JPH03188368A - Electric double-layer capacitor and manufacture thereof - Google Patents

Electric double-layer capacitor and manufacture thereof

Info

Publication number
JPH03188368A
JPH03188368A JP2083824A JP8382490A JPH03188368A JP H03188368 A JPH03188368 A JP H03188368A JP 2083824 A JP2083824 A JP 2083824A JP 8382490 A JP8382490 A JP 8382490A JP H03188368 A JPH03188368 A JP H03188368A
Authority
JP
Japan
Prior art keywords
current collector
electrode body
conductive
contact
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2083824A
Other languages
Japanese (ja)
Other versions
JPH0724253B2 (en
Inventor
Ken Kurabayashi
倉林 研
Seiichiro Kito
木藤 誠一路
Yoshinobu Tsuchiya
土屋 善信
Yoriaki Niida
仁井田 頼明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2083824A priority Critical patent/JPH0724253B2/en
Publication of JPH03188368A publication Critical patent/JPH03188368A/en
Publication of JPH0724253B2 publication Critical patent/JPH0724253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To decrease internal resistance by bringing a current collector comprising a conductive material, wherein fine conductive particles are mixed into a base material, into contact with a specified surface of a porous electrode body comprising fine sintered carbon particles, attaching the current collector to the surface, and inserting a part of the current collector into the hole part of the porous electrode body a while contacting therewith. CONSTITUTION:As an electrode 1, a porous plate-shaped electrode body is formed by baking or sintering the particles of active carbon as a raw material. The electrode body is impregnated with a specified electrolyte. Since the raw materials are bonded together, the internal resistance exhibits a low value. Since the porous raw material is used, a large area is provided. As a current collector 2, conductive unvulcanized rubber is brought into contact with the electrode body. Heat curing is performed, and the rubber is brought into close contact with the electrode body. Therefore, the conductive rubber flows into the inner parts of the porous hole parts. The contact area between the electrode body and the current collector 2 becomes large. Thus the electric contact resistance becomes small. In this way, a capacitor characterized by the large capacitance and the lower internal resistance can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気二重層原理を利用した大静電容量の電気
二重層コンデンサおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a large capacitance electric double layer capacitor using the electric double layer principle and a method for manufacturing the same.

(従来の技術) 近年、電子装置のメモリーのバックアップ用の電源とし
て電気二重層原理を用いた大容量のコンデンサが開発さ
れ、マイクロコンピュータやICメモリなどに組込まれ
て広く使用されている。
(Prior Art) In recent years, large-capacity capacitors using the electric double layer principle have been developed as backup power sources for memories in electronic devices, and are widely used by being incorporated into microcomputers, IC memories, and the like.

この種の電気二重層コンデンサでは、従来、活性炭と電
解液とからなるペースト状の電極が用いられ、活性炭の
相互間の接触抵抗が大きいことや、電極となる活性炭と
集電体との接触抵抗が大きいなどの欠点があった。
Conventionally, this type of electric double layer capacitor uses a paste-like electrode made of activated carbon and an electrolyte, and the contact resistance between the activated carbons is high, and the contact resistance between the activated carbon serving as the electrode and the current collector. There were disadvantages such as large size.

第6図は従来の電気二重層コンデンサの一例を示す断面
図であり、10は電極で、多孔性の活性炭の粉末の集合
体に所定の電解液を含浸させてペースト状としたもの、
30は絶縁体からなるガスケットで、その内側を上下に
2分するセパレータ40が設けられている。そして、上
述のペースト状の電g110.10はガスケット30と
セパレータ40とによる上下の空間に配置され、導電性
の弾性力のある集電体20.20がガスケット30の周
縁に接着されて電極to、toを加圧するとともに、電
8i10と集電体20との接触を計っている。
FIG. 6 is a cross-sectional view showing an example of a conventional electric double layer capacitor, in which 10 is an electrode, which is made by impregnating an aggregate of porous activated carbon powder with a predetermined electrolyte to form a paste;
30 is a gasket made of an insulator, and a separator 40 is provided to divide the inside of the gasket into upper and lower halves. The above-mentioned paste-like electric current g110.10 is placed in the space above and below the gasket 30 and the separator 40, and a conductive and elastic current collector 20.20 is adhered to the periphery of the gasket 30 to connect the electrode to , to are pressurized, and the contact between the electric current 8i10 and the current collector 20 is measured.

