JPH03189520A - Metering pump - Google Patents

Metering pump

Info

Publication number
JPH03189520A
JPH03189520A JP32984389A JP32984389A JPH03189520A JP H03189520 A JPH03189520 A JP H03189520A JP 32984389 A JP32984389 A JP 32984389A JP 32984389 A JP32984389 A JP 32984389A JP H03189520 A JPH03189520 A JP H03189520A
Authority
JP
Japan
Prior art keywords
infusion
flow rate
tube
metering pump
infusion tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32984389A
Other languages
Japanese (ja)
Inventor
Yutaka Ogawa
小川 胖
Akira Tsukada
晃 塚田
Osamu Hayakawa
修 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP32984389A priority Critical patent/JPH03189520A/en
Publication of JPH03189520A publication Critical patent/JPH03189520A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain transmission from a liquid transportation pump by detecting the amount of transported liquid from the detection signal of a detecting means. CONSTITUTION:A transmitting magnet 6 which is embedded in one end surface 32 of a drum 3 on the circumference in in-phase relation with a shaft 5 sends a flow rate pulse by sending a magnetic sensor 12 according to intervals of the depression of a pressure roller 4 to a liquid transportation tube 11. A rotation detection ring 15 detects the movement quantity of the tube 11 and a detector 25 which is fixed atop of a shaft 22 supported by a bearing 23 and responds to the magnet 24 detects the movement quantity. Namely, when the tube 11 is sealed by depression between the rollers 4 which are at an interval of an adjacence angle theta with a pressure cylinder surface 72, flow rate pulses weighted by volume corresponding to the liquid volume in the tube 11 are sent out. The flow rate pulses having constant weight under the condition that the tube 11 has no variation in elastic modulus, and is restored completely to maintain its sectional area in a period wherein the tube is pressed by one roller 4 and pressed again by the other roller 4.

Description

【発明の詳細な説明】 技監立夏 本発明は、輸液チューブを押圧して輸液する輸液ポンプ
から流量パルスを発信するメータリングポンプに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metering pump that transmits flow rate pulses from an infusion pump that presses an infusion tube to infuse fluid.

一極米丑庸 弾性のある可撓性の輸液チューブを複数個所で押圧し乍
ら押圧個所を順次移動して輸液する輸液ポンプは、レシ
プロポンプのように被圧送流体が摺動面に挟圧摺動され
ることがないため、高分子の溶質を変質させたり、生物
細胞を破壊することがない等の特徴をもっているので、
コロイドや高分子量の溶質、血液等の移送用として医療
面例えば人口透析等に使用され、特に近年、バイオ技術
の進展とともに生物工学分野でも多用されている。
An infusion pump that presses a flexible, elastic infusion tube at multiple locations and infuses the fluid by sequentially moving the pressed locations is similar to a reciprocating pump, in which the fluid to be pumped is compressed by the sliding surface. Because it does not slide, it does not alter the quality of polymeric solutes or destroy biological cells.
It is used in medical applications such as population dialysis to transport colloids, high-molecular-weight solutes, blood, etc., and has also been used extensively in the field of biotechnology, especially in recent years with the progress of biotechnology.

輸液ポンプの代表的なものに回転式のペリスタリックポ
ンプがある。この輸液ポンプは回転即動される回転体外
周に複数等寸の押圧ローラを回転自在に軸承した移動押
圧手段と、前記押圧ローラと、僅かな隙を隔てて対向す
る円弧状の押圧面との間に輸液チューブを挿通し、該輸
液チューブを押圧ローラの少なくとも2個所で回転押圧
し乍ら回転体の回転方向に輸液するものである。
A typical example of an infusion pump is a rotary peristaltic pump. This infusion pump consists of a movable pressing means in which a plurality of pressure rollers of equal size are rotatably supported on the outer periphery of a rotating body that rotates rapidly, and an arc-shaped pressing surface that faces the pressing rollers with a slight gap between them. An infusion tube is inserted between the two, and the infusion tube is rotated and pressed at at least two locations by a pressure roller, while infusing the infusion in the rotational direction of the rotating body.

