JPH0318901B2 - - Google Patents

Info

Publication number
JPH0318901B2
JPH0318901B2 JP58048293A JP4829383A JPH0318901B2 JP H0318901 B2 JPH0318901 B2 JP H0318901B2 JP 58048293 A JP58048293 A JP 58048293A JP 4829383 A JP4829383 A JP 4829383A JP H0318901 B2 JPH0318901 B2 JP H0318901B2
Authority
JP
Japan
Prior art keywords
layer
plastic
fiber
biocompatible
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58048293A
Other languages
Japanese (ja)
Other versions
JPS59174161A (en
Inventor
Ayanori Takabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP58048293A priority Critical patent/JPS59174161A/en
Priority to CA000449898A priority patent/CA1235856A/en
Priority to KR1019840001435A priority patent/KR850000230A/en
Priority to DE8484301919T priority patent/DE3474628D1/en
Priority to EP84301919A priority patent/EP0123426B1/en
Publication of JPS59174161A publication Critical patent/JPS59174161A/en
Publication of JPH0318901B2 publication Critical patent/JPH0318901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は医療用生体適合性プラスチツク複合材
に関する。特にプラスチツク層と生体適合性繊維
層より成る複合材に関する。 炭素材料、特に熱分解黒鉛は生体材料として広
く用いられその生体適合性はよく知られている。
ところが熱分解黒鉛又はCVD(chemical
vapordepositionのことで以下CVDと略称する)
をほどこした材料は硬すぎて生体に使用するには
適さない。即ち生体を構成している材料とは、物
性が違いすぎて、そのまゝおきかえることが出来
ないため、例えば心臓弁については、ボール弁と
いつたもともとの心臓弁の形状とは全く異なつた
形状に加工して使用している。CVD処理を行う
には、炭化水素が熱分解する温度以上に基材の温
度を上げ、その表面で炭化、脱水素をおこさせる
ため必然的に耐熱性の基材が要求される。従つ
て、プラスチツク材料にCVD処理をほどこすこ
とは不可能である。 一方生体側としては、そのほとんどが可撓性の
材料から成り立つているため、生体の物性に近い
物性を持つ材料で生体適合性の良い材料が求めら
れている。 この矛盾を解決するため、発明者等は以下のこ
とを発明した。すなわち、金属、無機物等の耐熱
材料も細い繊維状とすることにより可撓性を示す
ことに着目し、繊維状の材料にCVD処理をほど
こし、これをプラスチツク材料に貼り合せ、全体
として可撓性を損わずに、CVDの生体適合性を
生かした材料に仕上げることを試みた。但し、こ
こに使用する繊維材料は本来伸縮しない材料であ
るため貼り合せにあたつては、繊維軸方向に力が
かからないで、繊維の曲げ方向に力がかかるよう
な貼り合せ方法の配慮が必要である。 一般に織布等に使用する撚糸は撚りがかかつて
おり、その断面を考えれば1本のフイラメントは
その切断面毎に断面の各所に現われ決して1ヶ所
にとどまることはない。従つて接着層の厚さを例
えば撚糸の径の半分以下に制限しておけば、1本
のフイラメントが接着される確率は半分であり、
残りの半分は自由に曲がることが出来る。したが
つて接着層は繊維層の半分以下におさえるのがよ
く、実用上充分な可撓性を持たすためには接着層
の厚さは繊維層の4分の1以下が望ましい。 本発明でいうプラスチツクはエラストマーも含
むもので、一般の市販の医療用プラスチツクであ
ればいずれのものであつてもよい。 テフロン、シリコンゴム、フツ素シリコンゴ
ム、ポリエチレン、ポリプロピレン、ポリエステ
ル、ポリヒドロキシエチルメタアクリレート、ポ
リアクリルアミド、ポリ−N−ビニルピロリド
ン、セグメント化ポリウレタン等のプラスチツ
ク、又はヘパリン、ウロキナーゼ、ストレプトキ
ナーゼ、アルブミン等をプラスチツクに結合又は
被覆したもの等である。これらのプラスチツクは
接着をよくするためにエツチング、グロー放電処
理又は表面処理剤等を塗布することも好ましい。 生体適合性繊維層は繊維を編組したもの(網を
含む)、織物、不織布、フエルト等の形であるこ
とが出来る。 繊維はCVD処理に耐える耐熱性のものであれ
ばよく、炭素繊維、無機質繊維例えばガラス繊維
金属繊維等があげられる。繊維はCVD処理によ
り繊維表面に生体適合性面を被覆することが好ま
しい。この処理は繊維の状態で行なつてもよく、
編組、織物、不織布、フエルト等にしてから行な
つてもよい。 CVDは炭化水素例えばメタン、エチレン、プ
ロパン、ブタン、ベンゼン、トルエン等のガスを
そのガスの分解温度以上で分解し、繊維上に炭素
被覆をするものである。その温度は600℃乃至
3000℃で好ましくは1200℃乃至2500℃である。 上記の生体適合性層とプラスチツク層を接合す
るのには接着剤を用いて接合する方法、又熱圧着
による方法等がある。接着剤としては、シリコン
系接着剤、ポリエチレン−酢酸ビニル共重合体、
ポリエステル、ナイロン、ウレタンエラストマー
又は、酢酸ビニル、アクリル樹脂等が挙げられ
る。 繊維間の接着されない部分は層全体の可撓性を
示す為にも、又生体細胞が侵入して固定化する上
にも必要である。 なお、本発明はプラスチツク層と生体適合性繊
維層とを接合した2層のみならず、プラスチツク
層を中間に両側に生体適合性繊維層を有する3層
物であつてもよい。又形状についてもシート状、
パイプ状、チユーブ状等任意の形状のものを作成
可能である。 本発明の生体適合性プラスチツクス複合材の生
体適合性は次のようにして調べた。 細胞は株化ヒト歯肉癌由来の上皮性細胞(略号
Ca.9.22)及びラツト胎児歯胚由来の線維芽性細
胞(略号RTG)を用いた。各試料は直径42mmの
ガラスシヤーレに入れガス滅菌後、2〜5×104
個/mlの細胞浮遊液5mlを加えた。4日間、5%
炭酸ガス雰囲気下、37℃で培養を行なつた。トリ
プシン処理により材料表面上に生育した細胞を剥
離し、血球計算板により細胞数を算定した。組織
培養用のLux社製プラスチツクシヤーレ上での増
殖細胞数を比較値とした。そして増殖率を求め
た。 実施例 1 第1図のような装置を用いて炭素繊維14より
なる厚さ0.5mmの平織布を石英ボード10に乗せ
た。 アルゴンガス3を100c.c./min及びメタンガス
4を1c.c./minを流し、混合ガスとして、1000℃
に保持した電気炉8内の石英管9に導入した。ト
ラツプ1から電気炉のリボンヒーター11で予備
加熱(500℃)した石英管9の内径は55mmφで均
熱帯長は30cmである。最初アルゴンガス3のみ流
し、電気炉を1000℃まで昇温し、その後、メタン
ガスをアルゴンガスに加えて流した。約1時間流
し、その後はアルゴン雰囲気中で冷却した。この
冷却されたCVD被覆炭素繊維布をとり出し、第
2図で示す装置の黒鉛ルツボ15に入れアルゴン
雰囲気中2000℃の温度で30分熱処理を行なつた。
降温してCVD処理した炭素繊維布(PG炭素繊維
布と称す)を得た。尚第2図において均熱体1
6、黒鉛電極17、断熱材18、銅の電極板1
9、ノゾキ窓20である。 実施例 2 平らな台上に100mm×100mm、厚さ1mmのポリ塩
化ビニルシートをおき、その四辺にセロハンテー
プを2層に貼り約1/10mmの段差をつけた。その囲
みの中にシリコン樹脂接着剤SILASTIC
Silicon TypeAを流し、ガラス棒でしごいて約1/
10mmの厚さの接着剤層を形成し、上から実施例1
で得られたPG炭素繊維布を乗せて上から押え、
そのまま一昼夜放置し、ポリ塩化ビニル、PG炭
素繊維布複合材を得た。 同様にして、イオンエツチングテフロンシート
の試料を作成した。シリコンゴムシートは四角の
中抜きの紙型をつくり接着剤を流し込み同様に
PG炭素繊維布複合材を作成した。これ等の材料
はいづれも充分な柔軟性を示した。 接着剤固化后中央部より32mmφの試料4枚づつ
を切り出した。 実施例 3 生体適合性を知るために次の実験を行なつた。
細胞は株化ヒト歯肉癌由来の上皮性細胞(略号
Ca.9.22)及びラツト胎児歯胚由来の線繊芽性細
胞(略号RTG)を用いた。 各試料は直径42mmのガラスシヤーレに入れガス
滅菌後2〜5×104個/mlの細胞浮遊液5mlを加
えた。4日間5%炭酸ガス雰囲気下、37℃で培養
を行なつた。トリプシン処理により材料表面上に
生育した細胞を剥離し、血球計算板により細胞数
を算定した。組織培養用のLux社製プラスチツク
シヤーレ上での増殖細胞数を比較値とした。各試
料上での細胞の増殖性は増殖率で表わした。 増殖率=(試料の細胞濃度)−(スタ
ート時の細胞濃度)/(Luxシヤーレの細胞濃度)−(
スタート時の細胞濃度) 各試料について4回測定し、平均値を求めた。 その結果を下記表に示す。
The present invention relates to biocompatible plastic composites for medical use. In particular, it relates to composite materials consisting of a plastic layer and a biocompatible fiber layer. Carbon materials, especially pyrolytic graphite, are widely used as biomaterials and their biocompatibility is well known.
