JPH03189124A - Manufacture of film - Google Patents

Manufacture of film

Info

Publication number
JPH03189124A
JPH03189124A JP32909489A JP32909489A JPH03189124A JP H03189124 A JPH03189124 A JP H03189124A JP 32909489 A JP32909489 A JP 32909489A JP 32909489 A JP32909489 A JP 32909489A JP H03189124 A JPH03189124 A JP H03189124A
Authority
JP
Japan
Prior art keywords
resin
density polyethylene
film
ratio
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32909489A
Other languages
Japanese (ja)
Other versions
JP2785403B2 (en
Inventor
Toshio Fujii
敏雄 藤井
Akihiko Sakai
昭彦 坂井
Toyomitsu Kondo
近藤 豊光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP32909489A priority Critical patent/JP2785403B2/en
Publication of JPH03189124A publication Critical patent/JPH03189124A/en
Application granted granted Critical
Publication of JP2785403B2 publication Critical patent/JP2785403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a multi-layer film which is superior in strength properties and has favorable sliding properties, by a method wherein co-extrusion molding and stretch treatment of linear low-density polyethylene and specific high-density polyethylene are performed at a specific layer ratio. CONSTITUTION:Resin A comprised of a composition obtained by compounding a radical generating agent with 100 pts. wt. resin containing at least 50 wt. % linear low-density polyethylene, whose melt index is not exceeding 2g/10 minutes and density is 0.910-0.945g/cm<3>, within a range of 0.001-0.01 pts. wt. and resin B comprised of high-density polyethylene whose melt index is 0.5-10g/10 minutes and density is higher than 0.945g/cm<3> are co-extruded under their thickness ratio where the thickness of the resin B of at least one side surface is made into a ratio of 5-30 in the case where the thickness of the resin A is regarded as 100. Then inflation molding is performed by making a blow-up ratio at 2-8 and a height of a frost line into 2-50 times as long as the diameter of an annular slit and an obtained film is stretched biaxially in a receiving direction of the film by making a stretching temperature at the melting point of the resin A-704 deg.C to the melting point of the resin A-20 deg.C and a draw ratio into 1.5-8 times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフィルムの縦方向(延伸方向)の耐引・裂き強
度及び衝撃強度、剛性、耐抗張力ならびに滑り性に優れ
たフィルム製造法に関するものである。詳しくは線状ポ
リエチレンを主体とする、従来のフィルムよりも薄肉化
が可能で、かつ米穀類、肥料等の比較的重い物品を包装
するのに適した包装袋用フィルムの製造方法に関する物
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a film that is excellent in longitudinal direction (stretching direction) tear/tear strength, impact strength, rigidity, tensile strength, and slip property. It is. Specifically, it relates to a method for producing a film for packaging bags, which is mainly made of linear polyethylene, can be made thinner than conventional films, and is suitable for packaging relatively heavy items such as rice grains and fertilizers. .

〔従来の技術〕[Conventional technology]

エチレンとα−オレフィンの共重合によって製造される
分岐の少ない線状低密度ポリエチレンは高温高圧下でラ
ジカル重合により製造される高圧法低密度ポリエチレン
に比べて引張り強さ、衝撃強度、剛性等の強度特性、耐
環境応力亀裂性(ESCR)、耐熱性、ヒートシール性
等に優れた特性を有しており、近年様々な分野で用いら
れている。特にフィルム分野では、その物性上の優位性
から高圧法低密度ポリエチレンから線状低密度ポリエチ
レンへの代替が急速に進んでいる。
Linear low-density polyethylene with less branching, produced by copolymerization of ethylene and α-olefin, has higher tensile strength, impact strength, rigidity, and other strengths than high-pressure low-density polyethylene produced by radical polymerization at high temperature and high pressure. It has excellent properties such as environmental stress cracking resistance (ESCR), heat resistance, and heat sealability, and has been used in various fields in recent years. Particularly in the film field, high-pressure low-density polyethylene is rapidly being replaced by linear low-density polyethylene due to its superior physical properties.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

こうした線状低密度ポリエチレン樹脂をTダイ法あるい
はインフレーション法で成形した未延伸フィルムまたは
シート(以下「原反」という)は、成形上の制約から、
厚さが極端に薄いものを得ることは困難である。さらに
こうして得た原反は強度が弱い。そのため、従来から延
伸処理を行なうことが提案されている。
Due to molding constraints, unstretched films or sheets (hereinafter referred to as "original film") made from such linear low-density polyethylene resin by the T-die method or the inflation method,
It is difficult to obtain a material with extremely thin thickness. Furthermore, the strength of the raw fabric obtained in this way is low. Therefore, it has been conventionally proposed to perform a stretching process.

そこで、原反を二軸延伸することが考えられるが設備コ
ストが高く、また延伸条件の範囲が狭いため、運転管理
がきびしく、極一部の分野でしか利用されていない。
Therefore, biaxial stretching of the original fabric has been considered, but the equipment cost is high, and the range of stretching conditions is narrow, so operation management is difficult, and this method is only used in a few fields.

また今まで公知となっている縦−軸延伸は、設備コスト
が安く、運転管理が容易であるが、フィルム物性の異方
性、特に縦方向(延伸方向)の耐引裂き強度及び表面強
度に問題が残り実用に供せるフィルムは得られなかった
In addition, although the longitudinal-axial stretching method that has been known up to now has low equipment costs and easy operation management, it has problems with the anisotropy of film physical properties, especially the tear resistance and surface strength in the longitudinal direction (stretching direction). However, a film that could be put to practical use could not be obtained.

