JPH03188927A - Production of hollow-fiber membrane module - Google Patents

Production of hollow-fiber membrane module

Info

Publication number
JPH03188927A
JPH03188927A JP33065389A JP33065389A JPH03188927A JP H03188927 A JPH03188927 A JP H03188927A JP 33065389 A JP33065389 A JP 33065389A JP 33065389 A JP33065389 A JP 33065389A JP H03188927 A JPH03188927 A JP H03188927A
Authority
JP
Japan
Prior art keywords
curing
curing agent
acid anhydride
epoxy resin
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33065389A
Other languages
Japanese (ja)
Inventor
Kazuhiro Shimoda
一弘 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP33065389A priority Critical patent/JPH03188927A/en
Publication of JPH03188927A publication Critical patent/JPH03188927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the module having heat resistance and low elution property and effective in the production of semiconductors and medicine by using epoxy resin as the main agent and an acid anhydride compd. as the curing agent in the adhesive sealing medium for sealing the ends of plural hollow-fiber membranes. CONSTITUTION:Epoxy resin is used as the main agent and an acid anhydride compd. as the curing agent in the adhesive sealing medium for sealing the ends of plural hollow-fiber membranes to obtain the desired hollow-fiber membrane module. An epoxy resin having at least three glycidyl groups in the fundamental unit is preferably used, and a phenolic novolac-type epoxy resin, triphenylglycidyl ether methane, etc., are exemplified. When an acid anhydride compd. is used as the curing agent an adhesive with low elution property is obtained. A liq. acid anhydride compd. is preferably used, and methyltetrahydrophthalic anhydride, etc., are exemplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は中空糸膜の端部封止に用いる接着封止剤および
それを用いた中空糸膜端部の接着封止方法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an adhesive sealant used for sealing the ends of hollow fiber membranes and a method for adhesively sealing the ends of hollow fiber membranes using the same. .

〔従来の技術〕[Conventional technology]

中空糸膜モジュールはその単位体積当りの膜面積が大き
いという特徴を有するため多量の膜処理を必要とする分
野、例えば、半導体製造工程におけるウェハー洗浄用超
純水の製造プロセス、医薬品製造工業における注射用蒸
留水(パイロジエンフリー水)の製造プロセスとしての
用途が期待されている。
Hollow fiber membrane modules have a large membrane area per unit volume, so they are used in fields that require a large amount of membrane processing, such as the manufacturing process of ultrapure water for wafer cleaning in semiconductor manufacturing processes, and injections in the pharmaceutical manufacturing industry. It is expected to be used as a production process for distilled water (pyrogen-free water).

中空糸膜モジユール製造に於ては中空糸膜相互およびハ
ウジングの接着封止が不可欠であり、この接着封止剤と
しては、ポリウレタン系あるいはエポキシ系樹脂が用い
られている。とりわけ、耐熱性が要求される用途ではエ
ポキシ樹脂がその耐熱性および寸法安定性から広く使わ
れている。
In the production of hollow fiber membrane modules, it is essential to adhesively seal the hollow fiber membranes and the housing, and polyurethane-based or epoxy-based resins are used as the adhesive sealant. In particular, epoxy resins are widely used in applications requiring heat resistance due to their heat resistance and dimensional stability.

