JPH0318871Y2 - - Google Patents

Info

Publication number
JPH0318871Y2
JPH0318871Y2 JP6399987U JP6399987U JPH0318871Y2 JP H0318871 Y2 JPH0318871 Y2 JP H0318871Y2 JP 6399987 U JP6399987 U JP 6399987U JP 6399987 U JP6399987 U JP 6399987U JP H0318871 Y2 JPH0318871 Y2 JP H0318871Y2
Authority
JP
Japan
Prior art keywords
fin
tube
fins
heat exchanger
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6399987U
Other languages
Japanese (ja)
Other versions
JPS63173692U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6399987U priority Critical patent/JPH0318871Y2/ja
Publication of JPS63173692U publication Critical patent/JPS63173692U/ja
Application granted granted Critical
Publication of JPH0318871Y2 publication Critical patent/JPH0318871Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、フインチユーブ式熱交換器に用いら
れるクラツド鋼製フインに関する。 (従来の技術) チユーブ1の外周にフイン2′のボス部2′aを
外嵌させた第4図に示すようなフインチユーブ伝
熱管を用いた熱交換器がある。 このようなフインチユーブ式熱交換器は、フイ
ン2′側に気体を、チユーブ1内に蒸気又は液体
を通して使用される。 (考案が解決しようとする問題点) しかし、フインチユーブ式熱交換器を、SO2
含有する低温廃ガスからの熱回収に使用する場合
には、フインの材質としては、SO2に対する耐食
性の問題があり、低温から有効な熱回収を行うた
めには、熱伝導率が良好でなければならなく、上
記のように、SO2に対する耐食性と、良熱伝導性
を兼ね具えた適当な金属材料が見当らなかつた。 (問題点を解決するための手段) 本考案は、上記の事情にかんがみてなされたも
のであり、SO2を含有する低温廃ガスからの熱回
収に適したフインチユーブ式熱交換器に使用され
るフインを提供するものであり、その構成は次の
通りである。 チユーブの外周にフインのボス部を外嵌させて
なるフインチユーブ式熱交換器のフインに於て、
軟鋼を芯材とし、ステンレス鋼を合せ材とした三
層ステンレスクラツド鋼板からなるクラツド鋼製
フインである。 (作 用) 上記のような構成のフインを、フインチユーブ
式熱交換器のフインに用い、フイン側にSO2を含
有する低温廃ガスを、チユーブ内に蒸気又は液体
を通す通常の使用状態で熱交換を行えば、フイン
の表面となつている合せ材はステンレス鋼である
ので、SO2による腐食に耐え、又比較的薄いフイ
ンの両面の合せ材からの熱は、比較的厚く、かつ
熱伝導性の良好な芯材である軟鋼を経てチユーブ
から蒸気又は液体に有効に伝達される。 (実施例) 本考案に係る熱交換器のクラツド鋼製フインの
実施例を第1図に基づいて説明する。 フイン2は、軟鋼を芯材3とし、ステンレス鋼
を合せ材4とした三層ステンレスクラツド鋼板の
中心部に通孔を設けた環状素材の内周縁部に絞り
加工を施して、チユーブ1(第4図参照)の外周
に圧入状態にて外嵌するボス部2aが形成されて
いる。 このように、環状素材の内周縁部を直角に折曲
げて形成したフインのボス部2aをチユーブ1の
外周に圧入外嵌し、軸線方向に複数個のフイン2
を配列したフインチユーブ伝熱管を用いた熱交換
器を構成し、フイン2側にSO2を含有する低温廃
ガスを、チユーブ1内に蒸気又は液体を、それぞ
れ流して熱交換を行えば、フイン2の表面となつ
ている合せ材4はステンレス鋼であるのでSO2
て腐食されることがなく、又フイン2の両面の比
較的薄い合せ材4に、低温の廃ガスから与えられ
た熱は比較的厚く、かつ熱伝導性の良好な軟鋼か
らなる芯材3を主として経て、ボス部2aの内周
面を形成する合せ材4からチユーブ1へ、更にチ
ユーブ1から蒸気又は液体に有効に伝達される。 次に具体例について説明する。第2図の線図
に、芯材3の軟鋼としてSS41を、合せ材4のス
テンレス鋼としてSUS304を、それぞれ用いた三
層ステンレスクラツド鋼板の熱伝導率(Kcal/
m・h・℃)とクラツド比(%)との関係を示
す。a線は板幅方向の計算値、b線は板厚方向の
計算値であり、・印は板厚方向の実側値である。
同図より知られるように、クラツド比10%(ステ
ンレス鋼厚さのクラツド鋼板厚さに対する比)に
於て、ステンレス鋼単独に対し板厚方向で約2.7
倍、板幅方向で約3倍の熱伝導率が得られた。 次に、フインチユーブ式熱交換器のフイン側の
廃ガスから熱量がチユーブ内の水に与えられる場
合の総括熱伝達率の比較試験結果について説明す
る。総括熱伝達率K(Kcal/m2・h・℃)は次式
で示される。 K=Q/F・△tm Q:交換熱量(Kcal/h) F:伝熱面積(m2) △tm:対数平均温度差(℃) 総括熱伝達率Kを、フインチユーブ式熱交換器
のフインが、ステンレス鋼製の場合と、三層ステ
ンレスクラツド鋼製の場合とについて求め、前者
をa曲線、後者をb曲線として第3図に示す。 この比較試験の際の各条件は次の通りである。 第4図に於て、フイン外径D1:52mm、フイン
厚さt1:1mm、フイン間隔l:5mm、チユーブ内
径D2:23mm、ステンレス鋼製チユーブ厚さt2:2
mmとし、フイン側に温度250〜400℃の廃ガスを、
流速を変えて流し、チユーブ内に温度50〜90℃の
温水を流速1m/Sとして流し、廃ガスの各流速
に対する総括熱伝達率Kの平均値を求め、ステン
レス鋼製フインの場合の値をa線で、三層ステン
レスクラツド鋼製フインの場合の値をb線でそれ
ぞれ示す。 同図より知られるように、三層ステンレスクラ
ツド鋼製フインの方が、総括熱伝達率は、約30%
高い値を示した。又、耐食性に於ては、表1に示
す腐食試験結果から知られるように、ステンレス
鋼単体と同等の性能が得られた。
(Industrial Application Field) The present invention relates to fins made of clad steel used in a fin-tube heat exchanger. (Prior Art) There is a heat exchanger using a fin-tube heat transfer tube as shown in FIG. 4, in which a boss portion 2'a of a fin 2' is fitted around the outer periphery of a tube 1. Such a fin tube type heat exchanger is used to pass gas to the fin 2' side and vapor or liquid to the tube 1 side. (Problem to be solved by the invention) However, when using a fin fin heat exchanger to recover heat from low-temperature waste gas containing SO 2 , the problem of corrosion resistance against SO 2 arises when the fin material is used. In order to effectively recover heat from low temperatures, it is necessary to have good thermal conductivity, and as mentioned above, a suitable metal material that has both corrosion resistance against SO 2 and good thermal conductivity is needed. I couldn't find it. (Means for solving the problem) The present invention was developed in view of the above circumstances, and is used in a Finch-Hube heat exchanger suitable for recovering heat from low-temperature waste gas containing SO 2 . The structure is as follows. In the fins of the fin tube heat exchanger, in which the boss part of the fins is fitted around the outer periphery of the tube,
