JPH0318992B2 - - Google Patents

Info

Publication number
JPH0318992B2
JPH0318992B2 JP57194071A JP19407182A JPH0318992B2 JP H0318992 B2 JPH0318992 B2 JP H0318992B2 JP 57194071 A JP57194071 A JP 57194071A JP 19407182 A JP19407182 A JP 19407182A JP H0318992 B2 JPH0318992 B2 JP H0318992B2
Authority
JP
Japan
Prior art keywords
alloy
composite material
heat treatment
core material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57194071A
Other languages
Japanese (ja)
Other versions
JPS5985390A (en
Inventor
Kazuo Kurahashi
Masayuki Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP19407182A priority Critical patent/JPS5985390A/en
Priority to DE19833339954 priority patent/DE3339954A1/en
Publication of JPS5985390A publication Critical patent/JPS5985390A/en
Publication of JPH0318992B2 publication Critical patent/JPH0318992B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C5/00Constructions of non-optical parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Eyeglasses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は眼鏡フレーム用の複合材の製法に関
し、特にTiを芯材としかつAuもしくはAu基合金
を外被とするクラツド材における外被のAuや合
金元素を芯材部分に拡散固溶させることによつて
全体のバネ性、強度を向上させたものである。 周知のようにTiは耐食性が極めて優れ、しか
も軽量でまた合金化した場合の強度が高い等の特
性を有し、そのため眼鏡フレーム材に適用するこ
とが考えられている。しかしながらTiやTi合金
は酸素との親和力が強いため表面の酸化皮膜によ
りろう付けが困難であり、したがつてそのままで
は蝶番等の部品をろう付けする必要のある眼鏡フ
レームには適用困難である。また同様の理由から
表面のメツキ処理に困難を伴い、Tiは純金属で
か加工性が良好である反面、眼鏡フレームとして
強度やバネ性が充分ではなく、逆に合金化して
Ti合金とした場合には強度やバネ性は得られる
ものの、加工が困難となり、眼鏡フレームの如く
細線化を要する場合には問題があつた。 そこで最近では純Tiを芯材とし、その外側に
ろう付け性が良好でまたメツキが不要なAuもし
くはAu基合金からなる外被をクラツドしたTi−
Auクラツド材を眼鏡フレームに使用することが
考えられている。この場合にはロウ付けは容易と
なり、またメツキが不要なため工数が減少し、し
かも加工も容易となる利点があるが、強度やバネ
性が不足する問題は依然として解決されていな
い。 この発明は以上の事情に鑑みてなされたもの
で、眼鏡フレーム材として優れた特性を有する
Ti−Au系クラツド材、特に加工性の良好な純Ti
を芯材としたTi−Au系クラツド材をさらに改良
して、バネ性および強度を向上させた眼鏡フレー
ム用複合材を得る方法を提供することを目的とす
るものである。 すなわちこの発明の方法は、Ti(チタン)を芯
材としかつAu(金)もしくはAu基合金を外被と
するクラツド材を加工した後、450〜1000℃の範
囲内の温度で熱処理して外被中のAuやその他の
合金元素を芯材のTi中に拡散固溶させ、これに
よつて芯材部分をTi合金とすることにより強度
やバネ性を向上させ、しかも表面層にAuもしく
はAu基合金を残すことによつてろう付け性を良
好に保つとともにメツキを不要とし、しかも装飾
性を良好にしたものである。 以下この発明の方法をさらに詳細に説明する。 この発明の方法を実施するにあたつては、予め
第1図Aに示すように純Tiを芯材1としかつAu
もしくはAu基合金を外被2とするクラツド材3
を作成しておく。ここでAu基合金としては、Au
にNi、Cu、Zn等の1種または2種以上を適量添
加したものを用いれば良い。 上述のようなクラツド材3に対しては第1図B
に示すように線引加工等の塑性加工を施して、製
品の寸法形状または製品の寸法形状に近い状態と
する。このクラツド材加工段階では内側の芯材1
は純Tiのままで加工性が良好であり、外被2も
純Auの場合加工性が極めて良好であり、また外
被2がAu基合金の場合純Auよりも加工性は低下
するがTi合金よりは良好であるから、全体とし
ての加工性も良好であり、したがつて加工に特に
困難を伴うことがない。 次いで製品の寸法形状またはそれに近い状態と
なつたクラツド材3に対し、拡散熱処理を行う。
すなわち、外被のAuもしくはAu基合金中におけ
るAu元素またはNi、Cu、Zn等の合金元素を芯材
中に拡散させ、芯材のTiに固溶させる。またこ
の拡散熱処理においては、外被における芯材との
境界側のAu等は芯材へ拡散させる必要があるが、
逆に表面層のAuもしくはAu基合金はそのまま残
留させる必要がある。すなわち表面層までTi合
金となつてしまつた場合にはろう付け性やメツキ
性が損なわれ、かつAuの固有の金色の色調が失
われて装飾性も損なわれるおそれがあるから、少
なくとも表面層はAuもしくはAu基合金のまま残
留するように拡散熱処理の時間や温度を設定する
必要がある。具体的には、この拡散熱処理の温度
は、外被から拡散させるべき元素が芯材の中心部
まで充分に拡散してバネ性、強度が充分に向上
し、しかも外被の表面層まで芯材からTiが拡散
しないように、450℃〜1000℃の範囲内の温度と
する。この熱処理温度が450℃未満では、芯材中
心部まで充分に拡散させてバネ性、強度を充分に
向上させることが困難となり、一方熱処理温度が
1000℃を越えれば、外被の表面層まで芯材からの
Tiが拡散して表面層がTi合金層となつてしまう
おそれがある。 このようにして得られた複合材は、芯材部分1
A(第1図C参照)がTiに対してAuやNi、Cuあ
るいはZn等が固溶されたTi合金となり、その結
果全体のバネ性や強度が純Tiを芯材とする場合
と比較して格段に向上する。そしてまた表面層4
はAuまたはAu基合金のまま残つているため、ろ
う付け性も良好であり、また耐食性も良好であ
り、しかも金色で装飾性も良好である。すなわ
ち、複合材のままで装飾性、耐食性が優れている
から、実際に眼鏡フレームに使用するにあたつて
も、改めて装飾性や耐食性を高めるためのAuメ
ツキ等を施す必要がない。 以下この発明の実施例を記す。 実施例 1 外径36mm、肉厚3mm、長さ1000mmの純Auパイ
プに、外径30mm、長さ1000mmの純Ti(JIS2種担
当)の芯棒を挿入して嵌合させ、得られたクラツ
ド材に焼鈍および線引加工を行い、外径2.6mmの
線材に加工した。なおこの状態での線材の両端部
を除いた部分のAuの断面積比は約20%である。
これを長さ80mmに切断した後、アルゴンガス雰囲
気中で500℃で1時間焼鈍し、片端より40mmの部
分をステージングによりテーパー加工し、さらに
スエージングした側と反対側の端部から45mmの位
置までをプレスにより厚さ約0.8mmに加工した。
これをアルゴンガス雰囲気中にて900℃で5時間
拡散処理した後、水中に投入して急冷し、眼鏡フ
レーム用複合材を得た。 この実施例により得られた複合材を調べたとこ
ろ、芯材部分はAu−Ti合金となつており、表面
層にAu単独層が残つていることが確認された。 また上述の実施例と同様にして拡散熱処理を
915℃×3時間施したAu断面積比約20%の本発明
Au−Ti複合材C、拡散熱処理を920℃×5時間
施したAu断面積比約20%の本発明Au−Ti複合材
D、拡散熱処理を行わなかつたAu断面積比約20
%の比較例のAu−Tiクラツド材B、およびAuを
複合しないJIS2種担当のTi単独材Aについて、
引張強度およびバネ限界値を調べたところ、第2
図に示す結果が得られた。第2図から、この発明
の方法により得られた複合材C、DはTi単独材
A、および拡散熱処理を行わないAu−Tiクラツ
ド材Bと比較して、強度およびバネ性が改善され
ていることが明らかである。 次に外被としてAu基合金を用いた実施例を記
す。 実施例 2 外径36mm、肉厚3mm、長さ1000mmのAu−30%
Cu合金パイプに、外径30mm、長さ1000mmの純Ti
(JIS2種相当)の芯棒を挿入して嵌合させ、得ら
れたクラツド材に焼鈍および線引加工を行い、外
径2.6mmの線材に加工した。これを長さ80mmに切
断した後、アルゴンガス雰囲気中で550℃で1時
間焼鈍し、片端より40mmの部分をスエージングに
よりテーパー加工し、さらにスエージングした側