これまで、接着封止剤の検討は、接着封止剤の硬化時の
発熱抑制、硬化後の耐衝撃性付与など硬化物の剥離防止
や機械的物性の改善に関するもの(特開昭61−141
904、特開昭61−157307、特開昭6l−15
7308)だけであった。
Until now, studies on adhesive sealants have focused on suppressing heat generation during curing of adhesive sealants, imparting impact resistance after curing, preventing peeling of cured products, and improving mechanical properties (Japanese Patent Laid-Open No. 61-141
904, JP 61-157307, JP 61-15
7308).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体製造工業におけるウェハー洗浄用超純水、医薬品
製造工業における注射用蒸留水では微生物管理が不可欠
である。すなわち、洗浄用超純水中に微生物が存在する
とウェハー上の異物となって半導体製品の歩留に低下の
原因となる。一方、注射用蒸留水中に微生物が存在する
と微生物の増殖に伴ってパイロジエンが発生し、静脈注
射した時、投与された患者に重大影響を与える。このよ
うに、半導体製造工業、医薬品製造工業では微生物管理
が不可欠である。この微生物管理のためには80〜95
℃の熱水をシステムで常時使用することが必要である。
Microbial control is essential for ultrapure water for wafer cleaning in the semiconductor manufacturing industry and distilled water for injection in the pharmaceutical manufacturing industry. That is, if microorganisms are present in the ultrapure water for cleaning, they become foreign substances on the wafer and cause a decrease in the yield of semiconductor products. On the other hand, if microorganisms are present in distilled water for injection, pyrogen is generated as the microorganisms multiply, and when administered intravenously, it has a serious effect on patients. As described above, microbial control is essential in the semiconductor manufacturing industry and the pharmaceutical manufacturing industry. For this microbial control, 80 to 95
℃ hot water is required to be used at all times in the system.

しかしながら、超純水、注射用蒸留水では微生物以外に
膜からの溶出物もきびしく制限されており、その水準は
益々高度になっている。このきびしい水質要求を達成す
るためには、耐熱性であると同時に耐溶出性のある中空
糸膜モジュールが必要となる。しかしこれを満足する中
空糸膜モジュールが存在しないという問題があった。
However, in ultrapure water and distilled water for injection, in addition to microorganisms, substances eluted from membranes are strictly limited, and the level thereof is becoming increasingly high. In order to meet these strict water quality requirements, a hollow fiber membrane module that is both heat resistant and elution resistant is required. However, there is a problem in that there is no hollow fiber membrane module that satisfies this requirement.

本発明は、耐熱性かつ低溶出性を満足する中空糸膜モジ
ュールの製造方法、特に、その接着封止剤および接着封
止方法に関するものである。
The present invention relates to a method for manufacturing a hollow fiber membrane module that satisfies heat resistance and low elution properties, and particularly to an adhesive sealant and an adhesive sealing method thereof.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明の中空糸膜の端部封止に用いる接着封
止剤およびそれを用いた中空糸膜端部の接着封止方法は
、 (1)複数の中空糸膜端部の封止に用いる接着封止剤に
関して、主剤としてエポキシ樹脂を、硬化剤として酸無
水物化合物を用いることを特徴とする中空糸膜モジュー
ルの製造方法。
That is, the adhesive sealant used for sealing the ends of hollow fiber membranes of the present invention and the method for adhesively sealing the ends of hollow fiber membranes using the same are as follows: (1) For sealing the ends of a plurality of hollow fiber membranes. A method for manufacturing a hollow fiber membrane module, characterized in that the adhesive sealant used is an epoxy resin as a main ingredient and an acid anhydride compound as a curing agent.

である。It is.

エポキシ樹脂は主剤である多官能性エポキシ化合物と種
々硬化剤の組合せから成り立っている。
Epoxy resins consist of a combination of a polyfunctional epoxy compound as a main ingredient and various curing agents.

硬化剤は反応機構から大きく重付加型と触媒型に分類さ
れ、種類からすると前者が圧倒的に多い。
Curing agents are broadly classified into polyaddition type and catalytic type based on the reaction mechanism, and the former type is by far the most common.