灸末皮拵立可皿嘉 叙上の輸液ポンプは、輸液チューブの一区間を挟む2地
点で押圧ローラで押圧シールし乍ら輸液チューブ上を押
圧移動するので、この区間の輸液チューブ内に収容され
る液体体積は、チューブ断面積が一定で、チューブ材の
弾性率に変化がなければ一定となり、輸液量即ち流量は
回転体の単位時間当り回転数と一回転当りの有効押圧角
と輸液チューブ断面積とにより求められる。従来、流量
は、回転体の単位時間当り回転数および1回転当り有効
押圧角および輸液チューブの断面積が一定と仮定して定
められており、特別な流量パルスを発信する等の発信手
段は配設されていなかった。
The above infusion pump uses pressure rollers to press and seal at two points across a section of the infusion tube, and then presses and moves over the infusion tube, so it is housed within the infusion tube in this section. The volume of liquid to be delivered will be constant if the cross-sectional area of the tube is constant and the elastic modulus of the tube material is unchanged, and the volume of infusion, that is, the flow rate, is determined by the number of revolutions per unit time of the rotating body, the effective pressure angle per revolution, and the infusion tube. It is determined by the cross-sectional area. Conventionally, the flow rate has been determined on the assumption that the number of revolutions per unit time of the rotating body, the effective pressing angle per revolution, and the cross-sectional area of the infusion tube are constant, and transmission means such as transmitting a special flow rate pulse have not been arranged. It was not set up.

更にまた、輸液チューブ断面積は押圧回数の増加に従っ
て疲労し押圧ローラ間の区間における断面積が復元せず
減少することにより、この間の流体体積は漸減する。こ
の結果、流量は一定とならないという問題点があった。
Furthermore, the cross-sectional area of the infusion tube becomes fatigued as the number of times of pressing increases, and the cross-sectional area in the section between the pressing rollers does not recover and decreases, so that the fluid volume in this period gradually decreases. As a result, there was a problem that the flow rate was not constant.

EJヨ引」えへた表Δ王役 本発明は、叙上の問題点を解決するためになされたもの
で、押圧ローラの回転に従って流量パルスを発信して輸
液するとともに、定流量パルスを発信することにより流
量計をも兼ね備えたメータリングポンプを提供すること
を目的とするもので、その要旨とするものは、定速回転
する糸巻状のドラムに、同軸な円周上に回転自在に軸承
される複数同寸の押圧ローラを配設した押圧駆動部と、
該押圧暉動部を装着するケーシングと、該ケーシングに
着脱自在に介装され前記ドラム軸に同軸で少なくとも2
個以上の押圧ローラと対向する円筒面を有するカセット
と、輸液源に連通ずる輸液チューブを前記カセットと押
圧ローラ間に挿着して輸液する輸液ポンプと、該輸液ポ
ンプのドラム回転を検出する検出手段とからなり、該検
出手段の検出信号により輸液量を検知することを特徴と
するものである。
The present invention has been made to solve the above-mentioned problems, and includes transmitting a flow rate pulse according to the rotation of the pressure roller to infuse fluid, and also transmitting a constant flow rate pulse. The purpose of this pump is to provide a metering pump that also functions as a flow meter, and its gist is that the metering pump is rotatably supported on a coaxial circumference by a pincushion-shaped drum that rotates at a constant speed. A pressing drive unit having a plurality of pressing rollers of the same size,
a casing on which the pressing and sliding part is attached; and at least two casings removably interposed in the casing and coaxial with the drum shaft.
a cassette having a cylindrical surface facing one or more pressure rollers, an infusion pump that inserts an infusion tube communicating with an infusion source between the cassette and the pressure roller to infuse the infusion, and a detector that detects the rotation of the drum of the infusion pump. The present invention is characterized in that the infusion amount is detected by the detection signal of the detection means.