と反対側の端部から45mmの位置までをプレスによ
り厚さ約0.8mmに加工した。これをアルゴンガス
雰囲気中にて915℃×3時間の条件もしくは920℃
×5時間の条件で拡散処理した後、水中に投入し
て急冷し、眼鏡フレーム用複合材を得た。 この実施例により得られた複合材を調べたとこ
ろ、芯材部分のTiは合金化され、表面層にAu−
Cu合金が残つていることが確認された。 また上述のようにして拡散熱処理を915℃×3
時間の条件で施した複合材と、拡散熱処理を920
℃×5時間の条件で施した複合材と、拡散熱処理
を行なわなかつた複合材とについて、引張強さお
よびバネ限界値を調べたところ、第1表の上段に
示す結果が得られた。 実施例 3 外径36mm、肉厚3mm、長さ1000mmのAu−30%
Cu−10%Ni合金パイプに、外径30mm、長さ1000
mmの純Ti(JIS2種相当)の芯棒を挿入して嵌合さ
せ、得られたクラツド材に焼鈍および線引加工を
行い、外径2.6mmの線材に加工した。これを長さ
80mmに切断した後、アルゴンガス雰囲気中で600
℃で1時間焼鈍し、片端より40mmの部分をスエー
ジングによりテーパー加工し、さらにスエージン
グした側と反対側の端部から45mmの位置までをプ
レスにより厚さ約0.8mmに加工した。これをアル
ゴンガス雰囲気中にて915℃×3時間の条件もし
くは920℃×5時間の条件で拡散処理した後、水
中に投入した急冷し、眼鏡フレーム用複合材を得
た。 この実施例により得られた複合材を調べたとこ
ろ、芯材部分のTiは合金化され、表面層にAu−
Cu−Ni合金が残つていることが確認された。 また上述のようにして拡散熱処理を915℃×3
時間の条件で施した複合材と、同じく拡散熱処理
を920℃×5時間の条件で施した複合材と、拡散
熱処理を行なわなかつた複合材とについて、引張
強さおよびバネ限界値を調べたところ、第1表の
下段に示す結果が得られた。
The present invention relates to a method for manufacturing a composite material for eyeglass frames, and in particular, to a method for manufacturing a composite material for eyeglass frames, in particular, in a clad material having a core of Ti and an outer covering of Au or an Au-based alloy, Au or alloy elements in the outer covering are diffused into the core material. This improves the overall springiness and strength. As is well known, Ti has properties such as extremely excellent corrosion resistance, light weight, and high strength when alloyed, and for this reason, its application to eyeglass frame materials is being considered. However, since Ti and Ti alloys have a strong affinity for oxygen, it is difficult to braze them due to the oxide film on their surfaces, and therefore it is difficult to apply them as is to eyeglass frames that require parts such as hinges to be brazed. Also, for the same reason, it is difficult to plate the surface, and while Ti is a pure metal and has good workability, it does not have sufficient strength or elasticity for eyeglass frames, and on the contrary, it is difficult to plate the surface.
Although strength and elasticity can be obtained when using a Ti alloy, it is difficult to process, and there is a problem in cases where thinning of the wire is required, such as in eyeglass frames. Recently, however, Ti--Ti alloys have been developed that use pure Ti as the core material and clad the outer sheath made of Au or Au-based alloys, which have good brazing properties and do not require plating.
The use of Au cladding material in eyeglass frames is being considered. In this case, there are advantages in that brazing is easy, and since plating is not required, the number of man-hours is reduced, and processing is also easy, but the problem of insufficient strength and springiness remains unsolved. This invention was made in view of the above circumstances, and has excellent properties as an eyeglass frame material.
Ti-Au clad material, especially pure Ti with good workability
The object of the present invention is to provide a method for obtaining a composite material for eyeglass frames with improved springiness and strength by further improving a Ti--Au based cladding material having a core material of the present invention. In other words, the method of this invention involves processing a clad material with Ti (titanium) as the core material and Au (gold) or Au-based alloy as the outer covering, and then heat-treating the material at a temperature within the range of 450 to 1000°C. By diffusing and dissolving Au and other alloying elements into the Ti core material, the core material is made of a Ti alloy, improving strength and elasticity. By leaving the base alloy, it maintains good brazing properties, eliminates the need for plating, and has good decorative properties. The method of the present invention will be explained in more detail below. When carrying out the method of this invention, pure Ti is used as the core material 1 and Au is used as the core material 1 in advance as shown in FIG.
Or cladding material 3 with outer covering 2 made of Au-based alloy
Create it. Here, the Au-based alloy is Au
A material to which an appropriate amount of one or more of Ni, Cu, Zn, etc. is added may be used. For the clad material 3 as described above, Fig. 1B