そして、このように通常、基本セルに1〜100 Kg
/ cm2程度の圧力がかけられ、電極自身の内部抵抗
や、電極と集電体との接触抵抗を減少させている。
And in this way usually 1-100 Kg in the basic cell
A pressure of about /cm2 is applied to reduce the internal resistance of the electrode itself and the contact resistance between the electrode and the current collector.

(発明が解決しようとする課題) 上述のように電極の内部抵抗や、電極と集電体との接触
抵抗を減少させるため、基本セルに所定の圧力を印加し
、その圧力を保持する方法として、コンデンサの外装ケ
ースによるカシメ構造を施したり、加圧する集電体をガ
スケットに強力に接着させているが、一方、大静電容量
のコンデンサを得るには、基本セルの電極断面積を大に
する必要があり、したがって印加圧力も増大させねばな
らず、圧力印加の方法や外装素材の点からも、圧力を増
大させることが難しいという問題が生じている。
(Problems to be Solved by the Invention) As mentioned above, in order to reduce the internal resistance of the electrode and the contact resistance between the electrode and the current collector, a method is proposed in which a predetermined pressure is applied to the basic cell and the pressure is maintained. However, in order to obtain a capacitor with a large capacitance, the electrode cross-sectional area of the basic cell must be increased. Therefore, it is necessary to increase the applied pressure, and there is a problem that it is difficult to increase the pressure due to the pressure application method and the exterior material.

本発明はこのような問題に鑑みてなされたものであり、
電極断面積の大きい電気二重層コンデンサを安価に製造
する電気二重層コンデンサの製造方法を提供することを
目的にしている。
The present invention was made in view of such problems,
It is an object of the present invention to provide a method for manufacturing an electric double layer capacitor that can inexpensively manufacture an electric double layer capacitor having a large electrode cross-sectional area.

また、本発明の目的は、電極内部の抵抗や、電極と集電
体との接触抵抗の小さい電気二重層コンデンサを提供す
ることである。
Another object of the present invention is to provide an electric double layer capacitor with low internal resistance of the electrodes and low contact resistance between the electrodes and the current collector.

(課題を解決するための手段) 本発明によれば、導電性微粒子を基材に混合せしめた導
電物質からなる集電体を、焼結せしめたカーボン微粒子
からなる多孔性電極体の所定面に接触付着せしめ、該集
電体の一部を多孔性電極体の孔部内に侵入接触せしめた
電気二重層コンデンサが提供される。
(Means for Solving the Problems) According to the present invention, a current collector made of a conductive material in which conductive fine particles are mixed into a base material is placed on a predetermined surface of a porous electrode body made of sintered carbon fine particles. An electric double layer capacitor is provided in which a part of the current collector is brought into contact with the pores of a porous electrode body by contact adhesion.

本発明によれば、導電性微粒子を基材に混合せしめた導
電物質からなる集電体に、焼結せしめたカーボン微粒子
からなる1または2以上の多孔性電極体を加熱して溶着
することを特徴とする電気二重層コンデンサの製造方法
が提供される。
According to the present invention, one or more porous electrode bodies made of sintered carbon fine particles are heated and welded to a current collector made of a conductive material in which conductive fine particles are mixed into a base material. A method of manufacturing a characteristic electric double layer capacitor is provided.

(作用) 本発明によれば、電極断面積の大きい電気二重層コンデ
ンサの電極内部の抵抗や、電極と集電体との接触抵抗を
減少させることができる。
(Function) According to the present invention, the resistance inside the electrode of an electric double layer capacitor having a large electrode cross-sectional area and the contact resistance between the electrode and the current collector can be reduced.