However, pyrolytic graphite or CVD (chemical
vapor deposition (hereinafter abbreviated as CVD)
The treated material is too hard to be used on living organisms. In other words, the physical properties of the materials that make up living organisms are so different that they cannot be replaced.For example, heart valves have a shape that is completely different from the original shape of the heart valve, such as a ball valve. It is processed and used. To perform CVD treatment, the temperature of the base material is raised above the temperature at which hydrocarbons thermally decompose, and carbonization and dehydrogenation occur on the surface, so a heat-resistant base material is inevitably required. Therefore, it is not possible to subject plastic materials to CVD treatments. On the other hand, on the biological side, most of them are made of flexible materials, so there is a need for materials with good biocompatibility and physical properties close to those of living organisms. In order to resolve this contradiction, the inventors invented the following. In other words, we focused on the fact that heat-resistant materials such as metals and inorganic materials exhibit flexibility by making them into thin fibers, and by applying CVD treatment to the fibrous materials and bonding them to plastic materials, we created a system that made the entire material flexible. We attempted to create a material that takes advantage of the biocompatibility of CVD without impairing its properties. However, since the fiber material used here is originally a material that does not stretch or contract, consideration must be given to a method of lamination that does not apply force in the axial direction of the fibers, but rather in the direction of bending the fibers. It is. Twisted yarn used for woven fabrics and the like is generally highly twisted, and when considering its cross section, one filament appears at various locations on each cut surface and never stays in one location. Therefore, if the thickness of the adhesive layer is limited to, for example, less than half the diameter of the twisted yarn, the probability that one filament will be bonded is halved;
The other half can bend freely. Therefore, the thickness of the adhesive layer is preferably less than half the thickness of the fiber layer, and in order to have sufficient flexibility for practical use, the thickness of the adhesive layer is desirably one-fourth or less of the thickness of the fiber layer. The plastic referred to in the present invention includes an elastomer, and may be any general commercially available medical plastic. Plastics such as Teflon, silicone rubber, fluorosilicone rubber, polyethylene, polypropylene, polyester, polyhydroxyethyl methacrylate, polyacrylamide, poly-N-vinylpyrrolidone, segmented polyurethane, or heparin, urokinase, streptokinase, albumin, etc. These include those bonded to or coated with plastic. It is also preferable to apply etching, glow discharge treatment, or a surface treatment agent to these plastics to improve adhesion. The biocompatible fibrous layer can be in the form of braided fibers (including nets), woven fabrics, nonwoven fabrics, felts, and the like. The fibers may be of any heat-resistant type that can withstand CVD treatment, and include carbon fibers, inorganic fibers, such as glass fibers and metal fibers. Preferably, the fiber surface is coated with a biocompatible surface by CVD treatment. This treatment may be carried out in the form of fibers,
The process may be performed after forming the material into braid, woven fabric, non-woven fabric, felt, or the like. CVD is a method of decomposing hydrocarbon gases such as methane, ethylene, propane, butane, benzene, toluene, etc. at a temperature higher than the decomposition temperature of the gas, and coating the fibers with carbon. The temperature is between 600℃ and
The temperature is 3000°C, preferably 1200°C to 2500°C. The above-mentioned biocompatible layer and plastic layer may be bonded using an adhesive, thermocompression bonding, or the like. Adhesives include silicone adhesive, polyethylene-vinyl acetate copolymer,
Examples include polyester, nylon, urethane elastomer, vinyl acetate, and acrylic resin. The non-adhered portions between the fibers are necessary for the flexibility of the entire layer and for the penetration and immobilization of biological cells. Note that the present invention is not limited to a two-layer structure in which a plastic layer and a biocompatible fiber layer are joined together, but may also be a three-layer structure having a plastic layer in the middle and biocompatible fiber layers on both sides. Also, the shape is sheet-like,
It is possible to create an arbitrary shape such as a pipe shape or a tube shape. The biocompatibility of the biocompatible plastic composite material of the present invention was investigated as follows. The cells are epithelial cells derived from established human gingival carcinoma lines (abbreviation
Ca.9.22) and rat fetal tooth germ-derived fibroblast cells (abbreviated as RTG) were used. Each sample was placed in a glass jar with a diameter of 42 mm, and after gas sterilization, 2 to 5 × 10 4
5 ml of cell suspension at cell density/ml was added. 5% for 4 days
Culture was carried out at 37°C under a carbon dioxide atmosphere. Cells grown on the material surface were detached by trypsin treatment, and the number of cells was calculated using a hemocytometer. The number of proliferating cells on a Lux plastic shear for tissue culture was used as a comparative value. Then, the proliferation rate was determined. Example 1 A plain woven fabric made of carbon fibers 14 having a thickness of 0.5 mm was placed on a quartz board 10 using an apparatus as shown in FIG. Argon gas 3 flows at 100c.c./min and methane gas 4 flows at 1c.c./min to form a mixed gas at 1000℃.
It was introduced into a quartz tube 9 in an electric furnace 8 held at The inner diameter of the quartz tube 9 preheated (500° C.) from the trap 1 by the ribbon heater 11 of the electric furnace is 55 mmφ, and the length of the soaking zone is 30 cm. At first, only argon gas 3 was flowed to raise the temperature of the electric furnace to 1000°C, and then methane gas was added to the argon gas and flowed. The mixture was allowed to flow for about 1 hour, and then cooled in an argon atmosphere. The cooled CVD-coated carbon fiber cloth was taken out, placed in a graphite crucible 15 of the apparatus shown in FIG. 2, and heat-treated at a temperature of 2000° C. for 30 minutes in an argon atmosphere.
A carbon fiber cloth (referred to as PG carbon fiber cloth) which had been subjected to temperature cooling and CVD treatment was obtained. In addition, in Fig. 2, the heating element 1
6, graphite electrode 17, heat insulating material 18, copper electrode plate 1
9. Nozoki window 20. Example 2 A polyvinyl chloride sheet measuring 100 mm x 100 mm and 1 mm thick was placed on a flat table, and two layers of cellophane tape were applied to the four sides to create a step of about 1/10 mm. Silicone resin adhesive SILASTIC in its enclosure
Pour Silicon Type A and squeeze it with a glass rod to make it about 1/2 cup.
Form an adhesive layer with a thickness of 10 mm and apply Example 1 from above.
Place the obtained PG carbon fiber cloth on top and press it down.
A polyvinyl chloride and PG carbon fiber cloth composite material was obtained by leaving it as it was for a day and night. Similarly, samples of ion-etched Teflon sheets were prepared. For the silicone rubber sheet, make a paper mold with a square hole, pour the adhesive, and do the same.
A PG carbon fiber cloth composite material was created. All of these materials exhibited sufficient flexibility. After the adhesive had solidified, four samples each having a diameter of 32 mm were cut out from the center. Example 3 The following experiment was conducted to determine biocompatibility.
The cells are epithelial cells derived from established human gingival carcinoma lines (abbreviation
Ca.9.22) and rat fetal tooth germ-derived fibroblastic cells (abbreviated as RTG) were used. Each sample was placed in a glass jar with a diameter of 42 mm, and after gas sterilization, 5 ml of a cell suspension containing 2 to 5 x 104 cells/ml was added. Culture was carried out at 37° C. in a 5% carbon dioxide atmosphere for 4 days. Cells grown on the material surface were detached by trypsin treatment, and the number of cells was calculated using a hemocytometer. The number of proliferating cells on a Lux plastic shear for tissue culture was used as a comparative value. Cell proliferation on each sample was expressed as proliferation rate. Proliferation rate = (cell concentration of sample) - (cell concentration at start) / (cell concentration of Lux shearle) - (
Cell Concentration at Start) Each sample was measured four times and the average value was determined. The results are shown in the table below.

【表】 PG炭素繊維布層のある試料は増殖率が増大し、
生体適合性の増加することが示唆される。炭素繊
維布層のある試料も生体適合性の増加することが
示された。 実施例 4 実施例1の方法を用いガラス繊維布にCVD被
覆を施した。混合ガスその他の条件は実施例1と
同じであるが電気炉を700℃にてCVD被覆を行な
つた。一方には熱処理は行わなかつた。得られた
CVD被覆ガラス繊維布とガラス繊維布を、平ら
な台上に10cm×10cm厚さ1mmのポリ塩化ビニルシ
ートをおき、シリコン系接着剤を塗布した上に乗
せ、上から押えポリ塩化ビニルCVD被覆ガラス
繊維布複合材とポリ塩化ビニルガラス繊維複合材
を得た。これを用いて実施例3の条件で上皮性細
胞(Ca.9.22)増殖率を求めた。前者は75%で後
者は65%であつた。
[Table] Samples with PG carbon fiber cloth layer have increased proliferation rate;
This suggests increased biocompatibility. Samples with carbon fiber fabric layers also showed increased biocompatibility. Example 4 A CVD coating was applied to glass fiber cloth using the method of Example 1. The mixed gas and other conditions were the same as in Example 1, but the CVD coating was performed in an electric furnace at 700°C. One side was not heat treated. obtained
Place the CVD-coated glass fiber cloth and the glass fiber cloth on a flat table, place a 10cm x 10cm 1mm-thick PVC sheet on top coated with silicone adhesive, and press the PVC CVD-coated glass from above. A fiber cloth composite and a polyvinyl chloride glass fiber composite were obtained. Using this, the proliferation rate of epithelial cells (Ca.9.22) was determined under the conditions of Example 3. The former was 75% and the latter 65%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明で使用するCVD
処理装置の説明図である。 1……トラツプ、2……マントルヒーター、3
……アルゴンガス、4……メタンガス、5,6,
7……流量計、8……電気炉、9……石英管、1
0……石英ボード、11……リボンヒーター、1
2……熱電対、13……ピツト、14……炭素繊
維布、15……黒鉛ルツボ、16……均熱体、1
7……黒鉛電極、18……断熱材、19……銅の
電極板、20……のぞき窓。
Figures 1 and 2 show the CVD used in the present invention.
FIG. 2 is an explanatory diagram of a processing device. 1... Trap, 2... Mantle heater, 3
...Argon gas, 4...Methane gas, 5,6,
7...Flowmeter, 8...Electric furnace, 9...Quartz tube, 1
0...Quartz board, 11...Ribbon heater, 1
2... Thermocouple, 13... Pit, 14... Carbon fiber cloth, 15... Graphite crucible, 16... Soaking body, 1
7...Graphite electrode, 18...Insulating material, 19...Copper electrode plate, 20...Peephole.

Claims (1)

【特許請求の範囲】 1 炭素繊維又は無機質繊維よりなる生体適合性
繊維層と、プラスチツク層とを接合してなる医療
用生体適合性プラスチツク複合材。 2 炭素繊維又は無機質繊維は炭素被覆をほどこ
したものである特許請求の範囲第1項記載のプラ
スチツク複合材。 3 プラスチツク層は可撓性を有する材料である
特許請求の範囲第1項記載のプラスチツク複合
材。 4 可撓性を有する材料はシリコンゴム、フツ素
樹脂、ポリ塩化ビニルより選ばれたものである特
許請求の範囲第3項記載のプラスチツク複合材。 5 生体適合性繊維層は織布、編組、フエルトよ
り得ばれたものである特許請求の範囲第1項記載
のプラスチツク複合材。 6 炭素繊維又は無機質繊維よりなる生体適合性
繊維層とプラスチツク層とを接着剤を用いて接合
してなり、接着層の厚さが前記繊維層の半分以下
であることを特徴とする特許請求の範囲第1〜5
項のいずれか一項に記載のプラスチツク複合材。
[Scope of Claims] 1. A biocompatible plastic composite material for medical use formed by bonding a biocompatible fiber layer made of carbon fiber or inorganic fiber and a plastic layer. 2. The plastic composite material according to claim 1, wherein the carbon fiber or inorganic fiber is coated with carbon. 3. The plastic composite material according to claim 1, wherein the plastic layer is a flexible material. 4. The plastic composite material according to claim 3, wherein the flexible material is selected from silicone rubber, fluororesin, and polyvinyl chloride. 5. The plastic composite material according to claim 1, wherein the biocompatible fiber layer is obtained from woven fabric, braided fabric, or felt. 6. A patent claim characterized in that a biocompatible fiber layer made of carbon fiber or inorganic fiber and a plastic layer are bonded together using an adhesive, and the thickness of the adhesive layer is less than half of the thickness of the fiber layer. Range 1st to 5th
A plastic composite according to any one of paragraphs.
JP58048293A 1983-03-23 1983-03-23 Body compatible plastic composite material Granted JPS59174161A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58048293A JPS59174161A (en) 1983-03-23 1983-03-23 Body compatible plastic composite material
CA000449898A CA1235856A (en) 1983-03-23 1984-03-19 Biocompatible composite material
KR1019840001435A KR850000230A (en) 1983-03-23 1984-03-20 Method of producing biocompatible composition
DE8484301919T DE3474628D1 (en) 1983-03-23 1984-03-21 Biocompatible composite material for implants and artificial organs for the human body
EP84301919A EP0123426B1 (en) 1983-03-23 1984-03-21 Biocompatible composite material for implants and artificial organs for the human body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048293A JPS59174161A (en) 1983-03-23 1983-03-23 Body compatible plastic composite material

Publications (2)

Publication Number Publication Date
JPS59174161A JPS59174161A (en) 1984-10-02
JPH0318901B2 true JPH0318901B2 (en) 1991-03-13

Family

ID=12799385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048293A Granted JPS59174161A (en) 1983-03-23 1983-03-23 Body compatible plastic composite material

Country Status (1)

Country Link
JP (1) JPS59174161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514481A (en) * 2009-01-07 2012-06-28 サンブセッティ,アントニオ Orthotopic artificial bladder orthosis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228876A (en) * 1985-04-01 1986-10-13 呉羽化学工業株式会社 Subcataneous stay catheter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611062A (en) * 1979-07-10 1981-02-04 Yasuharu Imai Sheettshaped prosthetic material for medical treatment
JPS58118749A (en) * 1982-01-06 1983-07-14 工業技術院長 Joint slide member and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611062A (en) * 1979-07-10 1981-02-04 Yasuharu Imai Sheettshaped prosthetic material for medical treatment
JPS58118749A (en) * 1982-01-06 1983-07-14 工業技術院長 Joint slide member and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514481A (en) * 2009-01-07 2012-06-28 サンブセッティ,アントニオ Orthotopic artificial bladder orthosis

Also Published As

Publication number Publication date
JPS59174161A (en) 1984-10-02

Similar Documents

Publication Publication Date Title
Ratner Plasma deposition for biomedical applications: a brief review
JP4420482B2 (en) Composite material
EA010387B1 (en) Method for coating substrates with a carbon-based material
JP3739394B2 (en) Scar treatment sheet and method for producing the same
US4718907A (en) Vascular prosthesis having fluorinated coating with varying F/C ratio
EP0826083B1 (en) Barrier webs
KR100243630B1 (en) Laminated biocidal fabric and method and apparatus for making the same
US4927676A (en) Method for rapid adherence of endothelial cells onto a surface and surfaces prepared thereby
Duta et al. Wettability of nanostructured surfaces
US20060159718A1 (en) Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems
JPH04503635A (en) Irradiated expanded polyfluoroethylene composite and filtration device
ATE245949T1 (en) PRODUCTION PROCESS FOR OSTEOSYNTHESIS PLATES WITH NON-UNIOROUNT THICKNESS
GB1565987A (en) Polymeric sheets
Breme et al. Coating of polymers with titanium-based layers by a novel plasma-assisted chemical vapor deposition process
JPH0318901B2 (en)
KR940703936A (en) SUPERHARD FILM-COATED MEMBER AND METHOD OF MANUFACTURING THE SAME
KR100275423B1 (en) Elastic metallized film and process for making same
DE60319258D1 (en) Supporting prosthesis for tissue structures
EP0123426A2 (en) Biocompatible composite material for implants and artificial organs for the human body
US5399378A (en) Process of manufacturing carbon fibers with high chemical stability
DE69101074D1 (en) Niobium trisulfide catalyst for the hydrogen treatment of hydrocarbon inserts and the hydrogen treatment process carried out with them.
JPH0429394B2 (en)
Okpalugo et al. The human micro‐vascular endothelial cells in vitro interaction with atomic‐nitrogen‐doped diamond‐like carbon thin films
JPH01314165A (en) Release sheet
Guseva et al. New carbon based material layers for medical application