JPH03188940A - Catalyst for decomposition of ozone - Google Patents

Catalyst for decomposition of ozone

Info

Publication number
JPH03188940A
JPH03188940A JP1330058A JP33005889A JPH03188940A JP H03188940 A JPH03188940 A JP H03188940A JP 1330058 A JP1330058 A JP 1330058A JP 33005889 A JP33005889 A JP 33005889A JP H03188940 A JPH03188940 A JP H03188940A
Authority
JP
Japan
Prior art keywords
catalyst
ozone
tio2
decomposition
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1330058A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
永野 一彦
Masahiro Tanaka
正博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP1330058A priority Critical patent/JPH03188940A/en
Publication of JPH03188940A publication Critical patent/JPH03188940A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prevent the deterioration of the ozone decomposing ability of a catalyst under severe conditions by using the oxides of one or more kinds of metals selected among V, Mo, Zr, Sn, Nb and W and Ti oxide as the principal components of the catalyst. CONSTITUTION:A catalyst for decomposition of ozone contg. the oxides of one or more kinds of metals selected among V, Mo, Zr, Sn, Nb and W and Ti oxide as the principal components is produced by impregnation, kneading, coprecipitation, precipitation, mixing or other means. The catalyst may be a binary catalyst such as V2O5-TiO2 or MoO3-TiO2 or a ternary catalyst such as MnO2-V2O5-TiO2 or MnO2MoO3-TiO2. The pref. amt. of the oxides of one or more kinds of metals selected among V, Mo, Zr, Sn, Nb and W is about 5-75wt.% (expressed in terms of the metals) and that of the Ti oxide is about 25-95wt.% (expressed in terms of Ti).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、気体等の中に含まれる、オゾンを分解除去す
るための触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a catalyst for decomposing and removing ozone contained in a gas or the like.

〈従来の技術〉 従来、気体中に含まれる有害成分であるオゾンを除去す
る方法として、活性炭、ゼオライト等の多孔質物質を用
いる吸着法、MnO2などの触媒を用いる酸化分解法等
が提案されている。
<Prior art> Conventionally, as methods for removing ozone, a harmful component contained in gases, adsorption methods using porous materials such as activated carbon and zeolite, and oxidative decomposition methods using catalysts such as MnO2 have been proposed. There is.

〈発明が解決しようとする課題〉 1− しかしながら、上記従来のオゾンの除去方法はいずれも
、充分に満足のいく方法であるとは言い難い。
<Problems to be Solved by the Invention> 1- However, none of the above conventional ozone removal methods can be said to be fully satisfactory.

すなむち、吸着法には、吸着剤が吸着能力を発揮する期
間が有限であるため、再生等することを要し、除去装置
のメンテナンスに多大の労力及び費用が必要となるとい
う問題がある。
In other words, the adsorption method has the problem that the period during which the adsorbent exerts its adsorption capacity is limited, so it requires regeneration, etc., and maintenance of the removal equipment requires a great deal of labor and expense. .

また、酸化分解法には、上記のような問題は無いものの
、従来のオゾン分解用触媒では、充分にオゾンを酸化分
解できないという問題があった。
Further, although the oxidative decomposition method does not have the above-mentioned problems, there is a problem in that conventional ozone decomposition catalysts cannot sufficiently oxidize and decompose ozone.

本発明は、従来のオゾン除去方法が有していたこれらの
問題を解決するためになされたものであって、その目的
とするところは、先ず第1に従来方法に比べてオゾンの
除去能力に優れるオゾン除去方法の確立を可能にするオ
ゾン分解用触媒を提供することにある。
The present invention was devised to solve these problems that conventional ozone removal methods had, and first of all, the present invention aims to improve the ozone removal ability compared to the conventional methods. An object of the present invention is to provide an ozone decomposition catalyst that makes it possible to establish an excellent ozone removal method.

ところで、各種オゾン分解用触媒について、耐久性試験
を行ったところ、オゾン濃度が高く、且つ、面積速度が
大きい苛酷な条件で用いた場合には、性能が著しく劣化
するものがあることが分か2− った。
By the way, durability tests were conducted on various ozone decomposition catalysts, and it was found that the performance of some catalysts deteriorates significantly when used under harsh conditions with high ozone concentrations and large area velocities. 2- It happened.

本発明は、又かかる知見に基づきなされたものであって
、その目的とするところは、第2にかかる苛酷な条件で
用いても劣化することの無いオゾン分解用触媒を提供す
ることにある。
The present invention has been made based on this knowledge, and a second object thereof is to provide an ozone decomposition catalyst that does not deteriorate even when used under such severe conditions.