(実施例) つぎに本発明の実施例について図面を用いて詳細に説明
する。
(Example) Next, an example of the present invention will be described in detail using the drawings.

第1図は本発明にかかる電気二重層コンデンサの一実施
例を示す断面図であり、第2図は第1図におけるA部を
拡大した概念図である。
FIG. 1 is a cross-sectional view showing one embodiment of an electric double layer capacitor according to the present invention, and FIG. 2 is a conceptual diagram in which part A in FIG. 1 is enlarged.

これらの図面において、1は電極であり、活性炭の微粒
子を素材として焼成または焼結によって多孔性の板状の
電極体を形成させ、この電極体に所定の電解液を含浸さ
せたもので、素材間は互いに結合しているため内部抵抗
は低い値を示しており、また多孔性の素材のため極めて
大きい表面積を有している。そして、セパレータ4によ
って上下に2分され、絶縁体からなるガスケット3の内
部に電極1.1がそれぞれ配置されている。
In these drawings, reference numeral 1 denotes an electrode, which is made by firing or sintering activated carbon fine particles to form a porous plate-shaped electrode body, and impregnating this electrode body with a predetermined electrolyte. Since the holes are bonded to each other, the internal resistance is low, and since the material is porous, it has an extremely large surface area. It is divided into upper and lower halves by a separator 4, and electrodes 1.1 are respectively disposed inside a gasket 3 made of an insulator.

2は集電体で、電極1の片面に接触して集電するもので
、導電性微粒子を基材となる未加硫ゴムに混合し、熱加
硫によって電極1に接触付着させ、多孔性の電極体の孔
の部分に侵入させると同時に、集電体2の周縁をガスケ
ット3の全円周に緊密に接着させて固着させたものであ
る。
2 is a current collector, which collects current by contacting one side of the electrode 1. Conductive fine particles are mixed with unvulcanized rubber as a base material, and made to contact and adhere to the electrode 1 by heat vulcanization. At the same time, the periphery of the current collector 2 is tightly adhered and fixed to the entire circumference of the gasket 3.

集電体2と電極1との間は、第2図の拡大した概念図に
示すように、焼成または焼結された活性炭の電極1の孔
の内部に集電体2が入り込んでいるので、それらの接触
部分は極めて広い面積をもつことになり、これら相互間
では極めて低い値の接触抵抗となるように構成されてい
る。
As shown in the enlarged conceptual diagram of FIG. 2, between the current collector 2 and the electrode 1, the current collector 2 is inserted into the hole of the fired or sintered activated carbon electrode 1. Their contact portions have an extremely large area and are configured to have an extremely low contact resistance between them.

つぎにこのように構成された本実施例の作動を説明する
と、電極体は微粒子の活性炭を素材として焼成または焼
結によって形成させたので素材の粒子相互間は結合して
いるため、その内部抵抗は低い値のものが得られること
になる。
Next, to explain the operation of this embodiment configured in this way, the electrode body is formed by firing or sintering using fine particles of activated carbon as a material, and since the particles of the material are bonded to each other, its internal resistance is A low value will be obtained.

また、集電体として導電性を有する未加硫ゴムを電極体
に接触させて熱加硫を行って多孔性の電極体に密着させ
たので、多孔性の孔部の内部にまで導電性のゴムが流れ
込み、電極体と集電体との接触面積が大となることによ
り、電気的の接触抵抗は小となる。
In addition, conductive unvulcanized rubber was brought into contact with the electrode body as a current collector, and heat vulcanized to make it adhere to the porous electrode body, so that the conductive rubber could reach the inside of the porous pores. As the rubber flows in and the contact area between the electrode body and the current collector becomes large, the electrical contact resistance becomes small.