そこで本発明者等は、線状低密度ボ1才エチレンを用い
て重色用に適した良好な衝撃強度、剛性、耐引裂き強度
を有するフィルムを得るべく、検討の結果、特定の線状
ポリエチレンに特定の分岐状低密度ポリエチレンを特定
量配合しラジカル発生剤と反応せしめた物を特定の条件
下にインフレーション成形及び延伸することにより、耐
引裂き強度衝撃強度が大幅に改善されたフィルムが得ら
れることを知得し、特願昭62−174527号に提案
した。
Therefore, in order to obtain a film with good impact strength, rigidity, and tear resistance suitable for heavy-color applications using linear low-density polyethylene, the present inventors have developed a specific linear polyethylene. A film with significantly improved tear resistance and impact strength can be obtained by blending a specific amount of a specific branched low-density polyethylene into the film and reacting it with a radical generator, and then inflation-molding and stretching the product under specific conditions. I learned this and proposed it in Japanese Patent Application No. 174527-1982.

さらに特願昭62−316443.63−19054.
63−151980号において、特定の樹脂組成、成形
条件とすることによりフィルムの衝撃強度、耐引裂き強
度の改善を行うことを提案した。
Furthermore, patent application No. 62-316443.63-19054.
In No. 63-151980, it was proposed to improve the impact strength and tear resistance of a film by using a specific resin composition and molding conditions.

しかしながら上記の提案方法では、フィルムの強度特性
が大幅に改善されているが、フィルムの滑り性が不十分
なため製袋速度が早(できないという問題があることが
判明した。
However, in the above-mentioned proposed method, although the strength characteristics of the film were significantly improved, it was found that there was a problem in that the bag manufacturing speed was not fast due to insufficient slipperiness of the film.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明者等は上記した線状低密度ポリエチレンを
用いたフィルムの強度特性を低下させることなく、フィ
ルムの滑り性を改善すべく鋭意検討を重ねた結果、線状
低密度ポリエチレンと特定の高密度ポリエチレンとを特
定の層比で共押出しインフレーション成形及び延伸処理
することにより、強度特性に優れ、且つ滑り性が大幅に
改善された多層フィルムが得られることを見出し、本発
明を完成するに至った。
Therefore, the present inventors conducted intensive studies to improve the slipperiness of the film without reducing the strength characteristics of the film using linear low-density polyethylene, and found that linear low-density polyethylene and a specific We have discovered that a multilayer film with excellent strength properties and greatly improved slipperiness can be obtained by coextruding and blow-molding and stretching high-density polyethylene at a specific layer ratio, leading to the completion of the present invention. Ta.

すなわち、本発明の要旨は、メルトインデックスが2g
/10分以下で、且つ密度が0.910〜0.945g
/cdの線状低密度ポリエチレンを少なくとも50重量
%含有する樹脂100重量部に対してラジカル発生剤0
.001〜0.1重量部の範囲で配合した組成物からな
る樹脂Aとメルトインデックスが0.5〜10g/10
分で、且つ密度が0゜945g/a+tより大の高密度
ポリエチレンからなる樹脂Bとをその厚み比が樹脂Aの
厚みを100とした場合の少なくとも一方の面の樹脂B
の厚みを5〜30の割合として共押出し、インフレーシ
ョン成形を行ない、ブローアツプ比2〜8、フロストラ
イン高さを環状スリットの直径の2〜50倍としてイン
フレーション成形し、得られたフィルムをフィルムの引
取方向に、延伸温度を上記樹脂Aの融点−70〜融点−
20℃、延伸倍率を1゜5〜8倍として一軸延伸するこ
とを特徴とするフィルムの製造方法に存する。
That is, the gist of the present invention is that the melt index is 2g.
/10 minutes or less, and the density is 0.910-0.945g
0 radical generator per 100 parts by weight of resin containing at least 50% by weight of linear low density polyethylene of /cd.
.. Resin A consisting of a composition blended in the range of 0.001 to 0.1 part by weight and a melt index of 0.5 to 10 g/10
When the thickness ratio of resin B made of high-density polyethylene with a density of 0°945g/a+t and greater than 0°945g/a+t is 100, the thickness of resin B on at least one side is 100.
Co-extrusion is performed with a thickness of 5 to 30, and inflation molding is performed with a blow-up ratio of 2 to 8 and a frost line height of 2 to 50 times the diameter of the annular slit. In the direction, the stretching temperature is changed from the melting point of the resin A -70 to the melting point -
A method for producing a film characterized by uniaxial stretching at 20 DEG C. and a stretching ratio of 1 DEG 5 to 8 times.

以下、本発明につきさらに詳細に説明する。The present invention will be explained in more detail below.

本発明に用いられる樹脂Aの原料としては密度が0.9
1〜0.945g/cdの線状低密度ポリエチレンが用
いられる。
The raw material for resin A used in the present invention has a density of 0.9.
Linear low density polyethylene of 1 to 0.945 g/cd is used.

上記線状低密度ポリエチレンとは、エチレンと他のα−
オレフィンとの共重合物であり、従来の高圧法により製
造された分岐状低密度ポリエチレン樹脂とは異なる。線
状低密度ポリエチレンは、例えばエチレンと、他のα−
オレフィンとしてブテン、ヘキセン、オクテン、デセン
、4メチルペンテン−1等を4〜17重量%程度、好ま
しくは5〜15重景%程度共重合したものであり中低工
法高密度ポリエチレン製造に用いられるチーグラー型触
媒又はフィリップス型触媒を用いて製造されたものであ
り、従来の高密度ポリエチレンを共重合成分により短い
枝分かれ構造とし、密度もこの短鎖枝分かれを利用して
適当に低下させ0.91〜0.95g/cj程度とした
ものであり、従来の分岐状低密度ポリエチレンより直鎖
性があり、高密度ポリエチレンより枝分かれが多い構造
のポリエチレンである。
The linear low density polyethylene mentioned above refers to ethylene and other α-
It is a copolymer with olefin and is different from branched low-density polyethylene resin produced by conventional high-pressure methods. Linear low density polyethylene, for example, contains ethylene and other α-
Ziegler is a product obtained by copolymerizing olefins such as butene, hexene, octene, decene, 4-methylpentene-1, etc. in an amount of about 4 to 17% by weight, preferably about 5 to 15% by weight, and is used in the production of high-density polyethylene using medium and low construction methods. It is produced using a type catalyst or a Phillips type catalyst, and the conventional high density polyethylene is made into a short branched structure by copolymerization components, and the density is appropriately reduced by using this short chain branching to 0.91 to 0. It is about .95 g/cj, and is polyethylene with a structure that is more linear than conventional branched low-density polyethylene and more branched than high-density polyethylene.