く問題を解決するための手段〉 上記目的を達成するための本発明に係るオゾン分解用触
媒は、バナジウム(V)、モリブデン(Mo)、ジルコ
ニア(Zr)、スズ(Sn)、ニオブ(Nb)及びタン
グステン(W)の中から選ばれる少なくとも1種以上の
金属の酸化物と、チタン(Tf)の酸化物とを主成分と
することを特徴としている。
Means for Solving the Problem> The ozone decomposition catalyst according to the present invention for achieving the above object contains vanadium (V), molybdenum (Mo), zirconia (Zr), tin (Sn), and niobium (Nb). and tungsten (W), and an oxide of titanium (Tf) as main components.

V、Mo5Zr、、Sn、Nb、Wの中から選ばれる少
なくとも1種以上の金属の酸化物と、Ti、金属酸化物
とを主成分とする触媒としては、V2O5−Ti20、
MnO3−TiO2、Zr02Ti02.5n02 T
iO2、Nb205−TiO2、WO3−TiO2等ノ
二元触媒を主成分とするものが例示される。又。これら
の二元触3− 化物混合法等の既知の製法を適宜選択して製造すること
ができる。触媒の製造においては、触媒に賦形性を与え
るために成形助剤を添加したり、機械強度等を向上させ
るために無機m維等の補強剤有機バインダー等を適宜添
加したりしてもよい。
Catalysts whose main components are an oxide of at least one metal selected from V, Mo5Zr, Sn, Nb, and W, Ti, and a metal oxide include V2O5-Ti20,
MnO3-TiO2, Zr02Ti02.5n02T
Examples include those whose main component is a binary catalyst such as iO2, Nb205-TiO2, or WO3-TiO2. or. It can be manufactured by appropriately selecting known manufacturing methods such as the dual catalyst mixing method. In the production of the catalyst, a shaping aid may be added to give the catalyst shapeability, and reinforcing agents such as inorganic fibers and organic binders may be added as appropriate to improve mechanical strength etc. .

オゾン分解の際の反応温度は、0〜40℃が好ましく、
10〜30℃がより好ましい。0℃未満の場合、反応速
度が遅くなるからであり、40°Cを越えた場合、新た
に昇温のための熱エネルギーを必要とし不経済であるか
らである。
The reaction temperature during ozonolysis is preferably 0 to 40°C,
10-30 degreeC is more preferable. This is because if the temperature is less than 0°C, the reaction rate will be slow, and if it exceeds 40°C, additional thermal energy will be required to raise the temperature, which is uneconomical.

また、触媒と反応ガスとの接触は、5〜700面積速度
(AV ; area velocity)で行うこと
が好ましい。これは、面積速度が5未満であると触媒が
多く必要になるからであり、面積速度が70を越えると
効率が低く所定の分解率が得られないからである。ここ
で、面積速度とは、空間速度(1/Hr)を単位容積当
たりのガス接触面積(ぜ/臂)で除去した値である。
Further, the contact between the catalyst and the reaction gas is preferably performed at an area velocity (AV) of 5 to 700. This is because if the areal velocity is less than 5, a large amount of catalyst is required, and if the areal velocity is more than 70, the efficiency is low and a predetermined decomposition rate cannot be obtained. Here, the areal velocity is a value obtained by subtracting the space velocity (1/Hr) by the gas contact area (body/arm) per unit volume.

ところで、オゾン分解において、入口オゾン濃度(pp
m )と面積速度との積(以下、rcAJと5− 媒に、さらにMnO2を加えて以下の様な三元触媒とし
てもよい。こうしたものとしては、Mn02−V2O5
−TiO2、Mn O、、−Mo O3T]02、Mn
O,−Zr02−TiO2、MnO2−3nO2−Ti
O2、MnO2−Nb、、06−TiO2、Mn02−
WO3−Ti02などを例示することが出来る。
By the way, in ozone decomposition, the inlet ozone concentration (pp
m) and the areal velocity (hereinafter referred to as rcAJ and 5-. MnO2 may be further added to the medium to form the following three-way catalyst. Examples of such a three-way catalyst include Mn02-V2O5
-TiO2, MnO, -MoO3T]02,Mn
O, -Zr02-TiO2, MnO2-3nO2-Ti
O2, MnO2-Nb, 06-TiO2, Mn02-
Examples include WO3-Ti02.

VSMo、Zr5Sn、Nb及びWの中から選ばれる少
なくとも1種以上の金属酸化物の好適な含有率(重量%
、以下同様)は、金属単体の含有率に換算して5〜75
%であり、またTI金金属酸化物の好適な含有率は、金
属単体の含有率に換算して25〜95%である。
Suitable content (wt%) of at least one metal oxide selected from VSMo, Zr5Sn, Nb and W
, hereinafter the same) is 5 to 75 in terms of the content of elemental metal.
%, and the preferred content of the TI gold metal oxide is 25 to 95% in terms of the content of elemental metal.