As shown in Figure 2, plastic processing such as wire drawing is performed to obtain the dimensions and shape of the product or a state close to the dimensions and shape of the product. In this clad material processing stage, the inner core material 1
The workability is good even when pure Ti remains, and the workability is extremely good when the outer cover 2 is also made of pure Au.Also, when the outer cover 2 is made of an Au-based alloy, the workability is lower than that of pure Au, but when the Ti Since it is better than alloys, it has good workability as a whole, and therefore there is no particular difficulty in processing. Next, the clad material 3, which has reached the dimensions and shape of the product or a state close to it, is subjected to a diffusion heat treatment.
That is, the Au element of the outer covering or the Au element in the Au-based alloy or alloy elements such as Ni, Cu, and Zn are diffused into the core material and dissolved in the Ti of the core material. In addition, in this diffusion heat treatment, Au etc. on the boundary side of the outer cover with the core material needs to be diffused into the core material.
On the contrary, the surface layer of Au or Au-based alloy needs to remain as it is. In other words, if the surface layer becomes a Ti alloy, the brazing properties and plating properties may be impaired, and the unique golden color of Au may be lost, resulting in the loss of decorative properties. It is necessary to set the time and temperature of the diffusion heat treatment so that Au or Au-based alloy remains. Specifically, the temperature of this diffusion heat treatment is such that the elements to be diffused from the outer cover are sufficiently diffused to the center of the core material, sufficiently improving the springiness and strength, and the core material reaches to the surface layer of the outer cover. The temperature should be within the range of 450°C to 1000°C to prevent Ti from diffusing. If this heat treatment temperature is less than 450℃, it will be difficult to sufficiently improve the springiness and strength by sufficiently diffusing into the center of the core material.
If the temperature exceeds 1000℃, the surface layer of the outer jacket will be exposed to the core material.
There is a risk that Ti will diffuse and the surface layer will become a Ti alloy layer. The composite material obtained in this way has a core part 1
A (see Figure 1 C) is a Ti alloy in which Au, Ni, Cu, Zn, etc. are dissolved in Ti, and as a result, the overall springiness and strength are higher than when pure Ti is used as the core material. The result is a significant improvement. And also surface layer 4
Since it remains as Au or an Au-based alloy, it has good brazing properties and corrosion resistance, and is gold in color and has good decorative properties. That is, since the composite material has excellent decorative properties and corrosion resistance, there is no need to apply Au plating or the like to improve the decorative properties and corrosion resistance when actually using it for eyeglass frames. Examples of this invention will be described below. Example 1 A core rod of pure Ti (JIS Class 2) with an outer diameter of 30 mm and a length of 1000 mm was inserted into a pure Au pipe with an outer diameter of 36 mm, a wall thickness of 3 mm, and a length of 1000 mm, and the resulting cladding was fitted. The material was annealed and wire-drawn to produce a wire rod with an outer diameter of 2.6 mm. Note that in this state, the cross-sectional area ratio of Au in the portion of the wire excluding both ends is approximately 20%.
After cutting this to a length of 80 mm, it was annealed at 500°C for 1 hour in an argon gas atmosphere, tapered at 40 mm from one end by staging, and then 45 mm from the opposite end to the swaged side. It was pressed to a thickness of approximately 0.8 mm.
This was subjected to a diffusion treatment at 900° C. for 5 hours in an argon gas atmosphere, and then put into water and rapidly cooled to obtain a composite material for eyeglass frames. When the composite material obtained in this example was examined, it was confirmed that the core material portion was made of an Au-Ti alloy, and that a single Au layer remained on the surface layer. In addition, diffusion heat treatment was performed in the same manner as in the above example.