前者は化学的性質から、塩基性、酸性および中性型に分
けられる。塩基性型としては第一、第二アミンおよびポ
リアミド(ポリアミン)、酸性型としてはポリカルボン
酸(特にその無水物)とフェノール類(特にフェノール
ノボラック)、さらに中性型としてはポリメルカプタン
類がある。また、硬化剤の種類によって適性硬化温度域
はそれぞれ異なる。エポキシ樹脂の優れた接着性、耐熱
性および耐溶出性は硬化反応によって形成される3次元
網状構造、主として橋かげ密度(または橋かけ点間分子
量)と連鎖の化学構造に依存する。エポキシ樹脂の硬化
反応機構は、硬化剤がエポキシ基との開環反応で付加し
て水酸基を生じる重合開始反応と、開始反応によって生
じた水酸基に硬化剤が重付加する連鎖延長反応、連鎖延
長反応によって生じた活性水素を有する官能基とエポキ
シ基が反応する橋かけ反応とからなる。したがって、耐
熱性かつ低溶出性の中空糸膜モジュールに適用する接着
封止剤を検討するためには硬化反応における連鎖延長反
応と橋かけ反応をコントロールできるエポキシ樹脂硬化
剤と硬化条件を選定する必要がある。すなわち、硬化反
応の初期段階において連鎖延長反応が橋かけ反応に比べ
てきわめて優勢な反応系では橋かけ点間分子量が大きく
なる(橋かけ密度の低下)と同時に分子鎖の運動性が低
下して橋かけ反応がおこりにくくなり硬化度も低下する
。これは接着封止剤の耐熱性低下と溶出物増加につなが
る。この問題を解決するためには反応の初期段階におい
て硬化反応速度の低い硬化剤を用いればよく、特に酸無
水物型硬化剤を用いると低溶出性の接着封止剤が得られ
ることを見いだした。また、エポキシ樹脂としてはグリ
シジル基が基本単位中に少なくとも3個以」二あるもの
が望ましいことを見いだした。
The former can be divided into basic, acidic, and neutral types based on their chemical properties. Basic types include primary and secondary amines and polyamides, acidic types include polycarboxylic acids (especially their anhydrides) and phenols (especially phenol novolacs), and neutral types include polymercaptans. . Further, the appropriate curing temperature range differs depending on the type of curing agent. The excellent adhesion, heat resistance, and elution resistance of epoxy resins depend on the three-dimensional network structure formed by the curing reaction, mainly the crosslink density (or molecular weight between crosslinking points) and the chemical structure of the chains. The curing reaction mechanism of epoxy resins consists of a polymerization initiation reaction in which a curing agent is added through a ring-opening reaction with an epoxy group to produce hydroxyl groups, and a chain extension reaction in which the curing agent is polyadded to the hydroxyl groups generated by the initiation reaction. It consists of a cross-linking reaction in which a functional group containing active hydrogen generated by epoxy reacts with an epoxy group. Therefore, in order to consider adhesive sealants to be applied to heat-resistant and low-leaching hollow fiber membrane modules, it is necessary to select an epoxy resin curing agent and curing conditions that can control the chain extension reaction and cross-linking reaction in the curing reaction. There is. In other words, in a reaction system in which the chain extension reaction is extremely dominant over the crosslinking reaction at the initial stage of the curing reaction, the molecular weight between the crosslinking points increases (the crosslinking density decreases) and at the same time the mobility of the molecular chains decreases. Cross-linking reactions are less likely to occur and the degree of curing is also reduced. This leads to a decrease in the heat resistance of the adhesive sealant and an increase in eluable substances. In order to solve this problem, it is sufficient to use a curing agent with a low curing reaction rate in the initial stage of the reaction, and we have found that using an acid anhydride type curing agent in particular can yield an adhesive sealant with low elution properties. . It has also been found that it is desirable for the epoxy resin to have at least three or more glycidyl groups in its basic unit.

本発明に用いる硬化剤は酸無水物型であれば特に限定す
るものではないが、作業条件で液体のものが望ましい。
The curing agent used in the present invention is not particularly limited as long as it is an acid anhydride type, but it is preferably a curing agent that is liquid under working conditions.