したがって、このような電極体に所定の電解液を含浸さ
せることにより、多孔性の電極体の広い表面に蓄積され
た電荷は、電極体の低い内部抵抗や集電体との低い接触
抵抗を介して取り出せ、静電容量が大きく、内部抵抗の
低いコンデンサが得られることになる。
Therefore, by impregnating such an electrode body with a predetermined electrolyte, the charge accumulated on the large surface of the porous electrode body can be absorbed through the low internal resistance of the electrode body and the low contact resistance with the current collector. This means that a capacitor with large capacitance and low internal resistance can be obtained.

第3図は、本発明の他の実施例における多孔性の電極と
集電体との結合を示す拡大概念図である。
FIG. 3 is an enlarged conceptual diagram showing the connection between a porous electrode and a current collector in another embodiment of the present invention.

同図において、電極11は前述の実施例を同様に活性炭
の微粒子を焼結して多孔質の板状の電極体としたものに
電解液を含浸させたものである。
In the same figure, the electrode 11 is made by sintering fine particles of activated carbon to form a porous plate-shaped electrode body, which is impregnated with an electrolytic solution, in the same manner as in the previous embodiment.

そして、集電体21はエポキシ樹脂系の合成樹脂子ツマ
−にカーボン微粉末を混練させ、これを電極体に塗り付
けて、加熱あるいは常温で固化せしめるとともに、ガス
ケットの全周縁に接着させて形成したものである。この
ように構成された本実施例では、カーボン微粉末が混合
されて導電性を有する集電体21の素材が、多孔性の電
極体の孔の部分に入り込んで接触して固化するため、電
解液が含浸された電極11と集電体21との接触面積が
広くなって、相互間の接触抵抗は極めて低い値が得られ
ることになる。
The current collector 21 is formed by kneading fine carbon powder into an epoxy resin-based synthetic resin, applying this to the electrode body, solidifying it by heating or at room temperature, and adhering it to the entire periphery of the gasket. This is what I did. In this embodiment configured in this way, the material of the current collector 21, which is conductive by being mixed with carbon fine powder, enters the pores of the porous electrode body and solidifies upon contact. The contact area between the electrode 11 impregnated with the liquid and the current collector 21 becomes large, so that an extremely low value of contact resistance between them can be obtained.

次に、電気二重層コンデンサの製造方法の一例について
説明する。
Next, an example of a method for manufacturing an electric double layer capacitor will be described.

第4図は、導電性のゴムあるいは導電性の合成樹脂材を
集電体32として、その上に複数の分極性の電極体31
を熱融着させた電極構造を示している。集電体32は、
例えばCu、Bs、AΩ。
FIG. 4 shows a current collector 32 made of conductive rubber or a conductive synthetic resin material, and a plurality of polarizable electrode bodies 31 on the current collector 32.
The electrode structure is shown in which the electrodes are thermally fused together. The current collector 32 is
For example, Cu, Bs, AΩ.

Znのカーボンシートを素材とする電極板33上に塗布
されており、その上に配置された焼成体または焼結体の
電極体31は、例えばホットプレス機によって直接に加
熱され、これら集電体32゜電極体31.電極板33間
が同時に融着される。
It is coated on an electrode plate 33 made of a Zn carbon sheet, and the fired or sintered electrode body 31 placed thereon is directly heated, for example, by a hot press machine, and these current collectors 32° electrode body 31. The electrode plates 33 are fused together at the same time.

第5図は、こうして複数の多孔性電極体31を加熱して
溶着した後に、セパレータ4によって上下に2分された
形で絶縁体からなるガスケット3の内部に封入して完成
した電気二重層コンデンサの断面図である。この場合に
セパレータ4とガスケット3との間は、ホットプレス又
は接着剤により組立ることができる。
FIG. 5 shows a completed electric double layer capacitor in which a plurality of porous electrode bodies 31 are heated and welded in this manner and then separated into upper and lower halves by a separator 4 and sealed inside a gasket 3 made of an insulator. FIG. In this case, the separator 4 and the gasket 3 can be assembled using hot press or adhesive.

