JPH03188328A - Apparatus for measuring level of molten metal - Google Patents

Apparatus for measuring level of molten metal

Info

Publication number
JPH03188328A
JPH03188328A JP32928989A JP32928989A JPH03188328A JP H03188328 A JPH03188328 A JP H03188328A JP 32928989 A JP32928989 A JP 32928989A JP 32928989 A JP32928989 A JP 32928989A JP H03188328 A JPH03188328 A JP H03188328A
Authority
JP
Japan
Prior art keywords
molten metal
thermocouple
level
metal level
thermocouples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32928989A
Other languages
Japanese (ja)
Inventor
Kazuharu Hanazaki
一治 花崎
Masanori Iwase
正則 岩瀬
Hiroaki Ishida
博章 石田
Takaiku Yamamoto
高郁 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32928989A priority Critical patent/JPH03188328A/en
Publication of JPH03188328A publication Critical patent/JPH03188328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To enhance response and detection accuracy by detecting the output change due to the contact of a plurality of Fe-Mo thermocouples vertically provided in a molten metal container at different depths with a molten metal and measuring the level of the molten metal from the vertically provided posi tion of the thermocouples. CONSTITUTION:The other end of the Fe strand 5a connected to a servo ampli fier 6 at one end thereof is vertically provided up to the dummy head 4 of the bottom part of a cast 1 and the other ends of Mo strands 5b, 5b... connected to the amplifiers 6 at one ends thereof are vertical provided in the molten metal in the cast 1 at different depths and the amplifiers 6 are connected to a display part 8 and a dummy bar driving apparatus 9 through a microcomputer 7. The difference between the distances of the leading end positions of two strands 5b, 5b is divided by the time difference of the generation of thermoelectromotive forces thereof to calculate the rising speed of the level of the molten metal and the rising speed and the level of the molten metal 3 calculated therefrom are displayed on the display part 8 and, when the level of the molten metal 3 reaches a predetermined position, the apparatus 9 is driven.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造設備のタンデイツシュ内、鋳型内、又
は各種溶解炉等の溶湯容器内の溶湯レベルを測定する装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for measuring the level of molten metal in a tundish of continuous casting equipment, in a mold, or in a molten metal container such as a various melting furnace.

〔従来の技術〕[Conventional technology]

従来、連続鋳造設備のタンデイツシュ内、鋳型内又は各
種溶解炉等の溶湯容器の溶湯レベルを測定する装置には
、例えば放射線を利用するもの、電磁誘導現象を利用す
るもの及び熱起電力を利用するものがあり、夫々対象と
する設備、目的及び所望の測定精度に応じて使い分けら
れている。
Conventionally, devices that measure the molten metal level in the tundish of continuous casting equipment, in molds, or in molten metal containers such as various melting furnaces include devices that utilize radiation, devices that utilize electromagnetic induction phenomena, and devices that utilize thermoelectromotive force. There are several types, each of which is used depending on the target equipment, purpose, and desired measurement accuracy.

前記放射線を利用する放射線式レベル計は、連続鋳造設
備の鋳型内の溶湯レベルを測定する場合、鋳型側壁に配
設されたγ線の線源から鋳型内部の溶湯にγ線を放射し
、前記溶湯の多少に応じて変化するγ線の透過量を測定
することにより溶湯のレベルの検出を行うものである。
When measuring the level of molten metal in a mold of continuous casting equipment, the radiation level meter that uses radiation emits γ-rays from a γ-ray source installed on the side wall of the mold to the molten metal inside the mold. The level of molten metal is detected by measuring the amount of gamma rays transmitted, which changes depending on the amount of molten metal.

従って前述した如く、鋳型を介してγ線を溶湯に放射し
、その透過量を検出するので検出精度及び応答性が悪く
、変動範囲が大きい場合の溶湯レベルの検出には適当と
は言えない。そしてこれを解決すべく大容量の線源を設
けると、コスト的に高くなるのに加えて安全管理の面か
ら鋳型整備等の作業に制約を与えるという不都合がある
Therefore, as described above, since gamma rays are emitted to the molten metal through the mold and the amount of γ-rays transmitted is detected, the detection accuracy and response are poor, and this method is not suitable for detecting the molten metal level when the fluctuation range is large. If a large-capacity radiation source is provided in order to solve this problem, there is the disadvantage that not only the cost increases but also works such as mold maintenance are restricted in terms of safety management.