去−」L−釘 第1図は、本発明の実施例を示す概要説明図で、(A)
図は、(B)図のA−A線断面図、(B)図は、(A)
図のB−B線断面図を示し、図中、1は基台、2は該基
台1に固設されたケーシングで、中央に空室26を穿設
している。3は円環溝31を穿設して糸巻状にしたドラ
ムで、軸心にモータ9のモータ軸10が嵌着されている
。4は押圧ローラで、円環溝31内においてモータ軸1
0と同軸な円周上に等配分されてドラム3に固着された
軸5に回転自在に軸承された等しい大きさのもので、図
においては6個配設されている。7はボルト71等の固
着手段によりケーシングに固設されるカセットで、固設
されたときモータ軸10と同心で押圧ローラ4と僅かに
隔てた押圧円筒面72を有しており、該押圧円筒面72
は押圧ローラ4上に輸液チューブ11を載置してからカ
セットを固設することにより、輸液チューブ11を押圧
する。6はドラム3の一方の端面32の円周上で軸5と
同位相に埋設された発信磁石で押圧ローラ4の輸液チュ
ーブ11を押圧する間隔に従って磁気センサ12に感応
して流量パルスを発信する。
Figure 1 is a schematic explanatory diagram showing an embodiment of the present invention.
The figure is (B) a sectional view taken along the line A-A in figure (B), and (A)
A sectional view taken along line B-B in the figure is shown, and in the figure, 1 is a base, 2 is a casing fixed to the base 1, and has a cavity 26 bored in the center. Reference numeral 3 denotes a drum shaped like a pincushion with an annular groove 31 formed therein, and the motor shaft 10 of the motor 9 is fitted around the shaft center. 4 is a pressure roller, which presses the motor shaft 1 in the annular groove 31.
They are of equal size and are rotatably supported on a shaft 5 fixed to the drum 3, equally distributed on the circumference coaxial with the drum 3, and six of them are arranged in the figure. Reference numeral 7 denotes a cassette fixed to the casing by fixing means such as bolts 71. When fixed, the cassette has a pressing cylindrical surface 72 that is concentric with the motor shaft 10 and slightly separated from the pressing roller 4. Surface 72
The infusion tube 11 is pressed by placing the infusion tube 11 on the pressing roller 4 and then fixing the cassette. Reference numeral 6 denotes a transmitting magnet embedded on the circumference of one end surface 32 of the drum 3 in the same phase as the shaft 5, and transmits a flow pulse in response to the magnetic sensor 12 according to the interval at which the pressing roller 4 presses the infusion tube 11. .

磁気センサ12はホール素子等の高感度磁気センサで、
磁気センサ12に対向したケーシング2の位置に埋設さ
れる。14は固定輪で、ばね16により押圧される回転
検出軸15とにより輸液チューブ11を挟持する。該回
転検出軸15は輸液チューブ11の移動量を検出するも
ので、ベアリング23により軸承された軸22の先端に
固着された磁石24に応動する検出器25により移動量
が検知される。17は固定ガイドで、ソレノイド21の
軸端部に固着された押圧片18と協働して輸液チューブ
11を挟持して係止するか又は解除するもので、輸液時
はソレノイド21と鍔19との間で伸張するばね20に
より押圧挟持して輸液チューブ11を係止し、ソレノイ
ド21が吸引されると解除してドラム3の回転に従って
チューブ軸方向に作用する力により輸液チューブ11を
移動可能にする。以上の輸液ポンプにおいて、輸液チュ
ーブ11が押圧円筒面72間において相隣る角0を隔て
た押圧ローラ4−4間において押圧シールされる場合、
輸液チューブ11内の液体積はα・r・θ・Aである。
The magnetic sensor 12 is a highly sensitive magnetic sensor such as a Hall element,
It is buried in the casing 2 at a position facing the magnetic sensor 12. Reference numeral 14 denotes a fixed ring, which holds the infusion tube 11 between the rotation detection shaft 15 pressed by a spring 16. The rotation detection shaft 15 detects the amount of movement of the infusion tube 11, and the amount of movement is detected by a detector 25 that responds to a magnet 24 fixed to the tip of a shaft 22 supported by a bearing 23. Reference numeral 17 denotes a fixed guide that works with a pressing piece 18 fixed to the shaft end of the solenoid 21 to clamp and lock or release the infusion tube 11. During infusion, the solenoid 21 and the collar 19 are connected to each other. The infusion tube 11 is locked by being pressed and clamped by a spring 20 extending between the drums, and when the solenoid 21 is sucked, it is released and the infusion tube 11 can be moved by a force acting in the axial direction of the tube as the drum 3 rotates. do. In the above-described infusion pump, when the infusion tube 11 is press-sealed between the pressing rollers 4-4 separated by the corner 0 between the pressing cylindrical surfaces 72,
The liquid volume within the infusion tube 11 is α·r·θ·A.

αは押圧ローラ4のシール作用において円周部の及ぼす
影響を含めた容積効率でαく1であり、rはモータ軸1
0の軸心から輸液チューブ11の中央心の半径、Aは輸
液チューブ11の断面積であり、このα・r・θ・Aに
相当する体積の重みをもつ流量パルスが発信される。こ
の流層パルスは輸液チューブ11の弾性率に変化がなく
一つの押圧ローラ4に押圧され、次の押圧ローラ4によ
り再び押圧される期間に完全に復元して断面積Aが保た
れておれば一定の重みをもった流量パルスが発信される
。しかし、本発明者らの実験によると周速300cm/
分で略々直線的に約6%の輸液量が変化する。
α is the volumetric efficiency including the influence of the circumferential part on the sealing action of the pressure roller 4, and r is the motor shaft 1.
A is the radius of the center of the infusion tube 11 from the axis 0, and A is the cross-sectional area of the infusion tube 11, and a flow rate pulse having a volume weight corresponding to α, r, θ, and A is transmitted. If this fluid layer pulse is pressed by one pressing roller 4 without any change in the elastic modulus of the infusion tube 11, and is completely restored and the cross-sectional area A is maintained during the period when it is pressed again by the next pressing roller 4. A flow pulse with constant weight is transmitted. However, according to the inventors' experiments, the circumferential speed was 300 cm/
The infusion volume changes approximately linearly by about 6% in minutes.

第2図Aは、この輸液量の変化を示したもので、時間T
□までは略々直線的に減少しT2で急減する。
Figure 2A shows the change in the amount of infusion, and shows the change in the amount of infusion over time T.
It decreases almost linearly until □, and suddenly decreases at T2.

即ち時間T□より輸液チューブが繰返し圧縮応力を受は
疲労が進み復元力が劣化することにより断面積がこれに
伴って減少し時間T2において復元力がなくなり断面積
が急減し破断(P点)に至るためである。この結果、流
量パルスの流量の重みは小さくなり、メータリングポン
プの意味がなくなる。この問題に対しては点上の実験結
果に基づいた補正をすることが試みられる。この補正の
方式としては、第1に流量パルスの発信数に応じて実験
結果により予想される流量の重みの減少分を流量パルス
発信毎に減算補正して補正された流量パルスを積算する
という方式、第2に流量パルスをまず積算し、積算値の
流量パルス毎の変化分総量が初めの流量パルスの量に達
したとき積算すべき流量パルスを積算せず除去するとい
う方式がある。第1の方式は、流量パルス毎の補正量は
極めて小さいので第2の方式が効果的である。
That is, from time T□, the infusion tube receives repeated compressive stress, fatigue progresses, the restoring force deteriorates, and the cross-sectional area decreases accordingly, and at time T2, the restoring force disappears, the cross-sectional area suddenly decreases, and it breaks (point P). This is to reach the following. As a result, the weight of the flow rate of the flow rate pulse becomes small, and the metering pump becomes meaningless. To address this problem, attempts are made to make corrections based on experimental results on points. The first method of this correction is to subtract and correct the decrease in the weight of the flow rate predicted by experimental results according to the number of flow pulses transmitted each time the flow pulse is transmitted, and then integrate the corrected flow pulses. Second, there is a method in which the flow rate pulses are first integrated, and when the total amount of change in the integrated value for each flow rate pulse reaches the amount of the initial flow rate pulse, the flow rate pulse that should be integrated is removed without being integrated. In the first method, the amount of correction for each flow pulse is extremely small, so the second method is effective.

第3図は、第2の方式のブロック図を示す。図において
、Aは入力Iから伝送された流量パルスを積算し、下記
演算回路Bからの指令により積算値の補正量総和が1パ
ルスに達したとき入力パルスから減算する積算補正回路
であり、Bは入力パルスの設定器りの設定値に達したと
き減算パルスを発信して前記積算補正回路Aの積算値か
ら減算する演算回路、Cは積算計で一定の積算値例えば
104パルスが入力されたとき出力し、設定器りに入力
するもので、仮に104で1パルスの割合で順次補正量
を増加する場合、設定器りには最初の104で1パルス
に相当する補正係数として0.9999を設定して、演
算回路Bの積算値が9999に達したとき積算補正回路
Aに積算された積算値から1パルスを減算する。次の1
04では2パルスを補正するので設定器りには0.99
98を設定し、演算回路Bは5×103とこれに続< 
5 X 10’とで各々1パルスの減算指令を積算補正
回路Aに出力する。更に次の104では設定器りに0.
9997を設定し演算回路Bで3333パルス毎3回に
亘って減算補正を行なう。以上の減算補正を104毎に
設定変更を加え乍ら補正すべき量が1パルスに達する度
に減算するもので設定器りには積算値と補正係数との関
係を予めメモリしておく。この期間は輸液チューブ11
が疲労による復元が安定して行われる期間例えば第2図
のT□待時間相当する流量パルスが発信された時点と定
める。点上の操作によりT工時間の補正期間において第
2図Bにしめしたように1回の補正指令毎に1パルスの
精度をもった流量積算値が得られる。更に、第1図の構
成で説明したように輸液チューブ11を押圧片18と固
定ガイド17とによりばね20の弾力押圧係止して輸液
していたのをばね20の押圧力をソレノイド21作動に
より吸引し係止を解き、回転検出器15により検知され
た長さの輸液チューブ11が移動して新規の輸液チュー
ブ11の区間で再び押圧を始めることを繰返すことによ
り輸液チューブ11の疲労による破断等の不都合を避け
て長期間輸液を可能とすることを先に本出願人が提案し
たが、点上の補正機構を各区間の輸液開始から終了して
係止を解除する迄の期間に亘って適用することにより長
期間高精度に補正された積算結果が得られる新規なメー
タリングポンプを提供することができる。
FIG. 3 shows a block diagram of the second method. In the figure, A is an integration correction circuit that integrates the flow rate pulses transmitted from input I, and subtracts it from the input pulse when the total correction amount of the integration value reaches 1 pulse according to a command from calculation circuit B below, and B 1 is an arithmetic circuit that sends a subtraction pulse to subtract from the integrated value of the integration correction circuit A when the input pulse setting reaches a set value; If the correction amount is to be increased sequentially at the rate of 1 pulse at 104, the setting unit will output 0.9999 as the correction coefficient corresponding to 1 pulse at 104. When the integrated value of the calculation circuit B reaches 9999, one pulse is subtracted from the integrated value of the integrated correction circuit A. Next 1
04 corrects 2 pulses, so the setting value is 0.99.
98, and arithmetic circuit B is set to 5×103, followed by <
A subtraction command of 1 pulse each is output to the integration correction circuit A in the form of 5 x 10'. Furthermore, in the next step 104, the setting device is set to 0.
9997 is set, and the calculation circuit B performs subtraction correction three times every 3333 pulses. The above-mentioned subtraction correction is performed by changing the setting every 104 times, and subtracting it every time the amount to be corrected reaches one pulse, and the relationship between the integrated value and the correction coefficient is stored in advance in the setting device. During this period, the infusion tube 11
The period during which recovery due to fatigue is stably performed is defined as, for example, the time when a flow pulse corresponding to the T□ waiting time in FIG. 2 is transmitted. As shown in FIG. 2B, an integrated flow rate value with an accuracy of one pulse can be obtained for each correction command during the correction period of the T working time by operating on the points. Furthermore, as explained in the configuration of FIG. 1, the infusion tube 11 was injected by being elastically pressed and locked by the spring 20 by the pressing piece 18 and the fixed guide 17. By repeating suction, releasing the lock, moving the infusion tube 11 of the length detected by the rotation detector 15, and starting pressing again in a new section of the infusion tube 11, the infusion tube 11 may break due to fatigue. The applicant previously proposed that the point correction mechanism could be used over the period from the start of the infusion to the end of the infusion and the release of the lock. By applying the present invention, it is possible to provide a new metering pump that can obtain highly accurate correction results over a long period of time.

劾−−−泉 本発明のメータリングポンプによると流量パルスを発信
できなかった輸液ポンプからの発信を可能にし、更に、
従来輸液チューブの圧縮疲労により押圧区間における輸
液量が減小するため精度よく計量することができなかっ
たのを正確に補正することを可能とし、新規なメータリ
ングポンプを提供することができた。
Gai---Izumi According to the metering pump of the present invention, it is possible to transmit flow rate pulses from an infusion pump that could not transmit them, and further,
This makes it possible to accurately correct the inability to measure accurately due to the reduction in the amount of infusion in the pressing section due to compression fatigue of the infusion tube, thereby providing a new metering pump.

【図面の簡単な説明】 第1図は、本発明のメータリングポンプの概要を説明す
るための図で、(A)図は(B)図の要部矢視A−A線
断面図、(B)図は(A)図のB−B線断面図、第2図
は、輸液チューブの運転時間と輸液量の変化率を示す試
験値、第3図は、輸液量を補正する回路のブロック図を
示す。 1・・・基台、2・・・ケーシング、3・・・ドラム、
4・・・押圧ローラ、6・・・発信磁石、7・・・カセ
ット、9・・・モータ、11・・・輸液チューブ、12
・・・磁気センサ。 第1図 第2図 (B) ×ビ 第 図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram for explaining the outline of the metering pump of the present invention. B) The figure is a sectional view taken along the line B-B in figure (A), Figure 2 is the test value showing the operation time of the infusion tube and the rate of change in the infusion volume, and Figure 3 is a block diagram of the circuit that corrects the infusion volume. Show the diagram. 1... Base, 2... Casing, 3... Drum,
4... Press roller, 6... Transmission magnet, 7... Cassette, 9... Motor, 11... Infusion tube, 12
...Magnetic sensor. Figure 1 Figure 2 (B)

Claims (1)

【特許請求の範囲】 1、定速回転する糸巻状のドラムに、同軸な円周上に回
転自在に軸承される複数同寸の押圧ローラを配設した押
圧駆動部と、該押圧駆動部を装着するケーシングと、該
ケーシングに着脱自在に介装され前記ドラム軸に同軸で
少なくとも2個以上の押圧ローラと対向する円筒面を有
するカセットと、輸液源に連通する輸液チューブを前記
カセットと押圧ローラ間に挿着して輸液する輸液ポンプ
と、該輸液ポンプのドラム回転を検出する検出手段とか
らなり、該検出手段の検出信号により輸液量を検知する
ことを特徴とするメータリングポンプ。 2、前記検出手段を糸巻状ドラムの一方の端面外周で押
圧ローラ位置に埋設した発信磁石と、該発信磁石に近接
した基台に埋設した磁気センサとで構成し、該磁気セン
サから発信磁石が通過する毎に流量パルスを発信するこ
とを特徴とする請求項1記載のメータリングポンプ。 3、流量パルスの流量の重みを輸液ポンプに輸液チュー
ブを新規に介装して輸液を開始してから発信する流量パ
ルスの数に応じて補正することを特徴とする請求項1項
、2項記載のメータリングポンプ。 4、輸液チューブを新規に介装して輸液を開始し、流量
パルスを積算する流量積算計において、積算計の積算値
に対し積算値の流量パルス毎の体積変化分の総和が1流
量パルスに達したとき流量パルスを減算し補正すること
を特徴とする請求項1項又は2項記載のメータリングポ
ンプ。 5、輸液中は輸液チューブを係止し輸液を開始してから
所定量輸液後係止を解除し、輸液ポンプの押圧部分に新
規な輸液チューブが移送されたとき再び輸液を開始する
輸液チューブ移送手段と、輸液チューブが係止されてか
ら移送される期間における流量パルスの積算値に、積算
値に応じた数を減算し補正する補正手段とからなり、該
補正を輸液チューブの係止、移送期間ごとに行なうこと
を特徴とするメータリングポンプ。
[Scope of Claims] 1. A pressing drive unit including a plurality of pressure rollers of the same size that are rotatably supported on a coaxial circumference on a pincushion-shaped drum that rotates at a constant speed; a cassette to be attached, a cassette that is removably interposed in the casing and has a cylindrical surface that is coaxial with the drum shaft and faces at least two pressure rollers, and an infusion tube communicating with an infusion source that is connected to the cassette and the pressure roller. 1. A metering pump comprising: an infusion pump inserted between the infusion pumps for infusing fluid; and a detection means for detecting rotation of a drum of the infusion pump, the metering pump being characterized in that the amount of infusion is detected by a detection signal from the detection means. 2. The detection means is composed of a transmitting magnet embedded at the pressure roller position on the outer periphery of one end surface of the pincushion drum, and a magnetic sensor embedded in a base close to the transmitting magnet, and the transmitting magnet is detected from the magnetic sensor. 2. The metering pump according to claim 1, wherein the metering pump emits a flow rate pulse each time it passes. 3. The weight of the flow rate of the flow rate pulse is corrected according to the number of flow rate pulses transmitted after the infusion tube is newly inserted into the infusion pump and infusion is started. Metering pump as described. 4. When starting infusion with a new infusion tube, in the flow rate totalizer that integrates the flow rate pulses, the sum of the volume changes for each flow rate pulse of the total value of the total value becomes one flow rate pulse. 3. The metering pump according to claim 1, wherein the metering pump corrects the flow rate by subtracting the flow rate pulse when the flow rate pulse is reached. 5. During infusion, the infusion tube is locked, the infusion is started, the lock is released after the predetermined amount has been infused, and the infusion is started again when a new infusion tube is transferred to the press area of the infusion pump. Infusion tube transfer. and a correction means for subtracting a number corresponding to the integrated value from the integrated value of the flow rate pulse during the period from when the infusion tube is locked to when the infusion tube is transferred. A metering pump that is characterized by being carried out every period.
JP32984389A 1989-12-20 1989-12-20 Metering pump Pending JPH03189520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32984389A JPH03189520A (en) 1989-12-20 1989-12-20 Metering pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32984389A JPH03189520A (en) 1989-12-20 1989-12-20 Metering pump

Publications (1)

Publication Number Publication Date
JPH03189520A true JPH03189520A (en) 1991-08-19

Family

ID=18225856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32984389A Pending JPH03189520A (en) 1989-12-20 1989-12-20 Metering pump

Country Status (1)

Country Link
JP (1) JPH03189520A (en)

Similar Documents

Publication Publication Date Title
EP1099854B1 (en) Peristaltic pump and cassette
EP2547908B1 (en) Micropump
US5213573A (en) Iv administration set infiltration monitor
US6881043B2 (en) Injection apparatus incorporating clamping and squeezing members for pumping liquid through flexible tubing
JP5115742B2 (en) Micro pump
US4373525A (en) Method and apparatus for detecting occlusion in fluid-infusion tube of peristaltic type fluid-infusion pump
US5711654A (en) Peristaltic pump with rotor position sensing employing a reflective object sensor
CN104271947B (en) Piston pump
AU2014348699A1 (en) Fluid flow regulator assembly
DK0723463T3 (en) Method for calibrating a pump segment used in a peristaltic pump and an apparatus adapted to perform the method
EP1485617B1 (en) Dynamic brake with backlash control for peristaltic pump
CN108474375A (en) Micro- dosage peristaltic pump of fluid for micro- dosage
EP3172441B1 (en) Rotor device for peristaltic pump
JPH03189520A (en) Metering pump
CA1181509A (en) Pulsation-free volumetric pump
US20150037168A1 (en) Universal infusion device for liquid medicines and the like, and method for controlling the erogation of such liquid medicine and the like
JPH0617018Y2 (en) Elastic tube feeder in elastic tube pump
CN208718917U (en) For pumping the pump of fluid
CN109195646B (en) Infusion device and method allowing detection of drift of sensor signal
JPH0622148Y2 (en) Elastic tube feed alarm device for elastic tube pump
JPH0219672A (en) Elastic tube pump
CN116832256A (en) Infusion pump and control method thereof
JP3000123U (en) Pressurized body discharge device
JPS6385356A (en) Liquid feed apparatus for chromatography
JP2000265943A (en) Liquid discharging device