なお、電極板33は必ずしも必要ではなく、また、ガス
ケット3も複数の多孔性電極体31と同時に集電体32
上に配置しても良い。
Note that the electrode plate 33 is not necessarily required, and the gasket 3 also serves as the current collector 32 at the same time as the plurality of porous electrode bodies 31.
It may be placed above.

以上、本発明を上述の実施例によって説明したが、本発
明の主旨の範囲内で種々の変形が可能であり、これらの
変形を本発明の範囲から排除するものではない。
Although the present invention has been described above with reference to the above embodiments, various modifications can be made within the scope of the gist of the present invention, and these modifications are not excluded from the scope of the present invention.

(発明の効果) 本発明の電気二重層コンデンサによれば、活性炭からな
るカーボン微粒子を焼成または焼結して多孔性の電極体
としたので、該電極体の内部抵抗が低減するとともに、
導電性微粒子を基材に混合せしめた導電物質からなる集
電体を、焼結した多孔性の電極体の孔部内に侵入接触さ
せたので、電極体と集電体との接触面積が大となって接
触抵抗が大巾に減少する。
(Effects of the Invention) According to the electric double layer capacitor of the present invention, carbon fine particles made of activated carbon are fired or sintered to form a porous electrode body, so that the internal resistance of the electrode body is reduced, and
A current collector made of a conductive material with conductive particles mixed in the base material is brought into contact with the pores of the sintered porous electrode body, so the contact area between the electrode body and the current collector is large. As a result, the contact resistance is greatly reduced.

また、本発明の電気二重層コンデンサの製造方法によれ
ば、従来のコンデンサのように外部から圧力を加えて抵
抗値を低減させなくても、その性能を向上させることが
でき、さらに、外部からの加圧が全く必要がないばかり
か、導電接着剤を使用しないで良いから、安価に大静電
容量のコンデンサの接触抵抗を低減できる。
Further, according to the method for manufacturing an electric double layer capacitor of the present invention, its performance can be improved without applying external pressure to reduce the resistance value unlike conventional capacitors. Not only does it not require any pressure at all, but it also eliminates the need to use conductive adhesive, making it possible to reduce the contact resistance of large capacitance capacitors at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる電気二重層コンデンサの一実施
例を示す断面図、第2図は第1図におけるA部を拡大し
た概念図、第3図は本発明の他の実施例を示す拡大概念
図、第4図は、複数の電極体を熱融着させた電極構造の
電気二重層コンデンサの製造方法を示す説明図、第5図
は、完成した電気二重層コンデンサの断面図、第6図は
、従来の電気二重層コンデンサの一例を示す断面図であ
る。 1 11.31・・・電極、2,21.32・・・集電
体、3・・・ガスケット、4・・・セノ\レータ。
FIG. 1 is a cross-sectional view showing one embodiment of an electric double layer capacitor according to the present invention, FIG. 2 is a conceptual diagram showing an enlarged portion A in FIG. 1, and FIG. 3 is a diagram showing another embodiment of the present invention. An enlarged conceptual diagram, FIG. 4 is an explanatory diagram showing a method for manufacturing an electric double layer capacitor having an electrode structure in which a plurality of electrode bodies are heat-sealed, and FIG. 5 is a cross-sectional view of the completed electric double layer capacitor. FIG. 6 is a sectional view showing an example of a conventional electric double layer capacitor. 1 11.31...electrode, 2,21.32...current collector, 3...gasket, 4...senor\lator.