また電磁誘導現象を利用する電磁誘導式レベル計は、高
周波電流を通電せしめたコイルを溶湯表面に臨ませ、溶
湯表面に生じた渦電流に起因して変化したコイルのイン
ピーダンス又は誘起電圧を測定することにより溶湯レベ
ルを検出するものである。このレベル計は前述した如く
、コイルを溶湯表面に臨ませて配設する必要があり、溶
湯表面からの溶湯の飛散、及び溶湯レベルの異常上昇に
伴う溶湯内への埋没によりコイルが破損する震れがある
ため、溶湯レベルが比較的安定したのみ用いられ、変動
範囲が大きい場合の溶湯レベルの検出には不適当である
In addition, an electromagnetic induction level meter that utilizes electromagnetic induction phenomena places a coil energized with high-frequency current facing the surface of the molten metal, and measures the impedance or induced voltage of the coil that changes due to the eddy current generated on the surface of the molten metal. This is used to detect the molten metal level. As mentioned above, this level meter must be installed so that the coil faces the surface of the molten metal, and is protected against earthquakes that can damage the coil due to scattering of the molten metal from the surface of the molten metal, or burying the coil in the molten metal due to an abnormal rise in the molten metal level. Because of this, it is used only when the molten metal level is relatively stable, and is not suitable for detecting the molten metal level when the fluctuation range is large.

一方、熱起電力を利用する熱電対式レベル針は、鋳型の
内壁の深さ方向に複数個埋設した熱電対により鋳型を介
して溶湯の温度を検出し、又は鋳型上方から鋳型内に異
なる深さで複数本垂設した熱電対を溶湯に直接接触させ
て溶湯の温度を検出し、検出温度が所定値を超えた場合
、鋳型内部の溶湯レベルが熱電対を設けた位置に達した
と判定するものである。しかしながら前者の熱電対式レ
ベル計は、その検出精度が鋳型内壁に埋設された熱電対
の本数に依存するため、検出精度を高めるためには多数
の熱電対が必要である。この設置工事及び保守は技術的
に困難であり、従って高い検出精度を得ることができな
い。しかも、鋳型を介して溶湯の温度を検出するため応
答遅れが生じ、変化している状態の溶湯レベルの検出に
は適当であると言えない。これに対して後者の熱電対式
レベル計は、鋳型に熱電対を埋設する必要がなく、直接
溶湯に接触させて温度を測定するので、応答性及び検出
精度が良く、またその保守が容易であるため低いコスト
で測定が行え、変動範囲が大きい場合の溶湯レベルの測
定に適していると言える。
On the other hand, a thermocouple level needle that uses thermoelectromotive force detects the temperature of the molten metal through the mold using multiple thermocouples embedded in the depth direction of the inner wall of the mold, or detects the temperature of the molten metal through the mold from above the mold at different depths. The temperature of the molten metal is detected by directly contacting the molten metal with multiple vertically installed thermocouples, and if the detected temperature exceeds a predetermined value, it is determined that the molten metal level inside the mold has reached the position where the thermocouples were installed. It is something to do. However, the detection accuracy of the former thermocouple level meter depends on the number of thermocouples embedded in the inner wall of the mold, and therefore a large number of thermocouples are required to improve the detection accuracy. This installation work and maintenance are technically difficult, and therefore high detection accuracy cannot be obtained. Moreover, since the temperature of the molten metal is detected through the mold, there is a delay in response, and this method cannot be said to be suitable for detecting the level of the molten metal in a changing state. On the other hand, the latter type of thermocouple level meter does not require embedding the thermocouple in the mold and measures the temperature by directly contacting the molten metal, so it has good response and detection accuracy, and is easy to maintain. Therefore, it can be measured at low cost and is suitable for measuring the molten metal level when the fluctuation range is large.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、実用化されている後者の熱電対式レベル計を
用いた溶湯レベルの検出においては、使用温度範囲が適
当であり、また安定性が良いpt−PtRh13熱電対
が主に用いられている。しかしながら、Pt−PtRh
13熱電対は高価であるので、測定に用いる場合は、そ
の耐久性を維持させるべくアルミナ類の保護管に挿着さ
せるため、応答遅れが生じ、しかも検出精度が悪いとい
う問題が生じていた。このため、正確な溶湯レベルが得
られず、さらに溶湯レベルの上昇速度を測定することは
困難であった。
By the way, in detecting the molten metal level using the latter thermocouple level meter, which is in practical use, the pt-PtRh13 thermocouple is mainly used because it has an appropriate operating temperature range and has good stability. However, Pt-PtRh
Thermocouple No. 13 is expensive, and when used for measurement, it must be inserted into an alumina protection tube to maintain its durability, resulting in a delayed response and poor detection accuracy. For this reason, it was not possible to obtain an accurate molten metal level, and furthermore, it was difficult to measure the rising rate of the molten metal level.

本発明は斯かる事情に鑑みてなされたものであり、熱電
対としてFe−Mo熱電対を用い、該Pe−M。
The present invention has been made in view of such circumstances, and uses a Fe-Mo thermocouple as the thermocouple, and uses the Pe-M thermocouple.