本発明に係る触媒の形状は特に限定されず、例えばハニ
カム状、ベレット状、円柱状、板状、パイプ状等、種々
の形状のものを用いることができる。
The shape of the catalyst according to the present invention is not particularly limited, and various shapes such as a honeycomb shape, a pellet shape, a columnar shape, a plate shape, a pipe shape, etc. can be used.

触媒中の活性成分含有率は、60%以上が好ましく、7
5%以上がより好ましい。
The active component content in the catalyst is preferably 60% or more, and 7
More preferably 5% or more.

触媒は、含浸法、混練法、共沈法、沈殿法、酸− いう)が小さい穏やかな反応条件でオゾン分解がなされ
る場合は、触媒の劣化も通常殆ど生じないが、CAが3
0以上である苛酷な条件の場合は、性能劣化が激しく起
こる触媒が多い。
Catalysts can be used by impregnation, kneading, co-precipitation, precipitation, etc. If ozone decomposition is carried out under mild reaction conditions with a small amount of acid (acid), deterioration of the catalyst will usually hardly occur;
Under severe conditions of 0 or more, many catalysts experience severe performance deterioration.

上述したような、本発明に係る触媒は、CAが30以上
である苛酷な条件下においても性能の劣化を示さない触
媒である。
The catalyst according to the present invention as described above shows no deterioration in performance even under severe conditions where CA is 30 or more.

〈実施例〉 以下、本発明を実施例に基づいて詳細に説明する。但し
本発明は、下記の実施例に限定されるものではない。
<Examples> Hereinafter, the present invention will be described in detail based on Examples. However, the present invention is not limited to the following examples.

k触媒Q訓製 実施例1 比表面積85ぜ/gアナターゼ型Ti02200gに、
蓚酸バナジル水溶液(150g/fl asV206)
を140m!、さらに水を適当量加え充分に混練し、ウ
ォーターバス上で混練しなからDry−upし、乾燥品
を350℃で2時間焼成した。こうして得られた焼成品
を粉砕し、水とガラスピーズを加えて30分間撹拌混合
しスラリーと=6− した。このスラリーを空隙率81%、ピッチ4゜0mm
のセラミックファイバー製のコルゲート状ハニカムに含
浸させて、V、、05−Tie2(重量比10:90)
を担持率95%で担持した二元触媒を得た。
k Catalyst Q training Example 1 Specific surface area 85/g anatase type Ti02200g,
Vanadyl oxalate aqueous solution (150g/fl asV206)
140m! Then, an appropriate amount of water was added and thoroughly kneaded, kneaded on a water bath, and then dried, and the dried product was calcined at 350° C. for 2 hours. The baked product thus obtained was pulverized, water and glass peas were added, and the mixture was stirred and mixed for 30 minutes to form a slurry. This slurry has a porosity of 81% and a pitch of 4゜0mm.
V, 05-Tie2 (weight ratio 10:90)
A two-way catalyst was obtained in which the following was supported at a loading rate of 95%.

実施例2 実施例1において、蓚酸バナジル水溶液にかえて、モル
ブデン酸アンモン水溶液(67g/uasMoOa)3
28iUを加えること以外は実施例1と全く同様にして
、Mn05−Tie2(重量比10:90)を担持率1
01%で担持した二元触媒を得た。
Example 2 In Example 1, instead of the vanadyl oxalate aqueous solution, ammonium mobdate aqueous solution (67 g/uasMoOa) 3
In the same manner as in Example 1 except for adding 28iU, Mn05-Tie2 (weight ratio 10:90) was added at a loading rate of 1.
A binary catalyst supported at 0.01% was obtained.

実施例3 実施例1において、蓚酸バナジル水溶液にかえて、オキ
ン塩ジルコニル水溶液(35%asZr02)63gを
加えること以外は実施例1と全く同様にして、MnO,
−Tie2(重量比1o:90)を担持率100%で担
持した二元触媒を得た。
Example 3 MnO,
A two-way catalyst was obtained in which -Tie2 (weight ratio 10:90) was supported at a loading rate of 100%.

実施例4 7− 比表面積IL8T11′/gのMnO2,30gと、四
塩化チタンとシリカゾルとの混合物(Ti02:5i0
2が1 : 1)70gとを撹拌混合しつつ、アンモニ
アガスを吹き込んで中和反応を行い、スラリー状の沈澱
物を生成させた。得られた沈澱物を充分に水洗した後、
温度500℃3時間焼成、粉砕して比表面積162wl
1/gのMnO2−TiO2−9i02パウダーを得た
。以後、実施例1と同様にして、Sin2−MnO2−
Ti02 (重量比35:30:30)を担持率99%
で担持した三元触媒を得た。
Example 4 7- A mixture of 30 g of MnO2 with specific surface area IL8T11'/g, titanium tetrachloride and silica sol (Ti02:5i0
While stirring and mixing 70 g of 1:2 and 1), ammonia gas was blown in to perform a neutralization reaction, thereby producing a slurry-like precipitate. After washing the obtained precipitate thoroughly with water,
Sintered at a temperature of 500°C for 3 hours and pulverized to a specific surface area of 162wl.
1/g MnO2-TiO2-9i02 powder was obtained. Thereafter, in the same manner as in Example 1, Sin2-MnO2-
99% support rate of Ti02 (weight ratio 35:30:30)
A supported three-way catalyst was obtained.

旦−触媒活性試験 上記実施例1〜6、及び参考例で得た各触媒について、
第1図にそのフローシートを示すような試験装置を用い
て、下記反応条件で触媒活性試験を行った。図において
、(1)はオゾン発生器であり、該オゾンを発生させ、
このオゾン含有エアーを触媒層(2)に導く。オゾン分
解率(%)は、オゾン分析計(3)にて測定される触媒
N(2)の入口及び出口におけるオゾン濃度値より次式
を9一 実施例1において、蓚酸バナジル水溶液にかえて、5n
S04水溶液(100g/Q、as SnO2) 22
0mlを加えること以外は実施例1と全く同様にして、
5nO2−Tie、、(重量比10:90)を担持率9
6%で担持した二元触媒を得た。
- Catalyst activity test Regarding each catalyst obtained in Examples 1 to 6 and Reference Example above,
A catalyst activity test was conducted under the following reaction conditions using a test apparatus whose flow sheet is shown in FIG. In the figure, (1) is an ozone generator, which generates the ozone,
This ozone-containing air is guided to the catalyst layer (2). The ozone decomposition rate (%) is determined by the following formula from the ozone concentration values at the inlet and outlet of the catalyst N (2) measured by the ozone analyzer (3). 5n
S04 aqueous solution (100g/Q, as SnO2) 22
In exactly the same manner as in Example 1 except for adding 0 ml,
5nO2-Tie, (weight ratio 10:90) at a loading rate of 9
A binary catalyst supported at 6% was obtained.

実施例5 実施例1において、蓚酸バナジル水溶液にかえて、水酸
化ニオブの蓚酸水溶液(30g/見asN b 205
) 733mRを加えること以外は実施例1と全く同様
にして、Nb2O6TlO2(重量比10:90)を担
持率98%で担持した二元触媒を得た。
Example 5 In Example 1, an aqueous solution of niobium hydroxide in oxalic acid (30 g/asN b 205
) A two-way catalyst in which Nb2O6TlO2 (weight ratio 10:90) was supported at a loading rate of 98% was obtained in exactly the same manner as in Example 1 except that 733 mR was added.

実施例6 実施例1において、蓚酸バナジル水溶液にかえて、メタ
タングステン酸アンモニウム水溶液(50%asWOa
)44gを加えること以外は実施例1と全く同様にして
、WO3−Tie2(重量比10:90)を担持率10
2%で担持した二元触媒を得た。
Example 6 In Example 1, ammonium metatungstate aqueous solution (50% asWOa) was used instead of vanadyl oxalate aqueous solution.
) WO3-Tie2 (weight ratio 10:90) was added at a loading rate of 10 in the same manner as in Example 1 except that 44 g of
A binary catalyst supported at 2% was obtained.

参考例 8− 用いて算出される。Reference example 8- Calculated using

オゾン分解率(%)= (反応条件 ■) 面積速度:25tn’/ll・Hr 入ロオゾン濃度:0.2ppm 反応温度:20℃ (反応条件 ■) 反応温度20℃において、CAが10.30.50又は
70となるように入口オゾン濃度及び面積速度を種々変
化させて、初期、1時間経過後、2時間経過後の各オゾ
ン分解率を測定し、各触媒の劣化を調べた。
Ozone decomposition rate (%) = (Reaction conditions ■) Area rate: 25 tn'/ll・Hr Input ozone concentration: 0.2 ppm Reaction temperature: 20°C (Reaction conditions ■) At a reaction temperature of 20°C, CA was 10.30. The inlet ozone concentration and area velocity were variously changed so as to be 50 or 70, and the ozone decomposition rates were measured at the initial stage, after 1 hour, and after 2 hours, and the deterioration of each catalyst was investigated.