The present invention with an Au cross-sectional area ratio of approximately 20%, which was applied at 915°C for 3 hours.
Au-Ti composite material C, Au-Ti composite material D of the present invention with an Au cross-sectional area ratio of approximately 20% after being subjected to diffusion heat treatment at 920°C for 5 hours, and Au-Ti composite material D having an Au cross-sectional area ratio of approximately 20% without diffusion heat treatment.
% comparative example of Au-Ti clad material B and JIS type 2 Ti single material A that does not contain Au,
When the tensile strength and spring limit values were investigated, the second
The results shown in the figure were obtained. From FIG. 2, it can be seen that the strength and elasticity of composites C and D obtained by the method of the present invention are improved compared to Ti-only material A and Au-Ti clad material B which is not subjected to diffusion heat treatment. That is clear. Next, an example using an Au-based alloy as the outer covering will be described. Example 2 Au-30% outer diameter 36mm, wall thickness 3mm, length 1000mm
Pure Ti with outer diameter 30mm and length 1000mm in Cu alloy pipe
A core rod (equivalent to JIS Class 2) was inserted and fitted, and the resulting clad material was annealed and wire-drawn to produce a wire rod with an outer diameter of 2.6 mm. After cutting this to a length of 80 mm, it was annealed at 550°C for 1 hour in an argon gas atmosphere, tapered 40 mm from one end by swaging, and then 45 mm from the opposite end to the swaged side. The area up to this point was pressed to a thickness of approximately 0.8 mm. This was carried out under the conditions of 915℃ x 3 hours in an argon gas atmosphere or at 920℃.
After being subjected to a diffusion treatment for 5 hours, the mixture was poured into water and rapidly cooled to obtain a composite material for eyeglass frames. When the composite material obtained in this example was examined, it was found that the Ti in the core material was alloyed and the surface layer had Au-
It was confirmed that Cu alloy remained. In addition, diffusion heat treatment was performed at 915℃ x 3 as described above.
Composite material subjected to conditions of 920 hours and diffusion heat treatment
When the tensile strength and spring limit value were investigated for the composite material treated under the conditions of 5 hours at .degree. C. and the composite material that was not subjected to the diffusion heat treatment, the results shown in the upper row of Table 1 were obtained. Example 3 Au-30% outer diameter 36mm, wall thickness 3mm, length 1000mm
Cu-10%Ni alloy pipe, outer diameter 30mm, length 1000mm
A core rod of pure Ti (equivalent to JIS Class 2) with a diameter of 2 mm was inserted and fitted, and the resulting clad material was annealed and wire-drawn to produce a wire rod with an outer diameter of 2.6 mm. This is the length
After cutting to 80mm, 600mm in argon gas atmosphere
It was annealed at ℃ for 1 hour, tapered by swaging at a portion 40 mm from one end, and further processed to a thickness of approximately 0.8 mm by pressing from a position 45 mm from the opposite end to the swaged side. This was subjected to a diffusion treatment in an argon gas atmosphere at 915°C for 3 hours or at 920°C for 5 hours, and then quenched in water to obtain a composite material for eyeglass frames. When the composite material obtained in this example was examined, it was found that the Ti in the core material was alloyed and the surface layer was Au-
It was confirmed that Cu-Ni alloy remained. In addition, diffusion heat treatment was performed at 915℃ x 3 as described above.
The tensile strength and spring limit values were investigated for a composite material treated under the conditions of 5 hours, a composite material treated with diffusion heat treatment at 920°C for 5 hours, and a composite material treated without diffusion heat treatment. , the results shown in the lower part of Table 1 were obtained.