熱電対を炉内の深さ方向に移動可能とする手段を備える
ことにより、応答性及び検出精度が良く、また低いコス
トで測定が行える溶湯レベル測定装置の提供を目的とす
る。
It is an object of the present invention to provide a molten metal level measuring device that has good responsiveness and detection accuracy and can perform measurements at low cost by including a means that allows a thermocouple to be moved in the depth direction within a furnace.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る溶湯レベル測定装置の第1の発明は、溶湯
容器の異なる深さまで垂設せしめた複数のFe−Mo熱
電対と、夫々の前記Fe−Mo熱電対と溶湯との接触に
伴う出力変化を検出する手段とを備え、前記出力変化し
たPe−Mo熱電対の垂設位置により、溶湯レベルを測
定することを特徴とし、第2の発明は、Fe−Mo熱電
対を溶湯容器の深さ方向に移動可能とする手段と、前記
Fe−Mo熱電対の移動距離を検出する距離検出手段と
、前記Fe−Mo熱電対と溶湯との接触に伴う出力変化
を検出する手段とを備え、前記出力変化したFe−Mo
熱電対の移動距離により溶湯レベルを測定することを特
徴とする。
A first aspect of the molten metal level measuring device according to the present invention includes a plurality of Fe-Mo thermocouples vertically installed to different depths of a molten metal container, and an output caused by contact between each of the Fe-Mo thermocouples and the molten metal. and a means for detecting a change, and the molten metal level is measured by the vertically installed position of the Pe-Mo thermocouple whose output has changed. comprising means for enabling movement in the horizontal direction, distance detection means for detecting the moving distance of the Fe-Mo thermocouple, and means for detecting an output change due to contact between the Fe-Mo thermocouple and the molten metal, Fe-Mo with the output changed
It is characterized by measuring the molten metal level by the moving distance of the thermocouple.

〔作用〕[Effect]

本発明に係る溶湯レベル測定装置の第1の発明にあって
は、熱電対としてFe素線、 Mo素線からなるFe−
Mo熱電対を用い、これを複数本、溶湯容器の異なる深
さまで垂設せしめると、溶湯に接触したFe−Mo熱電
対の先端が溶解し、溶湯を介して導通した状態となり、
これがFe−Mo熱電対と溶湯との熱接点となって、熱
起電力が生じる。従って、熱起電力が生じているFe−
Mo熱電対の先端位置、つまり溶湯に接触しているFe
−Mo熱電対の先端位置と起電力が生じていないFe−
Mo熱電対の先端位置、つまり溶湯に接触していないF
e−Mo熱電対の先端位置との間に溶湯レベルがあるこ
とがわかる。
In the first invention of the molten metal level measuring device according to the present invention, the thermocouple is made of Fe wire and Mo wire.
When multiple Mo thermocouples are placed vertically at different depths in a molten metal container, the tips of the Fe-Mo thermocouples that come into contact with the molten metal melt, creating a state of conduction through the molten metal.
This becomes a thermal contact point between the Fe-Mo thermocouple and the molten metal, and a thermoelectromotive force is generated. Therefore, Fe-
The tip position of the Mo thermocouple, that is, the Fe contacting the molten metal
-The tip position of Mo thermocouple and Fe where no electromotive force is generated-
The tip position of the Mo thermocouple, that is, F that is not in contact with the molten metal
It can be seen that there is a molten metal level between the position of the tip of the e-Mo thermocouple and the tip position of the e-Mo thermocouple.

また第2の発明にあっては、前記Fe−Mo熱電対を前
記溶湯容器内の深さ方向に移動可能とする手段を備えて
いることにより、溶湯に接触したFe−Mo熱電対に熱
起電力が生じる。従って、熱起電力が生じた時点におけ
るFe−Mo熱電対の移動距離を検出することにより、
溶湯のレベルが測定される。
Further, in the second invention, by providing means for making the Fe-Mo thermocouple movable in the depth direction within the molten metal container, the Fe-Mo thermocouple in contact with the molten metal generates heat. Electricity is generated. Therefore, by detecting the moving distance of the Fe-Mo thermocouple at the time when thermoelectromotive force is generated,
The level of molten metal is measured.

〔実施例〕〔Example〕

以下、本発明の溶湯レベル測定をその実施例を示す図面
に基づき具体的に詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The molten metal level measurement according to the present invention will be specifically explained in detail below based on drawings showing embodiments thereof.

第1図は本発明に係る溶湯レベル測定装置の第1の発明
を示す模式図であり、連続鋳造における鋳型内部の溶湯
のレベル測定に適応した場合について示しである。第1
図中1は筒形の鋳型であり、鋳型1内部には図示しない
タンデイツシュから浸漬ノズル2を介して溶湯3が注入
されるようになっている。また鋳型1には、溶湯3注入
開始時において鋳型底となるダミーバーヘッド4が、下
部から所定長挿入されており、これによって注入開始時
における溶湯3の漏れが防止されている。そして、鋳型
1内の浸漬ノズル2と鋳型1との間には、鋳型l上方か
ら他端がサーボアンプ6に接続されたFe素線5aの一
端がダミーバーヘッド4の挿入位置まで垂設され、また
他端がサーボアンプ6゜6・・・に夫々接続された複数
のMo素線5b、5b・・・の−端が、鋳型1上方から
鋳型1の異なる深さ方向に所定寸法隔てて垂設されてい
る。即ち、他端をサーボアンプ6.6・・・に接続され
た複数本のFe −Mo熱電対5が鋳型1内に異なる深
さで垂設された構成になっている。
FIG. 1 is a schematic diagram showing a first invention of a molten metal level measuring device according to the present invention, and shows a case where the device is adapted to measure the level of molten metal inside a mold in continuous casting. 1st
In the figure, 1 is a cylindrical mold, into which molten metal 3 is injected from a tundish (not shown) through an immersion nozzle 2. Further, a dummy bar head 4 that serves as the bottom of the mold when pouring of the molten metal 3 is started is inserted into the mold 1 by a predetermined length from the bottom, thereby preventing leakage of the molten metal 3 when pouring is started. Between the immersion nozzle 2 and the mold 1 in the mold 1, one end of the Fe wire 5a, the other end of which is connected to the servo amplifier 6, is hung vertically from above the mold 1 to the insertion position of the dummy bar head 4. Further, the negative ends of a plurality of Mo wires 5b, 5b... whose other ends are respectively connected to the servo amplifiers 6゜6... It is set up. That is, a plurality of Fe--Mo thermocouples 5 whose other ends are connected to servo amplifiers 6, 6, . . . are vertically installed at different depths within the mold 1.