上記線状低密度ポリエチレンは密度が0.91〜0.9
45g/c+J、好ましくは0.915〜0.940g
/a+1の範囲であり、またメルトインデックスが2g
/10分以下、好ましくは0.1〜Ig/10分以下、
さらに好ましくは0.1〜0.5g/10分の範囲であ
り、さらに流動比が70以下、望ましくは10〜50の
範囲のものが用いられる。
The above linear low density polyethylene has a density of 0.91 to 0.9.
45g/c+J, preferably 0.915-0.940g
/a+1 range, and melt index is 2g
/10 minutes or less, preferably 0.1 to Ig/10 minutes or less,
More preferably, the range is from 0.1 to 0.5 g/10 min, and the flow ratio is preferably 70 or less, preferably from 10 to 50.

上記密度が下限未満では剛性及び耐抗張力が低下し、上
限より高いと耐衝撃性が著しく低下するので好ましくな
い。またメルトインデックスが上限より高いと、面強度
が低下するので好ましくない。さらに流動比が70より
高いと面強度が低下するので望ましくない。
If the density is less than the lower limit, the rigidity and tensile strength will be lowered, and if it is higher than the upper limit, the impact resistance will be significantly lowered, which is not preferable. Moreover, if the melt index is higher than the upper limit, the surface strength will decrease, which is not preferable. Furthermore, if the flow ratio is higher than 70, the surface strength will decrease, which is not desirable.

本発明方法においてメルトインデックスとはJIS  
K  6760の引用規格であるJIS  K7210
の表1の条件4に準拠して測定した値であり、流動比と
は、上記メルトインデックス測定器を用い、せん断力1
0bダイン/Cl11 (荷重11131 g)と10
’ダイン/cd (荷重1113g)の押出量(g/1
0分)であり、 で算出される。また、密度はJIS  K  6760
に準拠して測定した値である。
In the method of the present invention, the melt index is JIS
JIS K7210, which is a reference standard for K 6760
The flow ratio is a value measured in accordance with Condition 4 of Table 1, and the flow ratio is measured using the above-mentioned melt index measuring device, with a shear force of 1
0b dyne/Cl11 (load 11131 g) and 10
'Dyne/cd (load 1113g) extrusion amount (g/1
0 minutes) and is calculated as In addition, the density is JIS K 6760
This is a value measured in accordance with .

流動比は用いられる樹脂の分子量分布の目安であり、流
動比の値が小さければ分子量分布は狭く、流動比の値が
大きければ分子量分布は広いことを表わしている。
The fluidity ratio is a measure of the molecular weight distribution of the resin used; a small fluidity ratio value indicates a narrow molecular weight distribution, and a large fluidity ratio value indicates a wide molecular weight distribution.

本発明においては、上記した線状ポリエチレンのみを用
いてもよいが、線状ポリエチレンを主成分とし、これに
分岐状低密度ポリエチレンを特定量配合することにより
、フィルム成形性及び延伸性が向上するので望ましい。
In the present invention, only the linear polyethylene described above may be used, but by using linear polyethylene as the main component and adding a specific amount of branched low-density polyethylene to this, film formability and stretchability are improved. Therefore, it is desirable.

上記線状ポリエチレンに配合される分岐状低密度ポリエ
チレンとは、エチレンホモポリマー及びエチレンと他の
共重合成分との共重合体を含むものである。
The branched low-density polyethylene blended into the linear polyethylene includes an ethylene homopolymer and a copolymer of ethylene and other copolymer components.

共重合成分としては酢酸ビニル、エチルアクリレート、
メチルアクリレート等のビニル化合物、ヘキセン、プロ
ピレン、オクテン、4−メチルペンテン−1等の炭素数
3以上のオレフィン類等が挙げられる。共重合成分の共
重合量としては0.5〜18重量%、好ましくは2〜1
0重量%程度である。これらの低密度ポリエチレンは通
常の高圧法(1000〜3000kg/cd)により、
酸素、有機過酸化物等のラジカル発生剤を用いラジカル
重合により得たものであるのが望ましい。
Copolymerization components include vinyl acetate, ethyl acrylate,
Examples include vinyl compounds such as methyl acrylate, and olefins having 3 or more carbon atoms such as hexene, propylene, octene, and 4-methylpentene-1. The copolymerization amount of the copolymerization component is 0.5 to 18% by weight, preferably 2 to 1% by weight.
It is about 0% by weight. These low-density polyethylenes are processed using the normal high pressure method (1000 to 3000 kg/cd).
It is preferable that the material be obtained by radical polymerization using a radical generator such as oxygen or an organic peroxide.