This is a clad steel fin made of a three-layer stainless clad steel plate with a core of mild steel and a cladding of stainless steel. (Function) The fins configured as described above are used as the fins of a fin tube heat exchanger, and low-temperature waste gas containing SO 2 is transferred to the fin side and heated under normal operating conditions by passing steam or liquid into the tube. If the fins are replaced, the mating material on the surface of the fin is made of stainless steel, so it will withstand corrosion due to SO 2 , and the heat from the mating material on both sides of the relatively thin fin will be absorbed by the relatively thick and heat conductive material. Vapor or liquid is effectively transferred from the tube through the core material, mild steel, which has good properties. (Example) An example of a clad steel fin for a heat exchanger according to the present invention will be described based on FIG. 1. The fin 2 is made by drawing the inner periphery of an annular material with a through hole in the center of a three-layer stainless clad steel plate with a core material 3 made of mild steel and a mating material 4 made of stainless steel. A boss portion 2a is formed on the outer periphery of the main body (see FIG. 4) and is press-fitted thereinto. In this way, the boss portion 2a of the fin, which is formed by bending the inner peripheral edge of the annular material at right angles, is press-fitted onto the outer periphery of the tube 1, and a plurality of fins 2 are formed in the axial direction.
If a heat exchanger is constructed using fin - tube heat exchanger tubes arranged with Since the mating material 4 forming the surface of the fin 2 is made of stainless steel, it will not be corroded by SO 2 , and the heat given from the low-temperature waste gas to the relatively thin mating material 4 on both sides of the fin 2 is Mainly through the core material 3 made of mild steel which is relatively thick and has good thermal conductivity, vapor or liquid is effectively transmitted from the laminate material 4 forming the inner circumferential surface of the boss portion 2a to the tube 1, and further from the tube 1. be done. Next, a specific example will be explained. The diagram in Figure 2 shows the thermal conductivity (Kcal/
The relationship between m・h・℃) and cladding ratio (%) is shown. The a line is the calculated value in the plate width direction, the b line is the calculated value in the plate thickness direction, and the * mark is the actual value in the plate thickness direction.
As is known from the figure, at a clad ratio of 10% (ratio of stainless steel thickness to clad steel plate thickness), the thickness is approximately 2.7% in the plate thickness direction compared to stainless steel alone.
The thermal conductivity was approximately 3 times higher in the width direction of the plate. Next, the results of a comparative test of the overall heat transfer coefficient when heat is given to water in the tube from the waste gas on the fin side of the fin tube heat exchanger will be explained. The overall heat transfer coefficient K (Kcal/m 2 · h · °C) is expressed by the following formula. K=Q/F・△tm Q: Amount of heat exchanged (Kcal/h) F: Heat transfer area (m 2 ) △tm: Logarithm mean temperature difference (°C) were determined for the stainless steel case and the three-layer stainless clad steel case, and are shown in FIG. 3 with the former as curve a and the latter as curve b. The conditions for this comparative test are as follows. In Figure 4, fin outer diameter D 1 : 52 mm, fin thickness t 1 : 1 mm, fin spacing l : 5 mm, tube inner diameter D 2 : 23 mm, stainless steel tube thickness t 2 : 2
mm, and waste gas at a temperature of 250 to 400℃ is placed on the fin side.
Flow the hot water at a temperature of 50 to 90℃ into the tube at a flow rate of 1 m/s by changing the flow rate, find the average value of the overall heat transfer coefficient K for each flow rate of waste gas, and calculate the value for stainless steel fins. The a-line shows the values for the three-layer stainless steel fin, and the b-line shows the values for the three-layer stainless steel fin. As can be seen from the figure, the overall heat transfer coefficient of the three-layer stainless steel fin is approximately 30%.
It showed a high value. In terms of corrosion resistance, as is known from the corrosion test results shown in Table 1, performance equivalent to that of stainless steel alone was obtained.