一方、マイクロコンピュータ7の入力側には、サーボア
ンプ6が接続され、出力側には表示部8及びダミーバ駆
動装置が夫々接続されている。
On the other hand, a servo amplifier 6 is connected to the input side of the microcomputer 7, and a display section 8 and a dummy bar drive device are connected to the output side, respectively.

鋳型1内部への溶湯3の注入を開始し、鋳型1内に溶湯
3が貯留されてMo素線5bに接触すると、溶湯3を介
してFe素線5aと台。素線5bとが導通した状態とな
り、Fe −Mo熱電対5に熱起電力が生じる。
Injection of the molten metal 3 into the mold 1 is started, and when the molten metal 3 is stored in the mold 1 and comes into contact with the Mo wire 5b, it contacts the Fe wire 5a via the molten metal 3. The strands 5b are brought into conduction, and a thermoelectromotive force is generated in the Fe--Mo thermocouple 5.

生じた熱起電力は、マイクロコンピュータ7に与えられ
、これによってマイクロコンピュータ7は、鋳型1内部
の溶湯3のレベルが垂設されたMo素線5bの先端位置
に達したという表示信号を表示部8に出力する。またマ
イクロコンピュータ7は、二つのMo素線5b、 5b
の先端位置の距離差をそれら二つのMo素線5b、5b
の熱起電力発生の時間差で除して溶湯レベル上昇速度を
算出し、該溶湯レベル上昇速度とそれに基づいて演算さ
れた溶湯3のレベルとの値を夫々表示部8に出力する。
The generated thermoelectromotive force is applied to the microcomputer 7, which causes the microcomputer 7 to send a display signal indicating that the level of the molten metal 3 inside the mold 1 has reached the tip position of the vertical Mo wire 5b. Output to 8. Further, the microcomputer 7 includes two Mo wires 5b, 5b.
The distance difference between the tip positions of those two Mo wires 5b, 5b
The molten metal level rising speed is calculated by dividing by the time difference between thermoelectromotive force generation, and the values of the molten metal level rising speed and the level of the molten metal 3 calculated based on the molten metal level rising speed are outputted to the display section 8, respectively.

そして、溶湯3のレベルが所定位置に達したときは、マ
イクロコンピュータ7からダミーバ駆動装置9に駆動信
号が出力され、その信号に基づいてダミーバが鋳型1か
ら引き抜かれて、鋳込みが開始する。
When the level of the molten metal 3 reaches a predetermined position, a drive signal is output from the microcomputer 7 to the dummy bar drive device 9, and based on the signal, the dummy bar is pulled out from the mold 1, and casting starts.

このように複数本のFe−Mo熱電対5を鋳型1内に異
なる深さで垂設すると、連続鋳造における鋳込み開始を
自動的に設定することが可能となる。
By vertically disposing a plurality of Fe-Mo thermocouples 5 at different depths within the mold 1 in this way, it becomes possible to automatically set the start of pouring in continuous casting.

第2図はFe −Mo熱電対及びPt−PtRh13熱
電対の熱起電力特性を示すグラフであり、Fe−Mo熱
電対を実線でまた、Pt−PtRh13熱電対を破線で
夫々示しである。また第2図において横軸には温度(“
C)を、また右側の縦軸にはFe −Mo熱電対に対応
する熱起電力(mV)を、左側の縦軸にはPt−PtR
h13熱電対に対応する熱起電力(mV)を夫々とっで
ある。
FIG. 2 is a graph showing the thermoelectromotive force characteristics of a Fe-Mo thermocouple and a Pt-PtRh13 thermocouple, with the Fe-Mo thermocouple being shown by a solid line and the Pt-PtRh13 thermocouple being shown by a broken line. Also, in Figure 2, the horizontal axis is the temperature (“
C), the right vertical axis shows the thermoelectromotive force (mV) corresponding to the Fe-Mo thermocouple, and the left vertical axis shows the Pt-PtR
The thermoelectromotive force (mV) corresponding to the h13 thermocouple is respectively.

第2図から明らかな如<Fe −Mo熱電対は、温度と
熱起電力とが直線関係にあり、温度に対応する熱起電力
が測定できることがわかる。また、FeMo熱電対の直
線の傾きはPt−PtRh13熱電対の傾きより大きく
、Fe −Mo熱電対はPt−PtRh13熱電対より
も温度変化に対して鋭敏であることがわかる。
As is clear from FIG. 2, in the <Fe-Mo thermocouple, there is a linear relationship between temperature and thermoelectromotive force, and it can be seen that thermoelectromotive force corresponding to temperature can be measured. Furthermore, the slope of the straight line of the FeMo thermocouple is larger than that of the Pt-PtRh13 thermocouple, indicating that the Fe-Mo thermocouple is more sensitive to temperature changes than the Pt-PtRh13 thermocouple.

従って、Fe−Mo熱電対5を保護管を挿着せずに直接
溶湯に接触させて、溶湯レベルを測定する本発明装置で
は、従来より応答性が良く、精度が高い溶湯レベルの検
出が行える。
Therefore, the device of the present invention, which measures the molten metal level by bringing the Fe-Mo thermocouple 5 into direct contact with the molten metal without inserting a protective tube, can detect the molten metal level with better responsiveness and accuracy than before.

第3図は本発明に係る溶湯レベル測定装置の第2の発明
を示す模式図であり、出銑室を具設した筒形溶解炉の溶
湯3のレベル測定に適応した場合について示しである。
FIG. 3 is a schematic diagram showing a second invention of the molten metal level measuring device according to the present invention, and shows a case where the device is adapted to measure the level of molten metal 3 in a cylindrical melting furnace equipped with a tapping chamber.

第3図中11は、溶解炉10と連通してその側壁下部に
具設され、頂部に開口部分11aを有している出銑室1
1であり、その底部には、溶解炉10内部の溶湯3を出
銑室工1から溶解炉10外に抽出するための出銑口11
bが配設されている。また、前記出銑室11の側壁下部
にはFeからなり、サーボアンプ20に接続される電極
棒12が固設されている。この前記電極棒12と対をな
すことによって熱電対を形成するMo素線13は、開口
部分11aの上方に設けられたドラム14にて巻回保持
され、その一端が前記開口部分11aに向けて垂下され
ており、またMo素線13の他端は前記サーボアンプ2
0に接続されている。そして、Mo素線13の垂下部分
は、ドラム14の下方に設けられているピンチローラ1
5にて挟持され、該ピンチローラ15が回動することに
よって、前記出銑室ll内の深さ方向に移動するように
なっている。さらにピンチローラ15の下方には、Mo
素線13の垂下部分を物理的、化学的に保護するため及
び絶縁のためのランス16が設けられており、その一端
は前記開口部分11aに遊嵌され、出銑室11に所定長
侵入させである。ランス16の所定位置には、Mo素線
13がランス16内を通過する際の前記Mo素線13の
先端を検知するセンサ17が付設されている。
In FIG. 3, reference numeral 11 denotes a tapping chamber 1 which communicates with the melting furnace 10, is provided at the lower part of the side wall thereof, and has an opening portion 11a at the top.
1, and at its bottom there is a tap hole 11 for extracting the molten metal 3 inside the melting furnace 10 from the tap chamber 1 to the outside of the melting furnace 10.
b is provided. Furthermore, an electrode rod 12 made of Fe and connected to a servo amplifier 20 is fixedly installed at the lower part of the side wall of the tapping chamber 11. The Mo wire 13, which forms a thermocouple by forming a pair with the electrode rod 12, is wound and held on a drum 14 provided above the opening 11a, and one end thereof is directed toward the opening 11a. The other end of the Mo wire 13 is connected to the servo amplifier 2.
Connected to 0. The hanging portion of the Mo wire 13 is connected to the pinch roller 1 provided below the drum 14.
5, and when the pinch roller 15 rotates, it moves in the depth direction within the tapping chamber ll. Furthermore, below the pinch roller 15, Mo
A lance 16 is provided to physically and chemically protect and insulate the hanging portion of the wire 13, and one end of the lance 16 is loosely fitted into the opening portion 11a, and is inserted into the tapping chamber 11 for a predetermined length. It is. A sensor 17 is attached to a predetermined position of the lance 16 to detect the tip of the Mo wire 13 when the Mo wire 13 passes through the lance 16.

マイクロコンピュータ18の入力側は、図示しない駆動
回路を介してモータ19と表示部22とに接続され、出
力側は前記モータ19に接続され、1回転当たり所定数
のパルスを発生する回転検出器21とサーボアンプ20
とセンサ17とに接続されている。
The input side of the microcomputer 18 is connected to a motor 19 and a display unit 22 via a drive circuit (not shown), and the output side is connected to the motor 19, and includes a rotation detector 21 that generates a predetermined number of pulses per revolution. and servo amplifier 20
and sensor 17.

前記モータ19には、マイクロコンピュータ18からピ
ンチローラ15を回動させ、Mo素線13を出銑室11
深さ方向に移動させるための信号が駆動回路を介して与
えられ、また表示部22には、後述する溶湯レベルの演
算結果が与えられる。一方、ピンチローラ15を回動さ
せるモータ19の回転により、回転検出器21から発生
したパルスは、マイクロコンピュータ18に与えられ、
そのパルス数を積算することによってマイクロコンピュ
ータ18はMo素線13の移動距離を認識することがで
きる。さらにマイクロコンピュータ18には、センサ1
7からMo素線13の先端を検出する検出信号が、また
サーボアンプ20からMo素線13とFe製の電極棒1
2とが溶湯3を介して導通することにより生じる熱起電
力が夫々与えられ、前記検出信号によってMo素線13
がセンサ17設置位置を通過したことを認識でき、前記
熱起電力によってMo素線13の先端が出銑室11内の
溶湯レベルに達したことを認識できる。
The motor 19 rotates the pinch roller 15 from the microcomputer 18, and moves the Mo wire 13 into the tapping chamber 11.
A signal for moving in the depth direction is given via a drive circuit, and a calculation result of the molten metal level, which will be described later, is given to the display section 22. On the other hand, pulses generated from the rotation detector 21 due to the rotation of the motor 19 that rotates the pinch roller 15 are given to the microcomputer 18.
By integrating the number of pulses, the microcomputer 18 can recognize the moving distance of the Mo wire 13. Furthermore, the microcomputer 18 includes a sensor 1
A detection signal for detecting the tip of the Mo wire 13 is sent from the servo amplifier 20 to the Mo wire 13 and the Fe electrode rod 1.
2 are electrically connected to each other through the molten metal 3, and a thermoelectromotive force is applied to each of them, and the detection signal causes the Mo wire 13 to
It can be recognized that the Mo wire has passed through the sensor 17 installation position, and it can be recognized that the tip of the Mo wire 13 has reached the molten metal level in the tapping chamber 11 due to the thermoelectromotive force.

第4図はマイクロコンピュータ18の動作を示すフロー
チャートである。まず、マイクロコンピュータ18は、
Mo素線13を出銑室11溶湯3内に下降させるための
信号を駆動回路を介してモータ19に与え(ステップ1
)、ピンチローラ15を回動させる。
FIG. 4 is a flow chart showing the operation of the microcomputer 18. First, the microcomputer 18
A signal for lowering the Mo wire 13 into the tapping chamber 11 and the molten metal 3 is given to the motor 19 via the drive circuit (step 1
), the pinch roller 15 is rotated.

次いで、これによって下降しているMo素線13の先端
がセンサ17を通過したか否かを調べ(ステップ2)、
通過していない場合は再びステップ2の動作を行い、通
過した場合はその時点から回転検出器21の発生パルス
数の積算を開始する(ステップ3)。そして、Mo素線
13とFe製の電極棒12との熱電対に起電力が発生し
たか否か、即ちMo素線13の先端が溶湯3に接触した
か否かを調べ(ステップ4)、発生していない場合は再
びステップ4の動作を行い、発生した場合はその時点で
パルス数の積算を停止する(ステップ5)、予めマイク
ロコンピュータ18に入力されている前記パルス数と距
離との関係から、積算されたパルス数に基づいてMo素
線13の移動距離lを算出しくステップ6)、やはり予
めマイクロコンピュータ18に入力されているセンサ1
7の位置、即ち出銑室11の内底からセンサ17までの
距離H(第3図参照)と、前記Mo素線13の移動距離
lとの差を演算することによって、溶湯レベルhを求め
る(ステップ7)。そして、この結果を表示部22に出
力しくステップ9)、M。
Next, it is checked whether the tip of the Mo wire 13 that is descending thereby has passed the sensor 17 (step 2),
If it has not passed, the operation of step 2 is performed again, and if it has passed, the integration of the number of pulses generated by the rotation detector 21 is started from that point (step 3). Then, it is determined whether an electromotive force is generated in the thermocouple between the Mo wire 13 and the Fe electrode rod 12, that is, whether the tip of the Mo wire 13 has contacted the molten metal 3 (step 4). If no pulses have occurred, repeat step 4, and if they have occurred, stop integrating the number of pulses at that point (step 5).The relationship between the number of pulses and the distance that has been input into the microcomputer 18 in advance. , the moving distance l of the Mo wire 13 is calculated based on the integrated pulse number.Step 6)
The molten metal level h is determined by calculating the difference between the distance H from the position 7, that is, the inner bottom of the tapping chamber 11 to the sensor 17 (see FIG. 3), and the moving distance l of the Mo wire 13. (Step 7). Then, output this result to the display section 22 (Step 9), M.

素線13を上昇させるための信号を駆動回路を介してモ
ータ19に与えて(ステップ9)ピンチローラ15を回
動させ、Mo素線13を上昇させる。さらに、溶湯レベ
ルの測定を続行するか否かを調べ(ステップ10)、続
行する場合はステップ1に戻って再び上述と同様の動作
を繰り返し、続行しない場合はここで測定を終了する。
A signal for raising the strand 13 is applied to the motor 19 via the drive circuit (step 9) to rotate the pinch roller 15 and raise the Mo strand 13. Furthermore, it is determined whether or not to continue measuring the molten metal level (step 10). If the measurement is to be continued, the process returns to step 1 and the same operation as described above is repeated; if the measurement is not to be continued, the measurement is ended here.

なお、溶湯レベル測定を所定時間毎に繰り返し行うこと
により、溶湯レベルの上昇速度を求めることができる。
Note that by repeatedly measuring the molten metal level at predetermined time intervals, the rate of increase in the molten metal level can be determined.

このように、Fe−Mo熱電対を出銑室11内の深さ方
向に移動可能とする手段を用い、Fe−Mo熱電対を溶
湯3に直接接触させるので、スラグの影響を受けずに応
答性及測定精度が良い溶湯レベルの測定が行える。
In this way, since the Fe-Mo thermocouple is brought into direct contact with the molten metal 3 using a means that allows the Fe-Mo thermocouple to be moved in the depth direction within the tapping chamber 11, the response is not affected by slag. The molten metal level can be measured with good performance and measurement accuracy.

なお、本実施例では複数本のMo素線を溶湯容器の上方
から垂設せしめ、溶湯レベルを測定した場合について述
べたが、これに替えてFe素線及びM。
In this example, a case has been described in which a plurality of Mo wires are hung vertically from above a molten metal container and the molten metal level is measured, but instead of this, Fe wires and M wires are used.

素線を対としたもの複数本を溶湯容器の上方から垂設せ
しめて用いてもよい。同様に、Fe素線及びMo素線を
対として溶湯容器の上方から移動させ、溶湯レベルを測
定してもよい。これらの場合は、Fe素線とMo素線と
の接合点と溶湯との接触により熱起電力が発生すること
は言うまでもない。
A plurality of pairs of strands may be hung vertically from above the molten metal container. Similarly, the molten metal level may be measured by moving a pair of Fe wire and Mo wire from above the molten metal container. In these cases, it goes without saying that a thermoelectromotive force is generated due to the contact between the junction of the Fe wire and the Mo wire and the molten metal.

〔効果〕〔effect〕

以上、詳述した如く本発明に係る溶湯レベル測定装置の
第1の発明においては、温度変化に対して鋭敏であり、
安価なFe−Mo熱電対を溶湯容器の深さ方向に垂設せ
しめ、また第2の発明においては、Fe−Mo熱電対を
溶湯容器の深さ方向に移動可能とする手段と、Fe−M
o熱電対の移動距離を検出する検出手段とを備えている
ので、溶湯容器内部の溶湯に接触して熱起電力が生じた
Fe−Mo熱電対の先端の位置、つまり溶湯に接触した
Fe−Mo熱電対の先端位置から溶湯のレベルが測定可
能となり、低いコストで応答性及び検出精度が良い測定
が行える。またこのことから、溶湯レベル測定を所定時
間毎に精度良く繰り返し行うことができ、溶湯レベルの
上昇速度を求めることが可能となる。
As detailed above, in the first invention of the molten metal level measuring device according to the present invention, it is sensitive to temperature changes,
In the second invention, an inexpensive Fe-Mo thermocouple is installed vertically in the depth direction of the molten metal container, and a means for making the Fe-Mo thermocouple movable in the depth direction of the molten metal container;
o Since it is equipped with a detection means for detecting the moving distance of the thermocouple, the position of the tip of the Fe-Mo thermocouple that has come into contact with the molten metal inside the molten metal container and generated a thermoelectromotive force, that is, the position of the tip of the Fe-Mo thermocouple that has come into contact with the molten metal inside the molten metal container. The level of the molten metal can be measured from the tip position of the Mo thermocouple, and measurement with good responsiveness and detection accuracy can be performed at low cost. Moreover, from this, the molten metal level can be repeatedly measured at predetermined time intervals with high accuracy, and the rising rate of the molten metal level can be determined.

従って、連続鋳造における溶湯レベル測定に用いた場合
は、鋳込み開始を自動的に設定することが可能となり、
また溶鋼炉の溶湯レベル測定に用いた場合は、燃料源単
位が向上し、出銑タイミングが最適となり操業が安定す
る等、本発明は優れた効果を奏する。
Therefore, when used to measure the molten metal level in continuous casting, it is possible to automatically set the start of pouring.
Further, when used for measuring the level of molten metal in a steel melting furnace, the present invention has excellent effects such as improving the fuel source unit, optimizing the tapping timing, and stabilizing the operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る溶湯レベル測定装置の第1の発明
を示す模式図、第2図はFe −Mo熱電対及びPt−
PtRh13熱電対の熱起電力特性を示すグラフ、第3
図は本発明に係る溶湯レベル測定装置の第2の発明を示
す模式図、第4図はマイクロコンピュータ18の動作を
示すフローチャートである。 3・・・溶湯  5a・・・Fe素線  5b、 13
・・・Mo素線5・・・Fe −Mo熱電対  6.2
0・・・サーボアンプ12・・・Fe1iJ電極棒  
14・・・ドラム  15・・・ピンチローラ  19
・・・モータ
FIG. 1 is a schematic diagram showing the first invention of the molten metal level measuring device according to the present invention, and FIG. 2 shows a Fe-Mo thermocouple and a Pt-
Graph showing thermoelectromotive force characteristics of PtRh13 thermocouple, 3rd
The figure is a schematic diagram showing the second invention of the molten metal level measuring device according to the present invention, and FIG. 4 is a flowchart showing the operation of the microcomputer 18. 3... Molten metal 5a... Fe wire 5b, 13
...Mo wire 5...Fe-Mo thermocouple 6.2
0... Servo amplifier 12... Fe1iJ electrode rod
14...Drum 15...Pinch roller 19
···motor