上記分岐状低密度ポリエチレンはメルトインデックスが
2g/10分以下、好ましくは0.1−1g/10分の
範囲、流動比が70以下、望ましくは30〜70の範囲
のものが用いられる。メルトインデックスが上記範囲以
上では、フィルムの面強度が低下するので好ましくない
、また、流動比が上記範囲以上では、フィルムの面強度
が低下するので望ましくない。さらに上記の分岐状低密
度ポリエチレンは密度が0.91〜0.94g/aJ、
好ましくは0.91−0.930g/cd、特に好まし
くは0.915〜0.925g/aJの範囲であるのが
、面強度の向上の点から好ましい。
The branched low-density polyethylene used has a melt index of 2 g/10 minutes or less, preferably in the range of 0.1-1 g/10 minutes, and a fluidity ratio of 70 or less, preferably in the range of 30-70. If the melt index exceeds the above range, it is undesirable because the surface strength of the film decreases, and if the flow ratio exceeds the above range, it is undesirable because the surface strength of the film decreases. Furthermore, the above branched low density polyethylene has a density of 0.91 to 0.94 g/aJ,
The range is preferably from 0.91 to 0.930 g/cd, particularly preferably from 0.915 to 0.925 g/aJ, from the viewpoint of improving surface strength.

上記線状低密度ポリエチレンと分岐状低密度ポリエチレ
ンとの配合量は線状低密度ポリエチレン100〜50重
量部、好ましくは90〜70重量部に対し分岐状低密度
ポリエチレン0〜50重量部、好ましくは10〜30重
量部の範囲内で用いられる。
The blending amount of the linear low density polyethylene and branched low density polyethylene is 100 to 50 parts by weight, preferably 90 to 70 parts by weight of the linear low density polyethylene, and 0 to 50 parts by weight, preferably 0 to 50 parts by weight of the branched low density polyethylene. It is used in a range of 10 to 30 parts by weight.

次に線状低密度ポリエチレン及び分岐状低密度ポリエチ
レンに配合するラジカル発生剤としては、半減期1分と
なる分解温度が130℃〜300℃の範囲のものが好ま
しく、例えばジクミルパーオキサイド、2.5−ジメチ
ル−2,5ジ(t−ブチルパーオキシ)ヘキサン、2.
5−ジメチル2.5ジ(t−ブチルパーオキシ)ヘキシ
ン−3、α、α′−ビス(t−プチルパーオキシイソプ
ロビル)ベンゼン、ジベンゾイルパーオキサイド、ジ−
t−ブチルパーオキサイド等が挙げられる。
Next, the radical generator to be added to the linear low density polyethylene and the branched low density polyethylene is preferably one having a decomposition temperature in the range of 130°C to 300°C with a half-life of 1 minute, such as dicumyl peroxide, 2 .5-dimethyl-2,5 di(t-butylperoxy)hexane, 2.
5-dimethyl 2.5 di(t-butylperoxy)hexyne-3,α,α'-bis(t-butylperoxyisopropyl)benzene, dibenzoyl peroxide, di-
Examples include t-butyl peroxide.

ラジカル発生剤の配合量は、上記線状低密度ポリエチレ
ン及び分岐状低密度ポリエチレンの合計量に対しo、o
ooi〜0.1重量部の範囲内から選ばれるが、この配
合量が0.0001重量部より少ない場合には得られる
フィルムの面強度が無添加のものと殆んど変らず、また
、0.1重量部より多い場合には、メルトインデックス
が低くなりすぎてフィルム成形時に膜切れが起り易く、
且つ該フィルムの表面に肌あれを生起するので好ましく
ない。
The amount of the radical generator is o, o relative to the total amount of the linear low density polyethylene and branched low density polyethylene.
ooi to 0.1 parts by weight, but if this amount is less than 0.0001 parts by weight, the surface strength of the resulting film is almost the same as that without additives, and If the amount is more than 1 part by weight, the melt index will be too low and film breakage will easily occur during film forming.
Moreover, it is not preferable because it causes roughness on the surface of the film.

本発明において上記線状低密度ポリエチレン及び分岐状
低密度ポリエチレンにラジカル発生剤を配合して、ラジ
カル発生剤を分解し該ポリエチレンと反応せしめる方法
としては特に制限を設けるものではなく、例えば以下の
方法で実施することができる。
In the present invention, there are no particular limitations on the method of blending a radical generator into the linear low-density polyethylene and branched low-density polyethylene, decomposing the radical generator, and reacting with the polyethylene, for example, the following method. It can be carried out in

(1)  インフレーション成形時に上記線状低密度ポ
リエチレン、分岐状低密度ポリエチレン及びラジカル発
生剤を同時または順次にフィードして溶融押出する。
(1) During inflation molding, the linear low density polyethylene, branched low density polyethylene and radical generator are fed simultaneously or sequentially and melt extruded.

(2)押出機、バンバリーミキサ−等の混練機を使用し
て上記線状低密度ポリエチレン、分岐状低密度ポリエチ
レン及びラジカル発生剤を混練して反応せしめた後ペレ
ット化し、該ペレットを使用してインフレーション成形
する。
(2) Using a kneading machine such as an extruder or a Banbury mixer, the above-mentioned linear low density polyethylene, branched low density polyethylene and radical generator are kneaded and reacted, and then pelletized, and the pellets are used. Inflation molding.

(3)  ラジカル発生剤を多量に含んだマスターバン
チすなわち、線状低密度ポリエチレン、分岐状低密度ポ
リエチレン、高密度ポリエチレン等のポリエチレンに多
量のラジカル発生剤(通常5000〜110000pp
程度)を配合し、ポリエチレンの融点以上でラジカル発
生剤がポリエチレンとほとんど反応を起さない温度下に
溶融混練してペレント状としたマスターバッチをあらか
じめ作り、このマスターバッチと上記線状低密度ポリエ
チレン及び分岐状低密度ポリエチレンをブレンドしイン
フレーション成形する。
(3) A master bunch containing a large amount of a radical generator, that is, polyethylene such as linear low density polyethylene, branched low density polyethylene, high density polyethylene, etc., containing a large amount of radical generator (usually 5000 to 110000 pp)
A masterbatch is made in advance by blending the above-mentioned linear low-density polyethylene and melt-kneading it into a pellet shape at a temperature above the melting point of polyethylene at which the radical generator hardly reacts with the polyethylene. and branched low-density polyethylene are blended and inflation molded.