【表】 (考案の効果) 以上の説明によつて理解されるように、本考案
よりなる熱交換器のクラツド鋼製フインによれ
ば、フインの表面は、ステンレス鋼製であり、芯
は軟鋼であるので、SO2に対し耐食性を有し、か
つ熱伝導性が良いので低温源からの熱回収に適す
る。従つて、SO2を含有する低温廃ガスからの熱
回収に使用されるフインチユーブ式熱交換器に最
適のフインを提供できた。
[Table] (Effects of the invention) As understood from the above explanation, according to the clad steel fins of the heat exchanger of the present invention, the surface of the fins is made of stainless steel, and the core is made of mild steel. Therefore, it has corrosion resistance against SO 2 and good thermal conductivity, making it suitable for heat recovery from low-temperature sources. Therefore, we were able to provide optimal fins for the Finch-Ube heat exchanger used for heat recovery from low-temperature waste gas containing SO 2 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案に係る熱交換器のクラツド鋼
製フインの実施例を一部断面で示す図、第2図
は、本実施例のフインのクラツド比と熱伝導率と
の関係を示す線図、第3図は、ステンレス鋼製フ
インと、本考案に係る実施例のフインとの総括熱
伝達率の比較試験結果を示す線図、第4図は、従
来のフインチユーブ伝熱管を一部断面で示す図で
ある。 1……チユーブ、2,2′……フイン、2a,
2′a……ボス部、3……芯材(軟鋼)、4……合
せ材(ステンレス鋼)。
Fig. 1 is a partial cross-sectional view of an embodiment of the clad steel fin of the heat exchanger according to the present invention, and Fig. 2 shows the relationship between the cladding ratio and thermal conductivity of the fin of this embodiment. Figure 3 is a diagram showing the results of a comparative test of the overall heat transfer coefficient between stainless steel fins and the fins of the example according to the present invention. It is a figure shown in a cross section. 1... Tube, 2, 2'... Huynh, 2a,
2'a...Boss portion, 3...Core material (mild steel), 4...Gluing material (stainless steel).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] チユーブの外周にフインのボス部を外嵌させて
なるフインチユーブ式熱交換器のフインに於て、
軟鋼を芯材とし、ステンレス鋼を合せ材とした三
層ステンレスクラツド鋼板からなることを特徴と
するクラツド鋼製フイン。
In the fins of the fin tube heat exchanger, in which the boss part of the fins is fitted around the outer periphery of the tube,
A clad steel fin characterized by being made of a three-layer stainless clad steel plate with a core of mild steel and a cladding of stainless steel.
JP6399987U 1987-04-30 1987-04-30 Expired JPH0318871Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6399987U JPH0318871Y2 (en) 1987-04-30 1987-04-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6399987U JPH0318871Y2 (en) 1987-04-30 1987-04-30

Publications (2)

Publication Number Publication Date
JPS63173692U JPS63173692U (en) 1988-11-10
JPH0318871Y2 true JPH0318871Y2 (en) 1991-04-22

Family

ID=30899753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6399987U Expired JPH0318871Y2 (en) 1987-04-30 1987-04-30

Country Status (1)

Country Link
JP (1) JPH0318871Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129036B2 (en) * 2008-05-13 2012-03-06 Hamilton Sundstrand Space Systems International, Inc. High strength and high thermal conductivity heat transfer apparatus
JP2015169413A (en) * 2014-03-10 2015-09-28 株式会社豊田自動織機 chemical heat storage device
JP7338095B2 (en) * 2019-07-05 2023-09-05 境川工業株式会社 Radiation fins and heat exchanger with radiation fins

Also Published As

Publication number Publication date
JPS63173692U (en) 1988-11-10

Similar Documents

Publication Publication Date Title
JPH05164482A (en) Liquefied natural gas vaporizer
JPH0233977Y2 (en)
JPH0318871Y2 (en)
JPS5842A (en) Heat exchanger
US1952896A (en) Tubular member for heat exchangers
CN213984694U (en) Sleeve type heat exchanger
CN111220002B (en) Heat exchanger and water heater comprising same
KR100948396B1 (en) Pipe for heat exchangers
JPH0526118B2 (en)
JPS5939678B2 (en) hot water boiler
JP2003254626A (en) Heat exchanger
JPH0118292B2 (en)
JPS59125396A (en) Heat exchanger
JPH0245644Y2 (en)
US1816606A (en) Radiator and other welded structure
JP2003222498A (en) Multitubular heat exchanger
JP2004144343A (en) Heat exchanger
JPS5955271U (en) Shell-and-tube heat exchanger
JPS632798Y2 (en)
JP2563990Y2 (en) Tube connection structure in multi-tube heat exchanger
JPH04302945A (en) Heating heat exchanger
JP3064346U (en) Water heater
Toumit An Exchanger For Condensation, Impervious to Corrosion
JPH09210260A (en) Anticorrosive steel pipe
JPS61295496A (en) Low-temperature air preheater