Claims (1)

【特許請求の範囲】 1、溶湯容器の異なる深さまで垂設せしめた複数のFe
−Mo熱電対と、 夫々の前記Fe−Mo熱電対と溶湯との接触に伴う出力
変化を検出する手段とを備え、 前記出力変化したFe−Mo熱電対の垂設位置により、
溶湯レベルを測定することを特徴とする溶湯レベル測定
装置。 2、Fe−Mo熱電対を溶湯容器の深さ方向に移動可能
とする手段と、 前記Fe−Mo熱電対の移動距離を検出する距離検出手
段と、 前記Fe−Mo熱電対と溶湯との接触に伴う出力変化を
検出する手段とを備え、 前記出力変化したFe−Mo熱電対の移動距離により溶
湯レベルを測定することを特徴とする溶湯レベル測定装
置。
[Claims] 1. A plurality of Fe vertically installed to different depths of the molten metal container
-Mo thermocouples, and means for detecting output changes due to contact between each of the Fe-Mo thermocouples and the molten metal, and depending on the vertical position of the Fe-Mo thermocouples where the output changes,
A molten metal level measuring device characterized by measuring a molten metal level. 2. means for making the Fe-Mo thermocouple movable in the depth direction of the molten metal container; distance detection means for detecting the moving distance of the Fe-Mo thermocouple; and contact between the Fe-Mo thermocouple and the molten metal. A molten metal level measuring device, comprising: means for detecting a change in output due to the change in output, and measures a molten metal level based on a moving distance of the Fe-Mo thermocouple whose output has changed.
JP32928989A 1989-12-18 1989-12-18 Apparatus for measuring level of molten metal Pending JPH03188328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32928989A JPH03188328A (en) 1989-12-18 1989-12-18 Apparatus for measuring level of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32928989A JPH03188328A (en) 1989-12-18 1989-12-18 Apparatus for measuring level of molten metal

Publications (1)

Publication Number Publication Date
JPH03188328A true JPH03188328A (en) 1991-08-16

Family

ID=18219791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32928989A Pending JPH03188328A (en) 1989-12-18 1989-12-18 Apparatus for measuring level of molten metal

Country Status (1)

Country Link
JP (1) JPH03188328A (en)

Similar Documents

Publication Publication Date Title
US5578763A (en) Electromagnetic flow meter
EP0060069B1 (en) A probe and a system for detecting wear of refractory wall
US4843234A (en) Consumable electrode length monitor based on optical time domain reflectometry
EP1066501A1 (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
JPS5831284A (en) Device for detecting metallic bath surface in slag-metal bath
SU629905A3 (en) Device for continuous measurement of temperature of chamber wall in metallurgical furnace
JP3891592B2 (en) Method and infiltration meter for measuring electrochemical activity
JP5263905B2 (en) Molten metal measurement system and probe used in the system
JPS6037254A (en) Control of liquid level of molten metal bath
US4893895A (en) An improved encased high temperature optical fiber
JPH03188328A (en) Apparatus for measuring level of molten metal
CN110230975B (en) Steel slag layer thickness measuring device
JPS61153555A (en) Method and device for detecting presence of substance or generation of change immediately before physical state change in fluid
JP3138953B2 (en) Slag thickness measuring device
GB2286051A (en) Determining the thickness of layers on a metal melt
CN110595419A (en) System and method for measuring thickness of liquid slag layer of casting powder
KR100470044B1 (en) Apparatus for detecting molten steel level using sub-lance
US4449700A (en) Method and apparatus for sampling or measuring a parameter of a metal melt
JPS62174313A (en) Apparatus for detecting slag level of molten metal bath
JP4181374B2 (en) Method for measuring surface position of molten steel layer and / or thickness of slag layer, apparatus thereof and probe used therefor
JPH04348230A (en) Dipping type level gauge for high temperature molten metal, dipping type temperature measuring apparatus with level measuring function for high temperature molten metal and surveillance probe with level measuring function
JPS6388465A (en) Device for measuring flow velocity of liquid metal circulating in pipe at low speed
JP3779809B2 (en) Method and apparatus for continuous casting of molten metal
JP5375815B2 (en) Method for controlling immersion depth of probe for measuring molten metal, and probe for measuring molten metal used therefor
JPH10176945A (en) Measuring method for temperature of slug or position of slug level at inside of melting furnace