また、ラジカル発生剤そのものはそのままあるいは溶剤
に溶かして使用される。
Further, the radical generator itself may be used as it is or dissolved in a solvent.

上記線状低密度ポリエチレン及び分岐状低密度ポリエチ
レンをラジカル発生剤と反応させることにより上記ポリ
エチレンが分子カップリングを生起して高分子量成分が
増加し、且つメルトインデックスが低下した変性ポリエ
チレンが得られる。
By reacting the linear low-density polyethylene and the branched low-density polyethylene with a radical generator, a modified polyethylene in which the polyethylene undergoes molecular coupling, the high molecular weight component is increased, and the melt index is decreased is obtained.

該変性ポリエチレンは未変性の線状低密度ポリエチレン
と分岐状低密度ポリエチレンとの配合物に比べ、インフ
レーション成形時に横方向の配向がかかりやすく、この
ようにして得たフィルムは延伸処理した場合、縦裂は強
度及び衝撃強度が著しく向上する。
The modified polyethylene is more easily oriented in the lateral direction during inflation molding than a blend of unmodified linear low density polyethylene and branched low density polyethylene, and when the film thus obtained is stretched, it is easily oriented in the lateral direction. The cracks have significantly improved strength and impact strength.

一方、樹脂Bとして用いられる高密度ポリエチレンとし
ては、チーグラー型触媒又はフィリップス型触媒を用い
てエチレンを単独重合又はエチレンと他のα−オレフィ
ン、例えばプロピレン、ブテン−1等とを共重合させて
得られるものであって、その密度が0.945g/cd
より大、好ましくは、0.95〜0.965g/aJの
範囲で、且つメルトインデックスが0.5〜10g/1
0分、好ましくは0.5〜5g/10分の範囲のものが
用いられる。該密度が下限以下ではフィルムの滑り性が
不十分であり、さらにメルトインデックスが下限未満で
は共押出成形時のフィルム厚みが均一な層比とならず、
また上限より高いとフィルム物性が低下するので好まし
くない。
On the other hand, the high-density polyethylene used as resin B can be obtained by homopolymerizing ethylene using a Ziegler type catalyst or Phillips type catalyst or by copolymerizing ethylene with other α-olefins such as propylene and butene-1. with a density of 0.945g/cd
larger, preferably in the range of 0.95 to 0.965 g/aJ, and with a melt index of 0.5 to 10 g/1
0 minutes, preferably in the range of 0.5 to 5 g/10 minutes. If the density is less than the lower limit, the slipperiness of the film is insufficient, and if the melt index is less than the lower limit, the film thickness during coextrusion will not have a uniform layer ratio,
Moreover, if it is higher than the upper limit, the physical properties of the film deteriorate, which is not preferable.

本発明においては、上記変性ポリエチレン(樹脂A)と
高密度ポリエチレン(樹脂B)とを用いて共押出しイン
フレーション法によって未延伸フィルムを成形し、次い
で未延伸フィルムを縦方向(フィルムの引き取り方向)
に延伸して延伸フィルムを製造する。
In the present invention, an unstretched film is formed by a coextrusion inflation method using the modified polyethylene (resin A) and high-density polyethylene (resin B), and then the unstretched film is molded in the longitudinal direction (the direction in which the film is taken off).
A stretched film is produced by stretching the film.

該共押出インフレーション成形はインフレーション成形
に用いられる円筒状の丸型多層ダイを用いて、溶融した
それぞれの樹脂を2種2層(樹脂B/樹脂A)又は2種
3層(樹脂B/樹樹脂A相樹脂)の構成でチューブ状に
共押出すると同時に、その内部に空気を吹込んで通常の
インフレーション成形法によって多層未延伸フィルムを
成形する。
The coextrusion inflation molding uses a cylindrical round multilayer die used for inflation molding to form 2 types of 2 layers (resin B/resin A) or 2 types of 3 layers (resin B/resin) using a cylindrical round multilayer die used for inflation molding. A-phase resin) is coextruded into a tube shape, and at the same time, air is blown into the tube to form a multilayer unstretched film using a normal inflation molding method.

該多層未延伸フィルムの厚み層比は樹脂Aの厚みを10
0とした場合、樹脂Bの厚みは少なくとも一方の面で5
〜30、好ましくは10〜30の範囲である。該樹脂B
の層比が下限未満では内、外層の樹脂Bのフィルム厚み
が均一な層比とならず、フィルムの滑り性が不十分とな
り、また、上限より大きくなると内、外層の樹脂Bの影
響によりフィルムの衝撃強度と引裂強度が低下するので
好ましくない。
The thickness layer ratio of the multilayer unstretched film is that the thickness of resin A is 10
When set to 0, the thickness of resin B is 5 on at least one side.
-30, preferably 10-30. The resin B
If the layer ratio is less than the lower limit, the layer ratio of the resin B in the inner and outer layers will not be uniform, resulting in insufficient slipperiness of the film, and if it exceeds the upper limit, the film will be This is undesirable because it reduces the impact strength and tear strength of the material.

該多層フィルムの構成としては(樹脂B/樹樹脂A相樹
脂)の構成、すなわち、内、外層を樹脂Bとする構成が
フィルムの内、外側の滑り性改善の点から望ましい。
As for the structure of the multilayer film, a structure of (resin B/resin A phase resin), ie, a structure in which the inner and outer layers are made of resin B, is desirable from the viewpoint of improving the slipperiness of the inner and outer layers of the film.

該多層未延伸(以下、未延伸と称す)フィルムはインフ
レーション成形法を用いて、ブローアツプ比を2〜8、
好ましくは3〜8、フロストライン高さをダイス直径(
環状スリットの直径)の2〜50倍、好ましくは5〜5
0倍の範囲の条件下で行なう。上記ブローアツプ比が下
限未満ではフィルムの縦方向の耐引裂強度及び衝撃強度
が低下し、上限より高いとバブルの成形安定性が低下す
るので好ましくない、また、フロストライン高さが下限
未満ではフィルムの縦方向の耐引裂強度が低下し、上限
より高いとバブルの成形安定性が低下するので好ましく
ない。
The multilayer unstretched (hereinafter referred to as unstretched) film is produced using an inflation molding method, with a blow-up ratio of 2 to 8.
Preferably 3 to 8, frost line height to die diameter (
2 to 50 times the diameter of the annular slit, preferably 5 to 5
The test is carried out under conditions in the 0x range. If the above blow-up ratio is less than the lower limit, the film's longitudinal tear resistance and impact strength will decrease, and if it is higher than the upper limit, the bubble forming stability will decrease, which is undesirable. Also, if the frost line height is less than the lower limit, the film will The tear resistance in the longitudinal direction decreases, and if it is higher than the upper limit, the molding stability of the bubble decreases, which is not preferable.

上記未延伸フィルムは次いで延伸温度を上記樹脂組成物
(変性ポリエチレン)の融点−70〜融点−20℃、延
伸倍率を1.5〜8倍の条件下に縦方向に一軸延伸を行
う。
The unstretched film is then uniaxially stretched in the longitudinal direction at a stretching temperature of -70 to -20°C, the melting point of the resin composition (modified polyethylene), and a stretching ratio of 1.5 to 8 times.

延伸温度は融点−20℃以下、融点−70℃以上、好ま
しくは融点−30℃〜融点−60℃が望ましい、範囲以
下ではフィルムに延伸環が発生し、また範囲以上ではフ
ィルムの衝撃強度が大きく低下する。
The stretching temperature is desirably below the melting point of -20°C, and above the melting point of -70°C, preferably between -30°C and -60°C. Below this range, stretched rings will occur in the film, and above this range, the impact strength of the film will increase. descend.

延伸倍率は1.5倍以上8倍以下で、好ましくは2倍以
上〜5倍以下で延伸するのが望ましい。延伸倍率が1.
5倍未満では延伸による効果が不充分であり、フィルム
の剛性および耐抗張力は充分なものとはならない、また
8倍以上では延伸フィルムは縦方向への過度の分子配向
を有するものになり、フィルムの縦裂は強度が低下し好
ましくない。
The stretching ratio is 1.5 times or more and 8 times or less, preferably 2 times or more and 5 times or less. The stretching ratio is 1.
If it is less than 5 times, the effect of stretching is insufficient, and the film will not have sufficient rigidity and tensile strength. If it is more than 8 times, the stretched film will have excessive molecular orientation in the longitudinal direction, and the film will not have sufficient rigidity and tensile strength. Vertical cracks are undesirable because they reduce strength.

〔実施例〕〔Example〕

以下に実施例を示し本発明を更に詳細に説明するが、本
発明はその要旨を越えない限り以下の実施例に限定され
るものではない。
EXAMPLES The present invention will be explained in more detail by way of examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 (11線状低密度ポリエチレン(メルトインデックス(
MI):0.5g/10分、流動比:20゜密度: 0
.921 g/d、共重合成分ニブテン−1゜共重合量
:10重量%、融点118℃)を80重量部と高圧法分
岐状低密度ポリエチレン(MI:0.4g/10分、流
動比=45.密度: 0.922g/aJ)を20重量
部とをトライブレンドしたもの(混合物の融点118℃
)と2,5−ジメチル−2,5−ジ(t−ブチルパーオ
キシ)ヘキシン−3を0.03重量部混合したものを6
5φ型押出機より、また高密度ポリエチレン(Ml:1
.Og/10分、密度: 0.960 g/aJ)を4
5鶴φ型押出機よりそれぞれ、ダイ内共押出インフレー
ション成形機(環状スリット径250鶴φ、スリット幅
4flのインフレーション共押出ダイ及び冷却用エアー
リングを取付けた成形機)の共押出ダイより成形温度2
20℃で同時押出し、押出量(合計) 80 ktr/
hr、ブローアンプ比3、F L H/D=8の条件下
でインフレーション成形し、200μの積層フィルム(
内層(高密度ポリエチレン)20μ及び外層(変性ポリ
エチレン)180μ)を得た。このフィルム原反をフィ
ルムの引き取り方向にスリットしたものをロール延伸装
置を用いて延伸温度80℃、延伸倍率(縦方向3倍)の
条件下で、80μの厚さの縦−軸延伸フィルムを製造し
た。
Example 1 (11 Linear low density polyethylene (melt index (
MI): 0.5g/10min, flow ratio: 20゜Density: 0
.. 921 g/d, 80 parts by weight of the copolymer component nibutene-1° copolymerized amount: 10% by weight, melting point 118°C) and high-pressure branched low-density polyethylene (MI: 0.4 g/10 min, fluidity ratio = 45 .density: 0.922g/aJ) with 20 parts by weight (melting point of the mixture: 118°C
) and 0.03 parts by weight of 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3.
From a 5φ type extruder, high density polyethylene (Ml: 1
.. Og/10 min, density: 0.960 g/aJ) to 4
The molding temperature was determined from the coextrusion die of an inflation coextrusion molding machine (a molding machine equipped with an inflation coextrusion die with an annular slit diameter of 250 mm and a slit width of 4 fl, and a cooling air ring) from each of the 5 Tsuru φ type extruders. 2
Co-extrusion at 20℃, extrusion amount (total) 80 ktr/
hr, blow amplifier ratio 3, and F L H/D = 8 to form a 200μ laminated film (
An inner layer (high density polyethylene) of 20μ and an outer layer (modified polyethylene) of 180μ) were obtained. This original film was slit in the film take-up direction, and a longitudinally-axially stretched film with a thickness of 80 μm was produced using a roll stretching device at a stretching temperature of 80°C and a stretching ratio (3 times in the longitudinal direction). did.