例えば、メチルテトラヒドロ無水フタル酸(MeTHP
A>、メチルへキザヒドロ無水フタル酸(MeHHPA
)、無水メチルナジックM (MNA> 、ドデシル無
水コハク酸(DDSA)などが挙げられる。同様に、エ
ポキシ樹脂としては特に制限するものではないが、3官
能以上の多官能のノボラック型、芳香族グリシジルエー
テル型、芳香族グリシジルアミン型のエポキシ樹脂が望
ましい。例えば、フェノールノボラック型エポキシ樹脂
(EPN) 、タレゾールノボランク型エポキシ樹脂(
ECN)、I−リフェニルグリシジルエーテルメタン(
TPOEM)、テトラグリシジルジアミノジフェニルメ
タン(TGDDM)などが挙げられる。
For example, methyltetrahydrophthalic anhydride (MeTHP)
A>, methylhexahydrophthalic anhydride (MeHHPA)
), methyl nazic anhydride (MNA>), dodecyl succinic anhydride (DDSA), etc. Similarly, epoxy resins are not particularly limited, but include trifunctional or higher polyfunctional novolak type, aromatic glycidyl Ether type and aromatic glycidylamine type epoxy resins are desirable. For example, phenol novolac type epoxy resin (EPN), Talesol novolak type epoxy resin (
ECN), I-rephenyl glycidyl ether methane (
TPOEM), tetraglycidyldiaminodiphenylmethane (TGDDM), and the like.

〔実施例〕〔Example〕

(実施例1) 予め60℃に加温したフェノール・ノボラック型多官能
タイプエポキシ〔エピコート152;油化シェルエポキ
シ類〕、と高温硬化型酸無水物型硬化剤〔エボキュアH
Y307;油化シェルエポキシ製〕、硬化促進剤(EM
124i油化シェルエポキシ〕とを、それぞれ100重
量部、110重量部、1重量部混合脱泡した後、60℃
で1時間反応させて末端を封止した中空糸膜束とモジュ
ールハウジングを接着封止した。さらに、80℃で3時
間、150℃で5時間後硬化を行った。
(Example 1) A phenol-novolac type multifunctional epoxy (Epicoat 152; oil-based shell epoxy) heated to 60°C in advance and a high temperature curing acid anhydride type curing agent [Evocure H
Y307; made by Yuka Shell Epoxy], curing accelerator (EM
124i Oil Shell Epoxy] were mixed and defoamed at 100 parts by weight, 110 parts by weight, and 1 part by weight, respectively, and then heated at 60°C.
The hollow fiber membrane bundle, whose ends had been sealed by reacting for 1 hour, and the module housing were adhesively sealed. Further, post-curing was performed at 80°C for 3 hours and at 150°C for 5 hours.

(比較例1) 予め60℃に加温したフェノール・ノボラック型多官能
タイプエポキシ〔エピコート152;油化シェルエポキ
シ類〕、と常温硬化型変成脂環族アミン型硬化剤〔エビ
キュア113;油化シェルエポキシ類〕、常温硬化型変
成脂肪族アミン型硬化剤〔エビキュアU〕とを、それぞ
れ100重量部、11.5重量部、17.8重量部混合
脱泡した後、80℃で1時間反応させて末端を封止した
中空糸膜束とモジュールハウジングを接着封止した。さ
らに、80℃で3時間、150°Cで5時間後硬化を行
った。
(Comparative Example 1) A phenol/novolac type multifunctional epoxy (Epicote 152; Yuka Shell epoxies) heated to 60°C in advance and a room temperature-curing modified alicyclic amine type curing agent [Ebicure 113; Yuka Shell 100 parts by weight, 11.5 parts by weight, and 17.8 parts by weight of a room-temperature-curing modified aliphatic amine curing agent [Epoxies] and 17.8 parts by weight, respectively, were mixed and defoamed, and then reacted at 80°C for 1 hour. The hollow fiber membrane bundle, whose ends were sealed, and the module housing were adhesively sealed. Further, post-curing was performed at 80°C for 3 hours and at 150°C for 5 hours.

(比較例2) フェノール・ノボラック型多官能タイプエポキシ〔エピ
コート152;油化シェルエポキシ類〕、と常温硬化型
変成脂環族アミン型硬化剤〔エビキュア113;油化シ
ェルエポキシ類〕とを、それぞれ100重量部、32重
量部混合脱泡した後、室温で1時間反応させて末端を封
止した中空糸膜束とモジュールハウジングを接着封止し
た。さらに、80℃で3時間、150℃で5時間後硬化
を行った。
(Comparative Example 2) A phenol-novolak type multifunctional epoxy [Epicoat 152; oil-based shell epoxy] and a room-temperature curing modified alicyclic amine type curing agent [Ebicure 113; oil-based shell epoxy] were used, respectively. After mixing and degassing 100 parts by weight and 32 parts by weight, the hollow fiber membrane bundle, whose ends had been sealed by reacting at room temperature for 1 hour, and the module housing were adhesively sealed. Further, post-curing was performed at 80°C for 3 hours and at 150°C for 5 hours.

(比較例3) 予め60℃に加温したフェノール・ノボラック型多官能
タイプエポキシ〔エピコート152;油化シェルエポキ
シ類〕、と常温硬化型変成複素環式アミン型硬化剤〔エ
ボメー)BOO2W;油化シェルエポキシ類〕とを、そ
れぞれ100重量部、50重量部混合脱泡した後、室温
で1時間反応させて末端を封止した中空糸膜束とモジュ
ールハウジングを接着封止した。さらに、40°Cで2
時間、80゛Cで3時間後硬化を行った。
(Comparative Example 3) A phenol/novolac type multifunctional epoxy preheated to 60°C [Epikoat 152; Yuka shell epoxies] and a room temperature curing modified heterocyclic amine type curing agent [Ebome] BOO2W; Yuka After degassing 100 parts by weight and 50 parts by weight of shell epoxies, respectively, the hollow fiber membrane bundle was reacted at room temperature for 1 hour to seal the ends of the hollow fiber membrane bundle and the module housing. Furthermore, at 40°C
Post-curing was carried out at 80°C for 3 hours.

(比較例4) 予め60°Cに加温したビスフェノール型2官能タイプ
エポキシ〔エピコート828;油化シェルエポキシ類〕
、と高温硬化型酸無水物型硬化剤〔エピキュアHY30
7i油化シェルエポキシ製〕、硬化促進剤(EM124
;油化シェルエポキシ]とを、それぞれ100重量部、
110重量部、1重量部混合脱泡した後、60゛Cで1
時間反応させて末端を封止した中空糸膜束とモジュール
ハウジングを接着封止した。さらに、80°Cで3時間
、150°Cで5時間後硬化を行った。
(Comparative Example 4) Bisphenol-type bifunctional epoxy preheated to 60°C [Epikoat 828; Oilified shell epoxy]
, and high temperature curing acid anhydride curing agent [Epicure HY30
7i Yuka Shell Epoxy], hardening accelerator (EM124)
;Oilified shell epoxy], 100 parts by weight each,
After mixing 110 parts by weight and 1 part by weight and defoaming, it was heated to 1 at 60°C.
The hollow fiber membrane bundle whose ends were sealed by a time reaction was adhesively sealed to the module housing. Further, post-curing was performed at 80°C for 3 hours and at 150°C for 5 hours.

硬化終了後の接着封止剤を輸液用プラスチック試験(第
11改正日本薬局方、 B−397)に基づく溶出物試
験:過マンガン酸カリウム還元性物質および紫外吸収ス
ペクトルの2項目を実施した。
After curing, the adhesive sealant was subjected to two eluate tests based on the infusion plastic test (11th edition Japanese Pharmacopoeia, B-397): potassium permanganate reducing substance and ultraviolet absorption spectrum.

第1表には過マンガン酸カリウム還元性物質測定結果を
示す。第2表には紫外吸収スペクトル測定結果を示す。
Table 1 shows the measurement results of potassium permanganate reducing substances. Table 2 shows the ultraviolet absorption spectrum measurement results.

く抽出条件〉 表裏の面積の合計が600.fflになるように切断片
を集め、更にこれらを長さ約5cm、幅0. 5c+n
の大きさに裁断し、水で洗った後、室温で乾燥する。こ
れを内容約300艷の硬質ガラス製容器に入れ、水20
0−を正確に加え、栓で密封した後、高圧蒸気滅菌器を
用いて1216で1時間加熱し、室温になるまで放置し
、この液を試験液とする。
Extraction conditions> The total area of the front and back is 600. Collect the cut pieces so that they are approximately 5cm long and 0.5cm wide. 5c+n
Cut into pieces, wash with water, and dry at room temperature. Put this in a hard glass container with a content of about 300 g, and add 20 g of water.
After adding 0- accurately and sealing with a stopper, heat at 1216 for 1 hour using a high-pressure steam sterilizer, and leave to stand until it reaches room temperature, and use this solution as the test solution.

〈判定基準〉 試験液20−と同量の空試験液との0.0IN0 過マンガン酸カリウム液の消費量の差が1.0−以下で
ある時合格とずろ。
<Judgment Criteria> If the difference in consumption of 0.0IN0 potassium permanganate solution between the test liquid 20- and the same amount of blank test liquid is 1.0- or less, the test is passed.

第2表 紫外吸収スペクトル測定結果 〈判定基準〉 試験液を空試験液を対照として吸光度測定法により試験
を行うとき、波長220nm以上241nm未満におけ
る吸光度は0.08以下、波長241nm以上350n
m以下における吸光度は0゜05以下である時合格とす
る。
Table 2 Ultraviolet absorption spectrum measurement results <Judgment criteria> When testing the test solution using the absorbance measurement method with a blank test solution as a control, the absorbance at wavelengths of 220 nm or more and less than 241 nm is 0.08 or less, and for wavelengths of 241 nm or more and less than 350 nm.
If the absorbance at m or less is 0°05 or less, the test is passed.

また、接着封止剤の硬化速度と硬化度を誘電体測定によ
り比較した。結果を第1〜3図に示す。
In addition, the curing speed and degree of curing of the adhesive sealants were compared by dielectric measurement. The results are shown in Figures 1-3.

この場合、硬化速度は単位時間当りのイオン伝導率の減
少度、硬化度は6時間後のイオン伝導率の大きさとそれ
ぞれ定義する。酸無水物型硬化剤は脂肪族アミン型硬化
剤や脂環族アミン型硬化剤にくらべ初期硬化速度が小さ
く、硬化度も大きい。
In this case, the curing rate is defined as the degree of decrease in ionic conductivity per unit time, and the degree of curing is defined as the magnitude of ionic conductivity after 6 hours. An acid anhydride type curing agent has a lower initial curing speed and a higher degree of curing than an aliphatic amine type curing agent or an alicyclic amine type curing agent.

なお、測定はポリマー硬化自動測定システム(マイクロ
メットインストルーメント社製 ニーメトリックシステ
ム■)を用いて行った。
The measurement was performed using an automatic polymer curing measurement system (Niemetric System ■ manufactured by Micromet Instruments).

〔発明の効果〕〔Effect of the invention〕

本発明に従うと、耐熱性かつ低溶出性の中空糸膜モジユ
ール用接着封止剤が得られる。この接着封止剤を用いた
モジュールは熱水による微生物管理が必要な製造プロセ
ス、例えば、半導体製造工程におけるウェハー洗浄用超
純水の製造プロセスや医薬品製造工程における注射用蒸
留水の製造プロセスに適用可能となる。
According to the present invention, a heat-resistant and low-elution adhesive sealant for hollow fiber membrane modules can be obtained. Modules using this adhesive sealant can be applied to manufacturing processes that require microbial control using hot water, such as the manufacturing process of ultrapure water for wafer cleaning in semiconductor manufacturing processes and the manufacturing process of distilled water for injection in pharmaceutical manufacturing processes. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1、第2図は比較例1、第3図は比較例
2のそれぞれ誘電体測定データである。実線はイオン伝
導率の時間変化、点線は温度の時間変化である。また、
イオン伝導率は対数表示した。
FIG. 1 shows the dielectric measurement data of Example 1, FIG. 2 shows the dielectric measurement data of Comparative Example 1, and FIG. 3 shows the dielectric measurement data of Comparative Example 2. The solid line shows the change in ionic conductivity over time, and the dotted line shows the change in temperature over time. Also,
Ionic conductivity was expressed logarithmically.

Claims (1)

【特許請求の範囲】[Claims] (1)複数の中空糸膜端部の封止に用いる接着封止剤に
、主剤としてエポキシ樹脂を、硬化剤として酸無水物化
合物を用いることを特徴とする中空糸膜モジュールの製
造方法。
(1) A method for manufacturing a hollow fiber membrane module, characterized in that an epoxy resin is used as a main ingredient and an acid anhydride compound is used as a curing agent in the adhesive sealant used for sealing the ends of a plurality of hollow fiber membranes.
JP33065389A 1989-12-20 1989-12-20 Production of hollow-fiber membrane module Pending JPH03188927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33065389A JPH03188927A (en) 1989-12-20 1989-12-20 Production of hollow-fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33065389A JPH03188927A (en) 1989-12-20 1989-12-20 Production of hollow-fiber membrane module

Publications (1)

Publication Number Publication Date
JPH03188927A true JPH03188927A (en) 1991-08-16

Family

ID=18235078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33065389A Pending JPH03188927A (en) 1989-12-20 1989-12-20 Production of hollow-fiber membrane module

Country Status (1)

Country Link
JP (1) JPH03188927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094726A (en) * 2011-10-31 2013-05-20 Ube Industries Ltd Gas separation membrane module
JP2016019969A (en) * 2014-06-18 2016-02-04 積水フーラー株式会社 Potting agent for hollow fiber membrane module
JP2017104867A (en) * 2012-03-30 2017-06-15 旭化成株式会社 Membrane module for ultrapure water and method for producing the same, and method for producing ultrapure water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094726A (en) * 2011-10-31 2013-05-20 Ube Industries Ltd Gas separation membrane module
JP2017104867A (en) * 2012-03-30 2017-06-15 旭化成株式会社 Membrane module for ultrapure water and method for producing the same, and method for producing ultrapure water
JP2016019969A (en) * 2014-06-18 2016-02-04 積水フーラー株式会社 Potting agent for hollow fiber membrane module

Similar Documents

Publication Publication Date Title
Zhang et al. Boronic ester based vitrimers with enhanced stability via internal boron–nitrogen coordination
Bell Structure of a typical amine‐cured epoxy resin
CA2093181A1 (en) Epoxidized diene elastomers for exterior block crosslinking
KR960017719A (en) Self-Emulsifying Epoxy Curing Agent
DE60020430T2 (en) Perfluoro group-containing compounds and cured polymer of these
CN108586708A (en) A kind of thermal reversion selfreparing epoxy resin and preparation method
JPH03188927A (en) Production of hollow-fiber membrane module
Urbaczewski et al. Influence of the addition of an aliphatic epoxide as reactive diluent on the cure kinetics of epoxy/amine formulations
KR100317169B1 (en) Potential Curing Agents of Epoxy Resin and Epoxy Resin Containing It and Epoxy Curing Products
Ochi et al. Mechanical relaxation mechanism of epoxide resins cured with diamines
KR102056074B1 (en) Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound
US3188362A (en) Semi-rigid epoxy resin compositions and method
JPS5984916A (en) Epoxy resin composition containing polyoxyalkylenediamine biguanide salt as hardening agent
US3576786A (en) Epoxy-aziridine polymer product
CN107286888A (en) A kind of epoxyn of low surface tension
EP1710265A1 (en) Radiopaque polymers for circuit board assembly
JPS63186726A (en) Room temperature rapid curing epoxy resin composition
KR102179145B1 (en) Amineimide composition
Wanghofer et al. Cross-Linking and Evaluation of the Thermo-Mechanical Behavior of Epoxy Based Poly (ionic Liquid) Thermosets
GB1429076A (en) Process for coating substrates with high molecular weight epoxy resins
Harrod Hydrogen bonding in amine–epoxide adducts
CN106008918A (en) Sulfone-containing epoxy resin
Dušek Network build‐up and structure in curing of epoxy resins
US3008925A (en) Epoxy resin compositions and hardeners therefor
Jagadeesh et al. Kinetics of curing epoxy formulations with diaminodiphenyl ether