【表】 第1表から明らかなように、外被としてAu−
Cu合金を用いた実施例2の場合、および外被と
してAu−30%Cu−10%Ni合金を用いた実施例3
の場合のいずれにおいても、450℃〜1000℃の範
囲内の温度で拡散熱処理を施すことによつて、強
度およびバネ性が優れた複合材が得られた。 以上の説明で明らかなようにこの発明の方法に
よれば、強度、バネ性が優れしかもロウ付け性が
良好でかつまた耐食性、装飾性に優れた眼鏡フレ
ーム用複合材を得ることができ、またその製造工
程においては加工が容易であり、したがつてこの
発明の方法は眼鏡フレーム部品、特に強度やバネ
性が要求さるリム、ブリツジあるいはテンプル等
の部品の製造に極めて適したものである。
[Table] As is clear from Table 1, Au-
Example 2 using a Cu alloy, and Example 3 using an Au-30%Cu-10%Ni alloy as the outer cover.
In all cases, composite materials with excellent strength and elasticity were obtained by performing diffusion heat treatment at a temperature within the range of 450°C to 1000°C. As is clear from the above description, according to the method of the present invention, it is possible to obtain a composite material for eyeglass frames that has excellent strength and spring properties, good brazing properties, and excellent corrosion resistance and decorative properties. The manufacturing process is easy, and therefore the method of the present invention is extremely suitable for manufacturing eyeglass frame parts, particularly parts such as rims, bridges, and temples that require strength and springiness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Cはこの発明の方法による眼鏡フレ
ーム用複合材の製造過程の一例を段階的に示す略
解的な断面図、第2図はこの発明の方法を踏む各
種の方法で得られた眼鏡フレーム用複合材の引張
強度およびバネ限界値を示すグラフである。 1……芯材、2……外被、3……クラツド材。
1A to 1C are schematic cross-sectional views showing step-by-step an example of the manufacturing process of a composite material for eyeglass frames according to the method of the present invention, and FIG. It is a graph showing the tensile strength and spring limit value of a composite material for eyeglass frames. 1...core material, 2...outer cover, 3...cladding material.