上記試験結果を表1〜表2に示す。The above test results are shown in Tables 1 and 2.

10− 反応条件I 反応条件■ 13− 表2 反応条件■ 木(ppm ・rt?/i ・Hr) 上記表より明らかなように、実施例1〜6て得たいずれ
の触媒も、参考例で得た触媒に比べて高いオゾン分解率
(%)及び苛酷条件下での耐久性を有している。
10- Reaction conditions I Reaction conditions ■ 13- Table 2 Reaction conditions ■ Wood (ppm ・rt?/i ・Hr) As is clear from the above table, all the catalysts obtained in Examples 1 to 6 were It has a higher ozone decomposition rate (%) and durability under severe conditions than the obtained catalyst.

以上の試験結果より、本発明方法による触媒は、高いオ
ゾン分解性能を有するとともに苛酷条件下での耐久性を
有するものであることがわかる。
The above test results show that the catalyst produced by the method of the present invention has high ozone decomposition performance and durability under severe conditions.

〈発明の効果〉 本発明に係るオゾン分解触媒は、オゾンを効率良く除去
することができる優れた効果を有する。
<Effects of the Invention> The ozone decomposition catalyst according to the present invention has an excellent effect of efficiently removing ozone.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は触媒活性試験のフローシートである。 (1)  オゾン発生器 (2)  触媒層 (3)  オゾン分析計 14− FIG. 1 is a flow sheet of the catalyst activity test. (1) Ozone generator (2) Catalyst layer (3) Ozone analyzer 14-

Claims (1)

【特許請求の範囲】[Claims]  バナジウム(V)、モリブデン(Mo)、ジルコニア
(Zr)、スズ(Sn)、ニオブ(Nb)及びタングス
テン(W)の中から選ばれる少なくとも1種以上の金属
の酸化物と、チタン(Ti)の酸化物とを主成分とする
ことを特徴とするオゾン分解用触媒。
An oxide of at least one metal selected from vanadium (V), molybdenum (Mo), zirconia (Zr), tin (Sn), niobium (Nb), and tungsten (W), and titanium (Ti). An ozone decomposition catalyst characterized by containing an oxide as a main component.
JP1330058A 1989-12-19 1989-12-19 Catalyst for decomposition of ozone Pending JPH03188940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330058A JPH03188940A (en) 1989-12-19 1989-12-19 Catalyst for decomposition of ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330058A JPH03188940A (en) 1989-12-19 1989-12-19 Catalyst for decomposition of ozone

Publications (1)

Publication Number Publication Date
JPH03188940A true JPH03188940A (en) 1991-08-16

Family

ID=18228310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330058A Pending JPH03188940A (en) 1989-12-19 1989-12-19 Catalyst for decomposition of ozone

Country Status (1)

Country Link
JP (1) JPH03188940A (en)

Similar Documents

Publication Publication Date Title
CN105214679B (en) A kind of water resistant sulfur resistive type denitrating flue gas powder catalyst, preparation method and its usage
CN105056923B (en) A kind of water resistant sulfur resistive type denitrating catalyst, preparation method and its usage
JP3480596B2 (en) Dry desulfurization denitrification process
JP2013136056A (en) High activity titania supported metal oxide denox catalysts
CN109603807B (en) Modified activated carbon Ce-Nb/TiO2@ AC low-temperature efficient desulfurization and denitrification catalyst and preparation method thereof
JPH02187148A (en) Catalyst for decomposing ozone
CN112774687A (en) SCR catalyst for synergistically removing NO and VOCs and preparation method thereof
JPS6211892B2 (en)
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JPH0256250A (en) Catalyst for removing nitrogen oxide in exhaust gas
JPH03188940A (en) Catalyst for decomposition of ozone
JPH0290923A (en) Deodorizing method
JP3984122B2 (en) NOx removal catalyst, NOx removal method and method
JPH02149343A (en) Ozone decomposition catalyst
JPH03213145A (en) Ozone decomposing catalyst
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH03181332A (en) Catalyst for decomposition of ozone
JPH0420663B2 (en)
JPH02211248A (en) Ozone decomposing catalyst
JPH08196871A (en) Decomposition of ammonia
JP2825343B2 (en) Method for producing catalyst for removing nitrogen oxides
JPH03278836A (en) Catalyst for ozone decomposition
JP6032974B2 (en) Method for producing exhaust gas purification catalyst
JPH07222924A (en) Regeneration of denitration catalyst
JPH04108541A (en) Ozone decomposing catalyst