, it is clear that the cutting tool having the doped cBN single crystal cutting edge of the present invention was able to achieve an order of magnitude longer life than a tool having a cutting edge made only of cBN single crystal. It is. Such a lifespan is sufficient for practical use.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の超精密加工用切削工具に
よれば鋼の切削において数kmの切削距離にわたり面粗
さ0.057a+Rmix以下の鏡面が得られる。この
ため従来は手間とコストの掛かる研削及び研磨により行
われた精密金型類等の高高度かつ高精度の要求される鉄
屑金属の加工が、切削加工のみで実現できる。従って本
発明はコストダウン、品質向」二の効果の大きい、産業
上の利用価値が非常に高いものである。
As explained above, according to the cutting tool for ultra-precision machining of the present invention, a mirror surface with a surface roughness of 0.057a+Rmix or less can be obtained over a cutting distance of several kilometers when cutting steel. Therefore, the machining of scrap iron metal, which requires high precision and high precision, such as precision molds, which was conventionally performed by grinding and polishing, which was laborious and costly, can be realized only by cutting. Therefore, the present invention has great effects in terms of cost reduction and quality improvement, and has very high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超精密加工用切削工具材料とするシド
ープcBN単結晶を合成する装置の試料室の一例の構成
と温度分布を説明する概略図である。 図中、1は開を含む原料窒化硼素、2は溶媒、3は種子
結晶、 4はMo製容器、 5は圧力媒体、 は黒鉛ヒーターである。
FIG. 1 is a schematic diagram illustrating the configuration and temperature distribution of an example of a sample chamber of an apparatus for synthesizing a Sydope cBN single crystal as a cutting tool material for ultra-precision machining of the present invention. In the figure, 1 is a raw material boron nitride containing open matter, 2 is a solvent, 3 is a seed crystal, 4 is a container made of Mo, 5 is a pressure medium, and is a graphite heater.

Claims (1)

【特許請求の範囲】[Claims] (1)0.001〜0.5重量%のBeを含有してなる
立方晶窒化硼素単結晶を刃先としてなる超精密切削加工
用工具。
(1) An ultra-precision cutting tool whose cutting edge is made of cubic boron nitride single crystal containing 0.001 to 0.5% by weight of Be.
JP32583289A 1989-12-18 1989-12-18 Tool for superprecise cutting work Pending JPH03190606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32583289A JPH03190606A (en) 1989-12-18 1989-12-18 Tool for superprecise cutting work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32583289A JPH03190606A (en) 1989-12-18 1989-12-18 Tool for superprecise cutting work

Publications (1)

Publication Number Publication Date
JPH03190606A true JPH03190606A (en) 1991-08-20

Family

ID=18181109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32583289A Pending JPH03190606A (en) 1989-12-18 1989-12-18 Tool for superprecise cutting work

Country Status (1)

Country Link
JP (1) JPH03190606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123482A1 (en) * 2006-04-25 2007-11-01 Seco Tools Ab A threading tool, a threading insert with a face of pcbn and a method of forming a thread

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123482A1 (en) * 2006-04-25 2007-11-01 Seco Tools Ab A threading tool, a threading insert with a face of pcbn and a method of forming a thread
US7476063B2 (en) 2006-04-25 2009-01-13 Seco Tools Ab Threading tool, threading insert, and method of forming a thread

Similar Documents

Publication Publication Date Title
JP6409930B2 (en) CVD diamond single crystal
EP3257829B1 (en) Cubic boron nitride polycrystal, cutting tool, wear resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
US5133332A (en) Diamond tool
CA1103042A (en) Sintered compact for use in a cutting tool and a method of producing the same
Hodgson et al. Turning hardened tool steels with cubic boron nitride inserts
CN102939261B (en) Diamond tool
Narutaki et al. High-speed machining of Inconel 718 with ceramic tools
EP0662025B1 (en) Coated grinding tools and methods for their preparation
US5567532A (en) Amorphous metal/diamond composite material
JP6728395B2 (en) Diamond tool pieces
US6592436B1 (en) Grinding and polishing tool for diamond, method for polishing diamond, and polished diamond, single crystal diamond and single diamond compact obtained thereby
Qi et al. Vacuum brazing diamond grits with Cu-based or Ni-based filler metal
US5569862A (en) High-pressure phase boron nitride sintered body for cutting tools and method of producing the same
JP4732169B2 (en) Diamond tool and method for synthesizing single crystal diamond
US6737377B1 (en) Cutting tool of a cubic boron nitride sintered compact
CN102658529A (en) Method for preparing nano particles by nano grinding through superfine abrasive particles
US4476656A (en) Method of dressing a plated cubic boron nitride grinding wheel
JPH03190606A (en) Tool for superprecise cutting work
EP0102843A2 (en) Tool inserts
JP2783428B2 (en) Single crystal silicon carbide tool
CN113621892A (en) Hard alloy milling cutter with high impact resistance and preparation method thereof
GB2541289A (en) Single crystal synthetic diamond
JPH03228504A (en) Diamond tool
JPH01240204A (en) Cubic system boron nitride single crystal cutting tool
JPS60165340A (en) Selectively and partially modified sintered alloy