Claims (1)

【特許請求の範囲】[Claims] 1 芯材をTiとしかつ外被をAuもしくはAu基合
金とするクラツド材を加工した後、450〜1000℃
の範囲内の温度で熱処理を施して外被のAuもし
くはAu基合金中のAuもしくは合金元素を芯材の
Ti中に拡散固溶させることにより芯材部分をTi
合金とし、しかも表面層はAuもしくはAu基合金
のまま残すことを特徴とする眼鏡フレーム用複合
材の製法。
1 After processing a clad material with a core of Ti and an outer sheath of Au or Au-based alloy, heat it to 450 to 1000℃.
Heat treatment is performed at a temperature within the range of
The core material is made of Ti by dissolving it in Ti.
A method for producing a composite material for eyeglass frames, which is made of an alloy and leaves the surface layer as Au or an Au-based alloy.
JP19407182A 1982-11-05 1982-11-05 Production of composite material for spectacle frame Granted JPS5985390A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19407182A JPS5985390A (en) 1982-11-05 1982-11-05 Production of composite material for spectacle frame
DE19833339954 DE3339954A1 (en) 1982-11-05 1983-11-04 Composite material for spectacle frames and method of producing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19407182A JPS5985390A (en) 1982-11-05 1982-11-05 Production of composite material for spectacle frame

Publications (2)

Publication Number Publication Date
JPS5985390A JPS5985390A (en) 1984-05-17
JPH0318992B2 true JPH0318992B2 (en) 1991-03-13

Family

ID=16318473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19407182A Granted JPS5985390A (en) 1982-11-05 1982-11-05 Production of composite material for spectacle frame

Country Status (1)

Country Link
JP (1) JPS5985390A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353434B1 (en) * 2000-06-23 2002-09-18 주식회사 씨엠전자 A metallic material for metalwork and a manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650629B2 (en) * 1978-05-13 1981-11-30

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650629U (en) * 1979-09-28 1981-05-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650629B2 (en) * 1978-05-13 1981-11-30

Also Published As

Publication number Publication date
JPS5985390A (en) 1984-05-17

Similar Documents

Publication Publication Date Title
JPS59205105A (en) Conductive composite material
JPH07207463A (en) Plated niti alloy product and its production
US4980245A (en) Multi-element metallic composite article
JP2761694B2 (en) Clad wire
JPH0318992B2 (en)
JPH0318991B2 (en)
JP2634789B2 (en) Method for producing titanium-clad-aluminum wire material
JPS60255425A (en) Decorative material
JPS6252283B2 (en)
JPS5952231B2 (en) Manufacturing method for electronic component lead material with good hedging processability
JPS63312935A (en) Copper alloy material for semiconductor lead frame
JP2502058B2 (en) Manufacturing method of NiTi alloy
JPH0344454A (en) Production of lead wire for electronic parts and equipment
JP3109260B2 (en) Method for producing superelastic wire made of nickel / titanium alloy
JPS61202786A (en) Composite blank material for ornamental goods and its production
JPH032659B2 (en)
JPH081374A (en) Brazing filler alloy for platinum decoration
JPH0355807B2 (en)
JPH0256995B2 (en)
JPS6143717A (en) Production of glasses frame
JPH0515170B2 (en)
JPS6239231A (en) Composite blank for decorating and manufacture thereof
JPH06167679A (en) Clad material for spectacle frame
JPS61202784A (en) Composite blank material for ornamental goods and its production
JPS61202785A (en) Composite blank material for ornamental goods and its production