Claims (4)

【特許請求の範囲】[Claims] (1)導電性微粒子を基材に混合せしめた導電物質から
なる集電体を、焼結せしめたカーボン微粒子からなる多
孔性電極体の所定面に接触付着せしめ、該集電体の一部
を多孔性電極体の孔部内に侵入接触せしめた電気二重層
コンデンサ。
(1) A current collector made of a conductive material in which conductive fine particles are mixed into a base material is brought into contact with a predetermined surface of a porous electrode body made of sintered carbon fine particles, and a part of the current collector is An electric double layer capacitor that penetrates into the pores of a porous electrode body.
(2)前記集電体の基材に未加硫ゴムを使用して、熱加
硫によって前記電極体に接触付着させることを特徴とす
る請求項(1)に記載の電気二重層コンデンサ。
(2) The electric double layer capacitor according to claim 1, wherein unvulcanized rubber is used as the base material of the current collector, and the current collector is made to contact and adhere to the electrode body by thermal vulcanization.
(3)前記集電体の基材に導電性の熱硬化性樹脂を使用
して、加熱あるいは常温にて固化させることによって前
記電極体に接触付着させることを特徴とする請求項(1
)に記載の電気二重層コンデンサ。
(3) A conductive thermosetting resin is used as the base material of the current collector, and the current collector is brought into contact with and adhered to the electrode body by heating or solidifying at room temperature.
) Electric double layer capacitors described in ).
(4)導電性微粒子を基材に混合せしめた導電物質から
なる集電体に、焼結せしめたカーボン微粒子からなる1
または2以上の多孔性電極体を加熱して溶着することを
特徴とする電気二重層コンデンサの製造方法。
(4) A collector made of carbon fine particles sintered into a current collector made of a conductive substance with conductive fine particles mixed in the base material.
Alternatively, a method for manufacturing an electric double layer capacitor, which comprises heating and welding two or more porous electrode bodies.
JP2083824A 1989-09-07 1990-03-30 Electric double layer capacitor and manufacturing method thereof Expired - Fee Related JPH0724253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2083824A JPH0724253B2 (en) 1989-09-07 1990-03-30 Electric double layer capacitor and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23224389 1989-09-07
JP1-232243 1989-09-07
JP2083824A JPH0724253B2 (en) 1989-09-07 1990-03-30 Electric double layer capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03188368A true JPH03188368A (en) 1991-08-16
JPH0724253B2 JPH0724253B2 (en) 1995-03-15

Family

ID=26424873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083824A Expired - Fee Related JPH0724253B2 (en) 1989-09-07 1990-03-30 Electric double layer capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0724253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211111A (en) * 1991-11-20 1993-08-20 Nec Corp Electric double layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211111A (en) * 1991-11-20 1993-08-20 Nec Corp Electric double layer capacitor

Also Published As

Publication number Publication date
JPH0724253B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
KR100225159B1 (en) Electrical double layer capacitor
KR100225160B1 (en) Electric double layer capacitor
US6426865B2 (en) Electric double layer capacitor
US6937460B2 (en) Electrochemical capacitor and method for its preparation
JPH03241809A (en) Electric double-layer capacitor
JP3341886B2 (en) Polarizing electrode, manufacturing method thereof, and electric double layer capacitor using the polarizing electrode
AU695808B2 (en) Improved capacitor
JPH047582B2 (en)
JPH03188368A (en) Electric double-layer capacitor and manufacture thereof
JP3093773B2 (en) Electric double layer capacitor and method of manufacturing the same
JP2800307B2 (en) Electric double layer capacitor
JP2710238B2 (en) Manufacturing method of electric double layer capacitor
JPH03116708A (en) Electric double-layer capacitor
JP2003051429A (en) Electric double-layer capacitor, electrode and electrolytic solution filling machine thereof
JPH03283521A (en) Manufacture of electric double layer capacitor
JP2903169B2 (en) Electric double layer capacitor
JPH03283519A (en) Manufacture of electric double layer capacitor
JP2002313679A (en) Electric double-layer capacitor
JPH03283523A (en) Electric double layer capacitor
JPH0265114A (en) Electric double-layer capacitor
JPH03129813A (en) Manufacture of polarized electrode
JP2521149Y2 (en) Electric double layer capacitor
JPH03104107A (en) Electric double layer capacitor
JPH11340093A (en) Electric double layer capacitor
JPS6313320A (en) Electric double-layer capacitor and manufacture of the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees