JPH0318872B2 - - Google Patents

Info

Publication number
JPH0318872B2
JPH0318872B2 JP1200784A JP1200784A JPH0318872B2 JP H0318872 B2 JPH0318872 B2 JP H0318872B2 JP 1200784 A JP1200784 A JP 1200784A JP 1200784 A JP1200784 A JP 1200784A JP H0318872 B2 JPH0318872 B2 JP H0318872B2
Authority
JP
Japan
Prior art keywords
glutathione
strain
temperature
culture
candeida
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1200784A
Other languages
Japanese (ja)
Other versions
JPS60156379A (en
Inventor
Tadayuki Hino
Mokichi Harada
Hirokazu Maekawa
Junichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojin Co Ltd
Original Assignee
Kojin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojin Co Ltd filed Critical Kojin Co Ltd
Priority to JP1200784A priority Critical patent/JPS60156379A/en
Publication of JPS60156379A publication Critical patent/JPS60156379A/en
Publication of JPH0318872B2 publication Critical patent/JPH0318872B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、グルタチオンを著量含有する酵母の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing yeast containing significant amounts of glutathione.

更に詳細には、本発明は、キヤンデイダ属に属
するグルタチオン生産性酵母であつてエチオニン
および亜硫酸塩を含む培地に生育可能となつた突
然変異株を該菌株の生育至適温度より5℃以上低
い培養温度にて好気的に培養することにより、該
菌体中に著量のグルタチオンを生成蓄積させた酵
母を製造する方法に関するものである。
More specifically, the present invention relates to culturing a mutant strain of glutathione-producing yeast belonging to the genus Candeida that can grow in a medium containing ethionine and sulfite at a temperature lower than the optimum growth temperature of the strain by 5°C or more. The present invention relates to a method for producing yeast in which a significant amount of glutathione is produced and accumulated in the bacterial cells by aerobically culturing at a high temperature.

一般にグルタチオンは酵母及び動物の肝臓など
に広く分布しており、生体内の酸化還元系に関与
しているトリペプチドで、肝機能回復作用や解毒
作用などの重要な役割を果す医薬上極めて有用な
物質である。
In general, glutathione is widely distributed in yeast and animal livers, and is a tripeptide that is involved in the redox system in living organisms. It is a substance.

本発明の目的は、このグルタチオンを発酵工業
的に有利に製造する方法を提供することにある。
An object of the present invention is to provide a method for producing glutathione advantageously in the fermentation industry.

近年、グルタチオンはほとんどが酵母菌体から
の抽出方法により生産されており、酵母菌体中の
グルタチオン含量を高める方法が数多く提案され
ているが、いずれも培養における培養温度は酵母
の至適生育温度で実施されている。
In recent years, most glutathione has been produced by extraction from yeast cells, and many methods have been proposed to increase the glutathione content in yeast cells. It is being carried out in

本発明者らは、キヤンデイダ属におけるグルタ
チオンの蓄積量を高めるために鋭意研究を行つた
結果、酵母を培養する際、該菌株の生育至適温度
より5℃以上低い培養温度で培養することにより
グルタチオンの蓄積量を著しく高めることができ
ることを知つたのである。
The present inventors have conducted intensive research to increase the amount of glutathione accumulated in the Candeida genus. As a result, when culturing yeast, glutathione can be released by culturing at a culture temperature 5°C or more lower than the optimum growth temperature of the strain. They learned that it is possible to significantly increase the amount of

更に研究を進めたところ、酵母菌株の培養適温
よりかなり低いところにグルタチオン蓄積適温が
あることも知つたのである。
Further research led them to discover that the optimum temperature for glutathione accumulation is considerably lower than the optimum culture temperature for yeast strains.

本発明は、これら知見から完成されたもので、
キヤンデイダ属に属するグルタチオン生産性酵母
であつてエチオニンおよび亜硫酸塩を含む培地に
生育可能となつた突然変異株を該菌株の生育至適
温度より5℃以上低い培養温度で培養することに
より、該菌体中に著量のグルタチオンを生成蓄積
せしめることを特徴とするグルタチオン高含有酵
母の製造方法である。
The present invention was completed based on these findings,
By culturing a mutant strain of glutathione-producing yeast belonging to the genus Candeida that can grow in a medium containing ethionine and sulfite at a culture temperature that is 5°C or more lower than the optimal growth temperature of the strain, This is a method for producing yeast with a high glutathione content, which is characterized by producing and accumulating a significant amount of glutathione in the body.

本発明においては、キヤンデイダ属に属し、突
然変異処理によつてエチオニンおよび亜硫酸塩を
含む培地に生育可能となつた菌株(特願昭58−
24815)を使用する。突然変異処理によつてエチ
オニンおよび亜硫酸塩を含む培地に生育可能とな
つた菌株としては、例えばキヤンデイダ・ウチル
スKJS−0571やキヤンデイダ・ウチルスKJS−
0582などが有利に使用される。なおキヤンデイ
ダ・ウチルスKJS−0571およびキヤンデイダ・ウ
チルスKJS−0582は工業技術院微生物工業技術研
究所にFERM P−6907およびFERM P−7396
として寄託されている。
In the present invention, a strain belonging to the genus Candeida that can grow in a medium containing ethionine and sulfite through mutation treatment (patent application 1983-
24815). Examples of strains that can grow in a medium containing ethionine and sulfite through mutation treatment include Candeida uchilus KJS-0571 and Candeida uchilus KJS-0571.
0582 etc. are advantageously used. In addition, Candeida uchirus KJS-0571 and Candeida uchirus KJS-0582 were submitted to the Institute of Microbial Technology, Agency of Industrial Science and Technology through FERM P-6907 and FERM P-7396.
It has been deposited as.

培養に用いられる炭素源としては、ブドウ糖、
蔗糖、酢酸、エタノール、糖蜜、亜硫酸パルプ廃
液等が用いられ、また窒素源としては、アンモニ
ア、硫安、尿素、硝酸塩などが使用される。さら
に無機塩としては、燐酸、カリウム、マグネシウ
ム源として、過リン酸石灰、燐安、塩化カリ、燐
酸カリ、苛性カリ、硫酸マグネシウム、塩化マグ
ネシウム等が用いられ、さらに微量の亜鉛、銅、
マンガン、鉄イオン等の無機塩も使用される。ビ
タミン、アミノ酸、核酸関連物質は特に必要とし
ないが、勿論これらを添加したりコーンステイー
プリカー、酵母エキス、ペプトン等を加えても差
支えない。PHは3.5〜8.0、特に4.0〜6.0が望まし
い。
Carbon sources used for culture include glucose,
Sucrose, acetic acid, ethanol, molasses, sulfite pulp waste liquid, etc. are used, and as nitrogen sources, ammonia, ammonium sulfate, urea, nitrates, etc. are used. Furthermore, as inorganic salts, lime superphosphate, ammonium phosphate, potassium chloride, potassium phosphate, caustic potassium, magnesium sulfate, magnesium chloride, etc. are used as sources of phosphoric acid, potassium, and magnesium, and trace amounts of zinc, copper,
Inorganic salts such as manganese and iron ions are also used. Vitamins, amino acids, and nucleic acid-related substances are not particularly required, but of course they may be added, or cornstarch liquor, yeast extract, peptone, etc. may be added. PH is preferably 3.5 to 8.0, especially 4.0 to 6.0.

培養温度として、グルタチオン生産性菌株の生
育至適温度より5℃以上低い温度であればグルタ
チオンはより多く蓄積されるのである。一般的に
は菌株の至適生育温度より5℃以上低い温度がグ
ルタチオンの蓄積には適している。そして、グル
タチオンの蓄積だけを考慮するならば培養温度は
生育至適温度より6〜12℃低い温度が最も好まし
いものである。
If the culture temperature is 5° C. or more lower than the optimal growth temperature of the glutathione-producing strain, more glutathione will be accumulated. Generally, a temperature that is 5°C or more lower than the optimum growth temperature of the strain is suitable for accumulating glutathione. If only the accumulation of glutathione is considered, the most preferable culture temperature is 6 to 12°C lower than the optimum growth temperature.

本発明における培養温度は菌株の至適生育温度
より5℃以上低いために、酵母の増殖はおそくな
る傾向にある。従つて、培養温度を低くする場合
は培養時間を長くする必要がある。菌株によつて
もそれぞれ異なるが、一般的には25〜50時間程度
である。
Since the culture temperature in the present invention is 5° C. or more lower than the optimum growth temperature of the strain, the growth of yeast tends to be slow. Therefore, when lowering the culture temperature, it is necessary to lengthen the culture time. Although it varies depending on the strain, generally it is about 25 to 50 hours.

またこの際の培養形式は好気培養であればバツ
チ培養、或は連続培養の何れでもよい。
The culture format at this time may be either batch culture or continuous culture as long as it is aerobic culture.

次に、試験例、実施例及び比較例をあげて説明
する。なお、グルタチオンの定量は、菌体抽出液
についてグリオキサラーゼ法(「メソツド・イ
ン・エンザイモロジー」第1巻540ページ、アカ
デミツクプレス社、1955年版)で行つた。
Next, test examples, examples, and comparative examples will be given and explained. The quantification of glutathione was carried out using the glyoxalase method (Method in Enzymology, Vol. 1, p. 540, Academic Press, 1955 edition) using the bacterial cell extract.

また本発明の有用性は、以下の実施例に示す
が、これによつて本発明が制限されるものではな
い。
Further, the usefulness of the present invention is shown in the following examples, but the present invention is not limited thereto.

試験例 1 キヤンデイダ・ウチルスKJS−0582株
FERM P−7396を用い培養温度を18℃〜34℃の
9段階に変化させて、あとの条件は、スケールを
1/10とした以外は実施例1と同様に試験して各培
養温度における増殖速度及びグルタチオン含有量
を測定した。増殖速度は32℃における対数増殖期
の比増殖速度(0.693/ダブリングタイム)を100
%とし、各培養温度における比増殖速度を相対値
として求めた。またグルタチオン含量は各培養温
度での培養後了後の菌体をそれぞれ集め、実施例
1と同様に処理してグルタチオン含量を求めた。
Test example 1 Kyandida uchirus KJS-0582 strain
Using FERM P-7396, the culture temperature was varied in nine stages from 18°C to 34°C, and the remaining conditions were the same as in Example 1 except that the scale was 1/10. Rate and glutathione content were measured. The growth rate is the specific growth rate (0.693/doubling time) in the logarithmic phase at 32°C by 100.
%, and the specific growth rate at each culture temperature was determined as a relative value. The glutathione content was determined by collecting the bacterial cells after culturing at each culture temperature and treating them in the same manner as in Example 1.

その結果は第1図に示される通りであるが、
KJS−0582株の場合、生育至適温度が32℃であ
り、グルタチオン蓄積の至適温度は22℃〜24℃で
あることがわかる。
The results are shown in Figure 1.
In the case of the KJS-0582 strain, it can be seen that the optimum temperature for growth is 32°C, and the optimum temperature for glutathione accumulation is 22°C to 24°C.

試験例 2 キヤンデイダ・ウチリスKJS−0571株、
FERM P−6907を用い、試験例1と同様にして
相対比増殖速度(%)とグルタチオン含有量を求
めた。
Test example 2 Kyandida utilis KJS-0571 strain,
Using FERM P-6907, the relative specific growth rate (%) and glutathione content were determined in the same manner as in Test Example 1.

その結果は第2図に示される通りであるが、
KJS−0571株の場合、生育至適温度が30〜32℃
で、グルタチオン蓄積の至適温度は22℃であるこ
とがわかる。
The results are shown in Figure 2.
In the case of KJS-0571 strain, the optimum growth temperature is 30-32℃
It can be seen that the optimal temperature for glutathione accumulation is 22°C.

実施例 1 キヤンデイダ・ウチルスKJS−0582株、
FERM P−7396をグルコース2%イーストエキ
ス2%ペプトン1%からなる培地でフラスコ培養
し、これを300容発酵槽に1%植菌した。
Example 1 Kyandida uchilus KJS-0582 strain,
FERM P-7396 was cultured in a flask in a medium consisting of 2% glucose, 2% yeast extract, and 1% peptone, and 1% of this was inoculated into a 300 volume fermenter.

培地としては、グルコース3%、硫安0.8%、
リン酸−カリウム0.2%、硫酸マグネシウム0.03
%、硫酸第一鉄10ppm、硫酸亜鉛3ppm、硫酸銅
1ppm、硫酸マンガン10ppmを用いバツチ培養を
行つた。培養条件としては槽内液量200、培養
温度24℃、通気量150pm、撹拌数200rpm、PH
4.5にて行つた。28時間後集菌したところ乾燥時
換算2940gの菌体が得られ、菌体中のグルタチオ
ン含量は5.0%(対乾燥菌体比)であつた。この
菌体を加熱抽出し、菌体残渣を遠心分離にてグル
タチオン抽出液を得た。この抽出液に硫酸を
0.5Nになるように添加し、亜酸化銅を加えグル
タチオンを銅塩として析出させた。グルタチオン
銅塩を水洗した後硫化水素を通気し、硫化銅を除
き、減圧濃縮することによりグルタチオンの結晶
120gを得た。
As a medium, glucose 3%, ammonium sulfate 0.8%,
Phosphate - potassium 0.2%, magnesium sulfate 0.03
%, ferrous sulfate 10ppm, zinc sulfate 3ppm, copper sulfate
Batch culture was performed using 1 ppm and 10 ppm of manganese sulfate. The culture conditions are: tank liquid volume 200, culture temperature 24℃, ventilation rate 150pm, stirring number 200rpm, PH
I went with 4.5. When the bacteria were collected after 28 hours, 2940 g of dry cells were obtained, and the glutathione content in the cells was 5.0% (ratio to dry cells). The cells were heated and extracted, and the cell residue was centrifuged to obtain a glutathione extract. Add sulfuric acid to this extract
The solution was added to a concentration of 0.5N, and cuprous oxide was added to precipitate glutathione as a copper salt. After washing the glutathione copper salt with water, hydrogen sulfide is aerated, the copper sulfide is removed, and the glutathione crystals are concentrated under reduced pressure.
Obtained 120g.

得られた結晶は高圧ろ紙電気泳動、高速液体ク
ロマトグラフイーよりグルタチオンであることが
確認され、ヨード法による純度は99.0%であつ
た。
The obtained crystals were confirmed to be glutathione by high pressure filter paper electrophoresis and high performance liquid chromatography, and the purity by the iodine method was 99.0%.

比較例 1 キヤンデイダ・ウチルスKJS−0582株、
FERM P−7396株を培養温度30℃以外は実施例
1と全く同様に培養し比較培養した。22時間培養
後2950gの菌体(乾燥時換算)を得た。この菌体
中のグルタチオン含量は3.7%(対乾燥菌体)で
あつた。実施例1と全く同様の処理により87gの
グルタチオンを得た。
Comparative example 1 Kyandida uchirus KJS-0582 strain,
FERM P-7396 strain was cultured in the same manner as in Example 1 except that the culture temperature was 30°C for comparison. After culturing for 22 hours, 2950 g of bacterial cells (calculated when dried) were obtained. The glutathione content in the bacterial cells was 3.7% (based on dry bacterial cells). 87 g of glutathione was obtained by the same treatment as in Example 1.

実施例 2 キヤンデイダ・ウチルスKJS−0571株、
FERM P−6907を実施例1と同様にフラスコ種
母培養し30発酵槽に5%植菌した。
Example 2 Candeida uchilus KJS-0571 strain,
FERM P-6907 was cultured in a flask in the same manner as in Example 1, and 30 fermenters were inoculated at 5%.

培地としては次の組成のものを用いた。亜硫酸
パルプ廃液(資化性糖として3%)にリン酸−ア
ンモニウム0.15%、塩化カリウム0.06%を添加す
る。培養はドラフトチユーブ付発酵槽で槽内液量
10、培養温度22℃通気量10pm、撹拌数
700rpmで行い、アンモニアを添加してPHコント
ロール及び、培養の窒素源とした。培養42時間後
に遠心分離にて菌体を集菌したところ菌体160g
が得られ菌体中のグルタチオン含量は4.6%(対
乾燥菌体比)であつた。
A medium with the following composition was used. Add 0.15% ammonium phosphate and 0.06% potassium chloride to sulfite pulp waste liquid (3% as assimilable sugar). Culture is carried out in a fermenter with a draft tube, reducing the amount of liquid in the tank.
10.Culture temperature 22℃, aeration rate 10pm, stirring number
It was carried out at 700 rpm, and ammonia was added to control the pH and serve as a nitrogen source for the culture. After 42 hours of incubation, the bacteria were collected by centrifugation and yielded 160g of bacteria.
was obtained, and the glutathione content in the bacterial cells was 4.6% (ratio to dry bacterial cells).

比較例 2 キヤンデイダ・ウチルスKJS−0571株を培養温
度30℃以外は実施例2と全く同様に培養し比較培
養した。32時間培養後165gの菌体(乾燥時換算)
が得られ、菌体中のグルタチオン含量は3.8%
(対乾燥菌体比)であつた。
Comparative Example 2 The Candeida uchilus KJS-0571 strain was cultured in the same manner as in Example 2 except for the culture temperature of 30° C. for comparison. 165g of bacterial cells after 32 hours of culture (dry equivalent)
was obtained, and the glutathione content in the bacterial cells was 3.8%.
(ratio to dry bacterial cells).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試験例1においてキヤンデイダ・ウチ
リスKJS−0582株の相対比増殖速度(%)とグル
タチオン含量(%)を求めた図で、第2図は試験
例2においてキヤンデイダ・ウチリスKJS−0571
株の相対比増殖速度(%)とグルタチオン含量
(%)を求めた図である。 A……相対比増殖速度(%)、B……グルタチ
オン含量(%)。
Figure 1 shows the relative specific growth rate (%) and glutathione content (%) of Candeida utilis KJS-0582 strain in Test Example 1, and Figure 2 shows the relative growth rate (%) and glutathione content (%) of Candeida utilis KJS-0572 strain in Test Example 2.
It is a diagram showing the relative specific growth rate (%) and glutathione content (%) of the strain. A... Relative growth rate (%), B... Glutathione content (%).

Claims (1)

【特許請求の範囲】[Claims] 1 キヤンデイダ属に属するグルタチオン生産性
酵母であつてエチオニンおよび亜硫酸塩を含む培
地に生育可能となつた突然変異株を該菌株の生育
至適温度より5℃以上低い培養温度で培養するこ
とにより、該菌体中に著量のグルタチオンを生成
蓄積せしめることを特徴とするグルタチオン高含
有酵母の製造方法。
1. By culturing a mutant strain of glutathione-producing yeast belonging to the genus Candeida that can grow in a medium containing ethionine and sulfite at a culture temperature that is 5°C or more lower than the optimal growth temperature of the strain, A method for producing yeast with a high glutathione content, which is characterized by producing and accumulating a significant amount of glutathione in bacterial cells.
JP1200784A 1984-01-27 1984-01-27 Preparation of yeast having high gluthathione content Granted JPS60156379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1200784A JPS60156379A (en) 1984-01-27 1984-01-27 Preparation of yeast having high gluthathione content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1200784A JPS60156379A (en) 1984-01-27 1984-01-27 Preparation of yeast having high gluthathione content

Publications (2)

Publication Number Publication Date
JPS60156379A JPS60156379A (en) 1985-08-16
JPH0318872B2 true JPH0318872B2 (en) 1991-03-13

Family

ID=11793527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1200784A Granted JPS60156379A (en) 1984-01-27 1984-01-27 Preparation of yeast having high gluthathione content

Country Status (1)

Country Link
JP (1) JPS60156379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080832A1 (en) 2002-03-26 2003-10-02 Ajinomoto Co.,Inc. Candida utilis containing ϝ-glutamylcysteine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434279A (en) * 1987-07-29 1989-02-03 Ajinomoto Kk Production of yeast with high glutathione content
JPH01141591A (en) * 1987-11-26 1989-06-02 Ajinomoto Co Inc Production of yeast with high glutathione content
WO2019181961A1 (en) 2018-03-20 2019-09-26 三菱商事ライフサイエンス株式会社 METHOD FOR PRODUCING β-NMN AND COMPOSITION CONTAINING SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080832A1 (en) 2002-03-26 2003-10-02 Ajinomoto Co.,Inc. Candida utilis containing ϝ-glutamylcysteine
EP2213734A1 (en) 2002-03-26 2010-08-04 Ajinomoto Co., Inc. Candida utilis containing gamma-glutamylcysteine

Also Published As

Publication number Publication date
JPS60156379A (en) 1985-08-16

Similar Documents

Publication Publication Date Title
JPS5937951B2 (en) Biological production of amides
US3998697A (en) Process for preparing 2-keto-L-gulonic acid
US7479381B1 (en) Production of itaconic acid by Pseudozyma antarctica
US3963574A (en) Process for producing 2-keto-L-gulonic acid
US4652527A (en) Process for culturing methylophilus methylotrophus
EP0079241B1 (en) Process for producing glutathione
JPH0318872B2 (en)
JPS6358560B2 (en)
US3964971A (en) Method for increasing the vitamin B12 production in fermentation processes carried out with methanobacteria
JP2885643B2 (en) Decomposition method of phenolic compound
US4371440A (en) Method of treating a waste water rich in protein
JPH01168292A (en) Production of d-glyceric acid
JPS6151874B2 (en)
KR950005925B1 (en) Process for producing d-1-tartaric acid
US4659661A (en) Process for the preparation of fermentation broth for coenzyme B12 and other corrinoid production
CN86102773A (en) Produce the method for L-sorbose
US3310475A (en) Method for producing l-aspartic acid
US5422255A (en) Method for producing D-alanine
JP2505466B2 (en) Method for producing D-serine
US3366550A (en) Method for the fermentative production of 5-fluorouracil ribotide
JPH0565160B2 (en)
US4795708A (en) Novel backteria and single cell protein production therewith
JPS592693A (en) Biological method for preparing amide
JPH0249598A (en) Production of d-alanine by using microorganism
JP2715260B2 (en) New green algae, new yeast, and method for producing 2,6-naphthalenedicarboxylic acid using the green algae or the yeast