評価方法 (イ)指抜は強度試験 フィルムの耐抗張力を調べるため、指抜は強度試験を行
なった。
Evaluation method (a) Strength test for finger removal In order to examine the tensile strength of the film, a strength test was conducted for finger removal.

試験法は上記で得られた縦延伸フィルムを、延伸方向に
760mに切断し、横方向(フィルムの幅方向)に10
00mII幅に切断し、横方向にまるめ、重ね部分が6
0寵となるようにし、該重ね部にホットメルト接着剤(
新田ゼラチン社製グレードHX−960)を塗布して重
ね部分をホットガンにて加熱接着させて、筒状体とし、
該筒状体の上下のいずれかをニューロング社製H322
B−Z型ヒートシーラを用いヒートシールした後、得ら
れた袋に20kgの肥料を充填し開口部を前記と同じく
ヒートシールした試験用包装袋を得、上記20kgの肥
料袋のヒートシール部が床面と平行になるように手で持
ち上げ、袋のフィルム面に指が喰い込む状況を観察した
The test method was to cut the longitudinally stretched film obtained above into 760 m lengths in the stretching direction, and cut them into 10 m lengths in the transverse direction (width direction of the film).
Cut to 00m II width, roll horizontally, overlapped part is 6
Apply hot melt adhesive (
Nitta Gelatin Co., Ltd. grade HX-960) was applied and the overlapped parts were heated and bonded using a hot gun to form a cylindrical body.
One of the upper and lower parts of the cylindrical body is H322 manufactured by Newlong Co., Ltd.
After heat-sealing using a B-Z type heat sealer, the resulting bag was filled with 20 kg of fertilizer and the opening was heat-sealed in the same manner as above to obtain a test packaging bag. I lifted the bag with my hand so that it was parallel to the surface, and observed how my fingers dug into the film surface of the bag.

評価 A:全く指が喰い込まず、全く問題なしB:やや指が喰
い込むが、特に問題なしC:大きく指が喰い込み、問題
あり (ロ)落袋試験 上記(イ)で得らhた包装袋(20kgの肥料袋)の胴
部が床面と平行になるように手で持ち上げ、室温(25
℃)で、高さ1.5mから落下させ、破袋した時の回数
を20袋の平均値で表示した。
Rating A: No finger digging in at all, no problem at all B: Finger biting in a little, but no particular problem C: Finger digging in a lot, problem (B) Drop bag test Obtained in (B) above. Lift the packaging bag (20 kg fertilizer bag) by hand so that the body is parallel to the floor, and let it cool to room temperature (25 kg).
℃) from a height of 1.5 m, and the number of times the bag broke was expressed as the average value of 20 bags.

(ハ)滑り性 東洋精機社製フリクションアングルテスターを用い、5
.3cmXIQcmの底面を有するスレッドにとりつけ
、斜面上に同一フィルムを固定し、斜面をかたむけてス
レッドの滑り出す角度θを求め、タンゼント(tang
ent)θの値で示す。
(c) Slip property Using a friction angle tester manufactured by Toyo Seiki Co., Ltd.,
.. Attach it to a thread with a bottom surface of 3cm
ent) is expressed as the value of θ.

(ニ)製袋スピード 第1図に示す製袋装置を用い、幅1160mの紙(秤量
84 g/rdのセミクルバック紙)と上記フィルムと
を製袋機に導入し、製袋可能スピード(m/m1n)を
調べた。なお、上記フィルムは製袋板の面に高密度ポリ
エチレン層が接するようにした。
(d) Bag-making speed Using the bag-making device shown in Figure 1, paper with a width of 1160 m (semi-cleback paper with a weight of 84 g/rd) and the above film were introduced into the bag-making machine, and the bag-making speed ( m/m1n) was investigated. In addition, the high-density polyethylene layer of the above film was in contact with the surface of the bag-making board.

実施例2 実施例1において、外層用の45φ型押出機を一台増設
し、(高密度ポリエチレン/変性ポリエチレン/高密度
ポリエチレン)の層構成としたこと以外は同様にして行
った。
Example 2 The same procedure as in Example 1 was carried out except that one 45φ type extruder for the outer layer was added and the layer structure was changed to (high-density polyethylene/modified polyethylene/high-density polyethylene).

実施例3〜4 実施例1において表1のように条件を変えて行ったこと
以外は同様にして行った。
Examples 3 to 4 The same procedure as in Example 1 was carried out except that the conditions were changed as shown in Table 1.

比較例1 実施例1において変性ポリエチレン単独で行なったこと
以外は同様にして行った。
Comparative Example 1 The same procedure as in Example 1 was carried out except that modified polyethylene was used alone.

比較例2〜3 実施例2において表1のように条件を変えて行ったこと
以外は同様にして行った。
Comparative Examples 2-3 The same procedures as in Example 2 were carried out except that the conditions were changed as shown in Table 1.

実施例及び比較例の評価結果を表1に示した。The evaluation results of Examples and Comparative Examples are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によればフィルムの滑り性が改善され、か
つ強度に優れたフィルムが得られ、重量物を包装するた
めの袋等を構成するのに適したフィルムが得られる。
According to the method of the present invention, a film with improved slipperiness and excellent strength can be obtained, and a film suitable for constructing bags for packaging heavy objects, etc. can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)メルトインデックスが2g/10分以下で、且つ
密度が0.910〜0.945g/cm^2の線状低密
度ポリエチレンを少なくとも50重量%含有する樹脂1
00重量部に対してラジカル発生剤0.001〜0.1
重量部の範囲で配合した組成物からなる樹脂Aとメルト
インデックスが0.5〜10g/10分で、且つ密度が
0.945g/cm^2より大の高密度ポリエチレンか
らなる樹脂Bとをその厚み比が樹脂Aの厚みを100と
した場合の少なくとも一方の面の樹脂Bの厚みを5〜3
0の割合として共押出し、インフレーション成形を行な
い、ブローアップ比2〜8、フロストライン高さを環状
スリットの直径の2〜50倍としてインフレーション成
形し、得られたフィルムをフィルムの引取方向に、延伸
温度を上記樹脂Aの融点−70〜融点−20℃、延伸倍
率を1.5〜8倍として一軸延伸することを特徴とする
フィルムの製造方法。
(1) Resin 1 containing at least 50% by weight of linear low density polyethylene with a melt index of 2 g/10 minutes or less and a density of 0.910 to 0.945 g/cm^2
0.001 to 0.1 of radical generator per 00 parts by weight
Resin A made of a composition blended in a range of parts by weight and resin B made of high density polyethylene with a melt index of 0.5 to 10 g/10 minutes and a density of more than 0.945 g/cm^2. When the thickness ratio is 100 for the thickness of resin A, the thickness of resin B on at least one side is 5 to 3.
Coextrusion and inflation molding were performed with a ratio of 0 and a blow-up ratio of 2 to 8, and a frost line height of 2 to 50 times the diameter of the annular slit. A method for producing a film, characterized in that uniaxial stretching is carried out at a temperature of -70° C. to -20° C., the melting point of the resin A, and a stretching ratio of 1.5 to 8 times.
JP32909489A 1989-12-19 1989-12-19 Film production method Expired - Fee Related JP2785403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32909489A JP2785403B2 (en) 1989-12-19 1989-12-19 Film production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32909489A JP2785403B2 (en) 1989-12-19 1989-12-19 Film production method

Publications (2)

Publication Number Publication Date
JPH03189124A true JPH03189124A (en) 1991-08-19
JP2785403B2 JP2785403B2 (en) 1998-08-13

Family

ID=18217544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32909489A Expired - Fee Related JP2785403B2 (en) 1989-12-19 1989-12-19 Film production method

Country Status (1)

Country Link
JP (1) JP2785403B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0777573A4 (en) * 1994-08-10 1998-09-30 Mobil Plastics Europ Inc Oriented hdpe laminates for easy directional opening
JP2007528309A (en) * 2004-03-10 2007-10-11 エクイスター ケミカルズ、 エルピー Multi-layer film stretched in the machine direction
EP2895326B1 (en) 2012-09-13 2020-12-16 Dow Global Technologies LLC Polyolefin based films suitable for thermoforming
CN112442223A (en) * 2019-09-04 2021-03-05 中国石油化工股份有限公司 Polyethylene composition and polyethylene film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0777573A4 (en) * 1994-08-10 1998-09-30 Mobil Plastics Europ Inc Oriented hdpe laminates for easy directional opening
JP2007528309A (en) * 2004-03-10 2007-10-11 エクイスター ケミカルズ、 エルピー Multi-layer film stretched in the machine direction
EP2895326B1 (en) 2012-09-13 2020-12-16 Dow Global Technologies LLC Polyolefin based films suitable for thermoforming
CN112442223A (en) * 2019-09-04 2021-03-05 中国石油化工股份有限公司 Polyethylene composition and polyethylene film

Also Published As

Publication number Publication date
JP2785403B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
KR960007297B1 (en) Linear polyethylene film and process for producing the same
EP0662989B1 (en) Improved shrink film and methods relating thereto
US20120219776A1 (en) Multilayer Films Containing Polyolefin-Interpolymer Resin Particle Blends
US20120219814A1 (en) Methods of Improving Polyethylene Stretch Films
EP0763422A1 (en) Multi-layer shrink film comprising low modulus polypropylene
EP1222070B1 (en) Multilayer heat-shrinkable sealable films
US20120217682A1 (en) Methods of Improving the Physical Properties of Polyolefin Films
WO2005028553A1 (en) Resin composition and stretched film obtained by using the same
EP1332868B1 (en) Multilayer film
JP2003011297A (en) Packaging polypropylene oriented film
JP2974198B2 (en) Polyolefin-based shrink laminated film and method for producing the same
JPH03189124A (en) Manufacture of film
JP2002331626A (en) Easily tearable multilayered film
JPH0577371A (en) Laminated film
US20060135698A1 (en) Blends of medium density polyethylene with other polyolefins
JP3271301B2 (en) Laminated film
JPH07329260A (en) Heat sealable stretched laminated film
JP4239079B2 (en) Heat-sealable laminated polypropylene resin film and package
JP4239067B2 (en) Laminated polypropylene resin film and package using the same
JPH03124561A (en) Packaging bag
JPH07232417A (en) Polyolefoinic heat-shrinkable laminated film and manufacture thereof
JPH07100348B2 (en) Film production method
JPH0691827A (en) Multilayred structure
JPS63218749A (en) Polyethylene resin composition for extensible film
JP2557472B2 (en) Film production method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees