JPH03188205A - Wear resistant machine parts and manufacture thereof - Google Patents

Wear resistant machine parts and manufacture thereof

Info

Publication number
JPH03188205A
JPH03188205A JP32508489A JP32508489A JPH03188205A JP H03188205 A JPH03188205 A JP H03188205A JP 32508489 A JP32508489 A JP 32508489A JP 32508489 A JP32508489 A JP 32508489A JP H03188205 A JPH03188205 A JP H03188205A
Authority
JP
Japan
Prior art keywords
wear
metal powder
resistant
metal
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32508489A
Other languages
Japanese (ja)
Inventor
Naoharu Hamasaka
直治 浜坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP32508489A priority Critical patent/JPH03188205A/en
Publication of JPH03188205A publication Critical patent/JPH03188205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture machine parts constituted of metal body composed of complex structure and improved in wear resistance by pressurized-sintering a metal basis having deep hardening metal powder surface and shallow hardening metal powder surface on the front and back surfaces respectively. CONSTITUTION:For example, in the case of manufacturing a cylindrical track bush, a first metal powder material 2 and a second metal powder material 3 are packed so that the first metal powder material 2, where a hardening layer having high hardness and deep quenched thickness is obtd., exists on outer diameter face side in a capsule 1, which is burnt out with heat similar heating of the tack bush and the second metal powder material 3, where the shallow hardness layer is obtd., exists on inner diameter face side. Successively, the air in the capsule 1 is sufficiently removed through air exhaust hole 4 and this hole 4 is sealed and the capsule is charged into an HIP apparatus 5 and heated at about 1,000-1,200 deg.C with a heater 6 and also 200-1,000 kg/cm<2> of pressure is applied with compressed gas 7 to obtain the sintered body 8 integrating the deep and shallow hardening metal powders 2, 3. After machining this sintered body 8 having complex layer to the prescribed dimension, by executing the quenching to the inner and outer diameter surfaces at the same time, the track bush having high accuracy is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は耐摩耗性機械部品に関し、より詳しくは第一お
よび第二の耐摩耗性面を表裏関係に有する耐摩耗性機械
部品に係るものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a wear-resistant mechanical component, and more particularly to a wear-resistant mechanical component having first and second wear-resistant surfaces facing each other. It is.

[従来の技術] 従来、この種の耐摩耗性機械部品、例えば外径面および
内径面が表裏関係の第一および第二耐摩耗性面である装
軌車両の履帯に用いられる円筒状のトラックブツシュは
、材料として低合金鋼(SCM 415)1,420)
1等)を用い、浸炭焼入れ処理により外径面側および内
径面側に硬化層が形成されることにより得られている。
[Prior Art] This type of wear-resistant mechanical component has conventionally been used, for example, a cylindrical track used in the track of a tracked vehicle in which the outer diameter surface and the inner diameter surface are the first and second wear-resistant surfaces that are front and back. Bush is made of low alloy steel (SCM 415) 1,420)
1 etc.), and a hardened layer is formed on the outer diameter side and the inner diameter side by carburizing and quenching.

なお、この硬化層の深さおよび硬さが耐摩耗性に比例し
ているとともに、浸炭焼入れ処理によれば処理表面から
カーボンを拡散侵入させ、その後に焼入れ処理すること
によってロックウェル硬さ60〜62程度の硬化層が得
られる。
Note that the depth and hardness of this hardened layer are proportional to the wear resistance, and by carburizing and quenching, carbon is diffused into the treated surface and then quenched to achieve a Rockwell hardness of 60~60. About 62 cured layers are obtained.

[発明が解決しようとする課題] しかしながら、前述されたものは、トラックブツシュの
ように外径面側には高耐摩耗性を必要とし、内径面側に
は外径面はどの高耐摩耗性を必要としないような場合で
も、外径面側および内径面側に同一摩耗性の同−深さ等
の硬化層が形成されている。
[Problems to be Solved by the Invention] However, the above-mentioned thing requires high wear resistance on the outer diameter side like a track bushing, and the inner diameter side requires high wear resistance on the outer diameter side. Even in cases where hardness is not required, hardened layers with the same abrasiveness and the same depth are formed on the outer diameter side and the inner diameter side.

したがって、外径面側の硬化層と内径面側の硬化層との
間に硬度が低く靭性に富んだ金属素地部を確保すると耐
摩耗性機械部品として作用両面間の厚みが制限されるよ
うな場合には、同様に同−深さの硬化層が内径面側に形
成されるため高耐摩耗性を要する外径面側の硬化層の深
さが充分に採れず、耐摩耗性が欠けるようになり機械部
品としての耐摩耗性寿命が短くなるという問題点がある
Therefore, if a metal substrate with low hardness and high toughness is secured between the hardened layer on the outer diameter side and the hardened layer on the inner diameter side, it will function as a wear-resistant mechanical part and limit the thickness between the two surfaces. In this case, a hardened layer of the same depth is formed on the inner diameter side, so the hardened layer on the outer diameter side, which requires high wear resistance, cannot be sufficiently deep, resulting in a lack of wear resistance. Therefore, there is a problem that the wear resistance life as a mechanical part is shortened.

なお、耐摩耗性が低くてもよい面に防炭処理をして浸炭
の深さを防止しようとすれば別途の工程を要し生産性が
悪いという問題点がある。
In addition, if an attempt is made to prevent the depth of carburization by performing carburization treatment on a surface that may have low wear resistance, there is a problem in that an additional process is required and productivity is poor.

また、特開昭59−77979号公報にはトラックブツ
シュの外周面および内周面から肉厚中心部に向って高周
波焼入れをそれぞれ行い、内周面に所要硬度を持たせる
手段が開示されているが、この手段によるときも外周面
側に先づ焼入し、次いで内周面側に焼入れするという複
数回の焼入れ工程を要し、さらにこれらの両工程が終っ
てから低温焼戻しを行うので、やはり生産性の向上は望
み難い。
Furthermore, Japanese Patent Application Laid-open No. 59-77979 discloses a means for imparting the required hardness to the inner circumferential surface by induction hardening the track bushing from the outer circumferential surface and the inner circumferential surface toward the center of the wall thickness. However, even when using this method, multiple quenching steps are required, first hardening the outer peripheral surface and then hardening the inner peripheral surface, and low-temperature tempering is performed after both of these steps are completed. However, it is difficult to expect productivity to improve.

本発明は前述のような問題点を解消することを目的とし
、生産性の良いものでありながら、必要な耐摩耗面側に
充分に高耐摩耗性を得るための深い硬化層が得られ、さ
らには靭性に富んだ金属素地部を充分に確保できて機械
部品としての耐摩耗寿命の向上が図れる耐摩耗性機械部
品を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, and while it is highly productive, it is possible to obtain a deep hardened layer on the required wear-resistant side to obtain sufficiently high wear resistance. Furthermore, it is an object of the present invention to provide a wear-resistant mechanical component that can sufficiently secure a metal base portion with high toughness and improve the wear-resistant life of the mechanical component.

[課題を解決するだめの手段] 前述した目的を達成するため本発明の機械部品は、 第一および第二の耐摩耗性面を表裏関係に有する耐摩耗
性機械部品において、 焼入れ硬度が高く、深い硬化層が得られる第一の金属粉
末材料より生成される前記第一耐摩耗性面側を形成する
金属部、 浅い硬化層が得られる第二の金属粉末材料より生成され
る前記第二耐摩耗性面側を形成する金属部および、 前記第一耐摩耗性面側の金属部と第二耐摩耗性面側の金
属部間に存在する金属素地部を有する複層構造の金属体
より構成される。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the mechanical component of the present invention is a wear-resistant mechanical component that has first and second wear-resistant surfaces facing each other, and has a high quenching hardness; The metal part forming the first wear-resistant surface side is produced from a first metal powder material that provides a deep hardened layer, and the second wear-resistant surface is produced from a second metal powder material that provides a shallow hardened layer. Consisting of a metal body with a multi-layer structure having a metal part forming an abrasion-resistant side, and a metal base part existing between the metal part on the first wear-resistant side and the metal part on the second wear-resistant side. be done.

また、本発明による耐摩耗性機械部品の製造法は、 第一および第二の耐摩耗性を表裏関係に有する耐摩耗性
機械部品の製造方法において、前記第一耐摩耗性面側に
は、焼入れ硬度が高く深い硬化層が得られる第一の金属
粉末材料が、また前記第二耐摩耗性面側には浅い硬化層
が得られる第二の金属粉末材料が位置するようにそれら
第一および第二の金属粉末材料の複層構造を形成する工
程、 この形成される第一および第二の金属粉末材料の複層構
造を熱間アイソスタチックプレスにより焼結する工程お
よび この焼結される第一および第二の金属粉末材料の複層構
造を焼入れする工程よりなる。
Further, the method for manufacturing a wear-resistant mechanical component according to the present invention includes: a method for manufacturing a wear-resistant mechanical component having first and second wear-resistant surfaces on the front and back sides, wherein the first wear-resistant surface side has: The first and second metal powder materials are arranged so that the first metal powder material with high quench hardness and a deep hardened layer is located on the second wear-resistant side, and the second metal powder material with a shallow hardened layer is located on the second wear-resistant side. a step of forming a multilayer structure of a second metal powder material; a step of sintering the formed multilayer structure of the first and second metal powder materials by hot isostatic pressing; It consists of a step of hardening the multilayer structure of first and second metal powder materials.

[作  用] 焼入れ硬化層の硬度が高く深い硬化層が得られる第一の
金属粉末材料と、浅い硬化層が得られる第二の金属粉末
材料との複層構造を焼入れすることにより両便化層間に
靭性に富み疲労強度の向上をもたらす金属素地部を残す
ことを可能としている。そして高耐摩耗性を要する耐摩
耗性面側には深い硬化層が得られ、また比較的低い耐摩
耗性で良い耐摩耗性面側には浅い硬化層が得られる。
[Function] By quenching the multilayer structure of the first metal powder material that has a high hardness and a deep hardened layer, and the second metal powder material that provides a shallow hardened layer, it is possible to achieve both convenience. This makes it possible to leave a metal base part between the layers that has high toughness and improves fatigue strength. A deep hardened layer can be obtained on the abrasion resistant side that requires high abrasion resistance, and a shallow hardened layer can be obtained on the abrasion resistant side that requires relatively low abrasion resistance.

[発明の効果コ したがって、焼入れだけの生産性の良いものでありなが
ら必要な耐摩耗性面側に充分に高耐摩耗性を得るための
深い硬化層が得られるとともに、比較的低い摩耗性で良
い耐摩耗性面側の浅い硬化層により靭性に富んだ金属素
地部が充分に得られて疲労強度も確保でき、機械部品と
しての耐摩耗寿命の向上が図れる。
[Effects of the invention] Therefore, although it is highly productive with only quenching, it is possible to obtain a deep hardened layer on the required wear-resistant side to obtain sufficiently high wear resistance, and to achieve relatively low wear resistance. The shallow hardened layer on the side with good wear resistance provides a metal substrate with sufficient toughness, ensuring fatigue strength and improving the wear resistance life of mechanical parts.

[実 施 例] 次に本発明の具体的な一実施例につき図面を参照しつつ
詳説する。
[Example] Next, a specific example of the present invention will be described in detail with reference to the drawings.

第一面側を外径面側、第二面側を内径面側とする円筒状
のトラックブツシュについて説明すれば、この機械部品
は第1図ないし第4図に示されるような工程で得られる
。先づ第1図に示されるように、加熱により焼滅する例
えば合成樹脂製で目的の機械部品と相似のカプセル1 
(本実施例では円筒状のトラックブツシュと相似で目的
製品に比べ内径はやや小に、外径と長さとはやや大につ
くられている。)に、外径面側には第一の金属粉末材料
として焼入れ性を高くした深硬化性金属粉末2が、また
内径面側には第二の金属粉末材料として焼入れ性が第一
の金属粉末材料より低くした浅硬化性金属粉末3が存在
するように深硬化性金属粉末2および浅硬化性金属粉末
3がそれぞれ充填される。次に第2図に示されるように
カプセルIの上部開口部を閉封するとともに、脱気口4
からカプセル1内の空気を充分に脱気し、脱気後直ちに
脱気口4を密封する。密封されたカプセル1は、第3図
に示されるように熱間アイソスタチックプレスが施され
るHIP装置5に納められる。このHIP装置5では内
部に設けられたヒータ6により1000℃〜1200t
に加熱されるとともに導入される圧縮ガス7により20
0〜1000kg/carの圧力により圧密され、密封
されたカプセル1内の深・浅硬化性金属粉は一体化した
焼結体8となる。熱間アイソスタチックプレス処理され
た複層の焼結体8は、この実施例におけるトラックブツ
シュの所定寸法に機械加工した後内外径面の焼入れを同
時に行う。焼入れは油焼入れ、水焼入れまたは高圧水ス
プレ焼入れが適用できる。第4図に高圧水スプレ焼入れ
の状態が示されている。この高圧水スプレ焼入れは所定
温度に加熱、保持した後、2 kg / cI+!以上
の高圧水スプレ9を当てるもので、各部にわたり安定し
た焼入れを行うことが可能で精度の高いトラックブツシ
ュ1oを得るのに好適な手段である。
To explain a cylindrical track bushing whose first surface is the outer diameter side and whose second surface is the inner diameter side, this mechanical part is obtained by the process shown in Figures 1 to 4. It will be done. First, as shown in Fig. 1, a capsule 1 made of, for example, synthetic resin and similar to the target mechanical part is burnt out by heating.
(In this example, it is similar to a cylindrical track bushing and has a slightly smaller inner diameter and a slightly larger outer diameter and length than the target product.) Deep hardening metal powder 2 with high hardenability is present as a metal powder material, and shallow hardening metal powder 3 with hardenability lower than the first metal powder material is present on the inner diameter side as a second metal powder material. The deep hardening metal powder 2 and the shallow hardening metal powder 3 are respectively filled in such a manner. Next, as shown in FIG. 2, close the upper opening of the capsule I, and
The air inside the capsule 1 is sufficiently degassed, and the degassing port 4 is immediately sealed after degassing. The sealed capsule 1 is placed in a HIP device 5 where hot isostatic pressing is performed, as shown in FIG. In this HIP device 5, the heating temperature is 1000℃~1200t by the heater 6 provided inside.
20 by the compressed gas 7 introduced while being heated to 20
The deep and shallow hardening metal powder in the capsule 1 which is compressed and sealed under a pressure of 0 to 1000 kg/car becomes an integrated sintered body 8. The multilayer sintered body 8 subjected to hot isostatic pressing is machined to the predetermined dimensions of the track bushing in this embodiment, and then the inner and outer diameter surfaces are simultaneously hardened. For quenching, oil quenching, water quenching, or high-pressure water spray quenching can be applied. FIG. 4 shows the state of high-pressure water spray hardening. This high-pressure water spray quenching heats and maintains a predetermined temperature and then produces 2 kg/cI+! By applying the above-mentioned high-pressure water spray 9, it is possible to perform stable hardening on each part, and is a suitable means for obtaining a highly accurate track bushing 1o.

同時に深硬化性金属粉末2および浅硬化性金属粉末3が
一体化した複層の焼結体8では、焼入加工に際して第二
面側の硬化層が浅く得られる結果、深い硬化層と浅い硬
化層との間に硬度が低く靭性に富む素地層がそのまま残
存し得ることになる。
At the same time, in the multilayer sintered body 8 in which the deep-hardening metal powder 2 and the shallow-hardening metal powder 3 are integrated, a shallow hardening layer is obtained on the second surface side during quenching, resulting in a deep hardening layer and a shallow hardening layer. A base layer having low hardness and high toughness can remain between the two layers.

次に深硬化性金属粉末および浅硬化性金属粉末として種
種の金属粉末材料を用いるとともに、焼入処理が高圧水
スプレ焼入れまたは油焼入れもしくは水焼入れにより行
われた実施例につき説明する。結果は第1表に示される
ように所期の機能が得られ、特に第一面側はビッカース
硬さ(Hv)700以上(ロックウェル表面硬さでは6
0以上)が確保された。
Next, examples will be described in which various types of metal powder materials are used as the deep-hardening metal powder and the shallow-hardening metal powder, and the quenching treatment is performed by high-pressure water spray quenching, oil quenching, or water quenching. As shown in Table 1, the desired function was obtained, and the first surface in particular had a Vickers hardness (Hv) of 700 or more (Rockwell surface hardness: 6).
0 or more) was ensured.

一実施例1− 炭素含有量0.50%以上の中炭素鋼粉末を用い、Mn
、 Cr、 S iにより焼入性(Di値)を調整した
。第一面側(外径面側、以下同様)は中炭素鋼555C
粉末をDi値1.8に、第二面側(内径面側、以下同様
)は中炭素鋼555C粉末をDi値0.77にそれぞれ
調整し、複層の焼結体とした後高圧水スプレ焼入法によ
り焼入れした。
Example 1 - Using medium carbon steel powder with a carbon content of 0.50% or more, Mn
, Cr, and Si were used to adjust the hardenability (Di value). The first surface side (outer diameter side, same below) is medium carbon steel 555C
The powder was adjusted to a Di value of 1.8, and the second surface side (inner diameter side, same hereinafter) was adjusted to a Di value of 0.77 using medium carbon steel 555C powder, and after forming a multilayer sintered body, high pressure water spray was applied. Hardened by hardening method.

一実施例2− 第一面側は中炭素鋼555C粉末をDi値1.8に、第
二面側は中炭素鋼545C粉末をDl値0.77にそれ
ぞれ調整し、複層の焼結体とした後高圧水スプレ焼入法
により焼入れした。
Example 2 - Medium carbon steel 555C powder was adjusted to a Di value of 1.8 on the first surface side, and medium carbon steel 545C powder was adjusted to a Dl value of 0.77 on the second surface side, and a multilayer sintered body After that, it was quenched using a high-pressure water spray quenching method.

一実施例3− 第一面側は工具!l5KS3粉末を用いて炭化物析出に
よる高硬度(ロックウェル表面硬さ64度)を得ること
を目指し、第二面側は中炭素鋼545C粉末をDi値0
.77に調整したものとし、複層の焼結体とした後油焼
入れ法により焼入れした。
Example 3 - Tools on the first side! Aiming to obtain high hardness (Rockwell surface hardness of 64 degrees) by using l5KS3 powder due to carbide precipitation, the second surface side is made of medium carbon steel 545C powder with a Di value of 0.
.. 77, and after forming a multi-layer sintered body, it was quenched by an oil quenching method.

一実施例4 第一面側は実施例3と同様に工具鋼5KS3粉末を用い
、第二面側は中炭素鋼555C粉末をDi値0.77に
調整したものとし、複層の焼結体とした後油焼入れ法に
より焼入れした。
Example 4 Tool steel 5KS3 powder was used on the first side as in Example 3, and medium carbon steel 555C powder adjusted to a Di value of 0.77 was used on the second side. After that, it was quenched using an oil quenching method.

一実施例5 実施例3と同一の材料組合せとし、複層の焼結体とした
後水焼入れした。
Example 5 A multilayer sintered body was made using the same material combination as in Example 3, and then water quenched.

一実施例6一 実施例4と同一の材料組合せとし、複層の焼結体とした
後水焼入れした。
Example 6 The same material combination as in Example 4 was used, and a multi-layer sintered body was made, followed by water quenching.

以上の各実施例1〜6を通じて、カプセル内のへの金属
粉末材料の充填厚さは17mmで、第一面側の深硬化性
金属粉末部の厚さが7 +nl11で、第二面側の浅硬
化性金属粉末部の厚さが10順とした。
In each of Examples 1 to 6 above, the filling thickness of the metal powder material into the capsule was 17 mm, the thickness of the deep hardening metal powder part on the first surface side was 7 +nl11, and the thickness of the deep hardening metal powder part on the second surface side was 17 mm. The thickness of the shallow hardening metal powder portion was arranged in order of 10.

本発明の機械部品として、前記した実施例1のトラック
ブツシュについて、第一面側である外径面側と第二面側
である内径面側との硬化層の形成状態が第5図に示され
ている。これによれば円筒状のトラックブツシュの外径
面側は深い硬化層が形成され、内径面側の硬化層は外径
面側に比べてはるかに浅い。この第5図に示される硬化
層の分布状態から特に注目すべきことは、外径面側およ
び内径面側の表面硬度それぞれビッカース硬さ(Hv)
700以上となっているのに、両面の硬化層に挟まれる
中間層部分ではビッカース硬さ300程度の素地層を保
持していることであって、この組織分布は検鏡試験の結
果によっても確認された。
As for the track bushing of Example 1 described above as a mechanical component of the present invention, the formation state of the hardened layer on the first surface side, which is the outer diameter side, and the second surface side, which is the inner diameter side, is shown in FIG. It is shown. According to this, a deep hardened layer is formed on the outer diameter side of the cylindrical track bushing, and the hardened layer on the inner diameter side is much shallower than that on the outer diameter side. What is particularly noteworthy from the distribution state of the hardened layer shown in FIG. 5 is the Vickers hardness (Hv) of the surface hardness on the outer and inner diameter surfaces.
Even though the hardness is over 700, the intermediate layer sandwiched between the hardened layers on both sides retains a base layer with a Vickers hardness of about 300, and this structure distribution is also confirmed by the results of microscopic examination. It was done.

すなわち、第6ないし9図に示されるのは実施例6に相
当するものの金属組織の写真(倍率200倍)である。
That is, what is shown in FIGS. 6 to 9 are photographs (magnification: 200 times) of the metal structure of the material corresponding to Example 6.

第6図は第一面側の表面部域で硬度はHv 800〜8
40、第7図は複層の境界部域で第一面側(写真の左半
分)の硬度はHv 700〜740、第二面側(写真の
右半分)の硬度はHv 470〜550、第8図は中間
の素地層で硬度はHv 350および第9図は第二面側
の表面部域で硬度はHv700〜715であった。
Figure 6 shows the surface area on the first side, and the hardness is Hv 800 to 8.
40. Figure 7 shows the boundary area between multiple layers, where the hardness on the first side (left half of the photo) is Hv 700-740, the hardness on the second side (right half of the photo) is Hv 470-550, and the hardness on the second side (right half of the photo) is Hv 470-550. Figure 8 shows the intermediate base layer, which has a hardness of Hv 350, and Figure 9 shows the surface area on the second side, which has a hardness of Hv 700 to 715.

前記のような素地層の存在は、靭性をもたらし機械部品
の疲労強度を著しく向上させる。特にトラックブツシュ
に適用された場合には、トラックブツシュに特有の内径
面側から発生するクラックが、この靭性に富む中間層部
分で止まるか或いはクラックの進み速度が抑制される。
The presence of such a matrix layer provides toughness and significantly improves the fatigue strength of the mechanical component. In particular, when applied to track bushings, cracks that occur from the inner diameter side, which is unique to track bushings, are stopped at this tough intermediate layer portion or the propagation speed of the cracks is suppressed.

以上は円筒状の機械部品いついて説明が、スラストプレ
ートのような環状板でも同様である。
Although the above description has been made regarding cylindrical mechanical parts, the same applies to annular plates such as thrust plates.

4・・・脱気口 5・・・HIP装置 9・・・高圧水スプレ 10・・・トラックブツシュ 第1図ないし第4図は本発明の具体的な実施例の構成を
示すための説明図であって、 第1図は金属粉末材料の充填状態の説明図、第2図は脱
気・密封した状態の説明図、第3図は熱間アイソスタチ
ックプレス(HI P装置5)の説明図および 第4図は高圧水スプレ焼入れの説明図である。
4... Deaeration port 5... HIP device 9... High pressure water spray 10... Track bushings Figures 1 to 4 are explanations for showing the configuration of specific embodiments of the present invention. FIG. 1 is an explanatory diagram of the filled state of metal powder material, FIG. 2 is an explanatory diagram of the degassed and sealed state, and FIG. 3 is an explanatory diagram of the state of the hot isostatic press (HIP device 5). The explanatory diagram and FIG. 4 are explanatory diagrams of high-pressure water spray hardening.

第5図は本発明の実施例における金属組織の分布を示す
図である。
FIG. 5 is a diagram showing the distribution of metal structure in an example of the present invention.

第6図ないし第9図は、本発明の実施例における金属組
織を示す写真であって、 第6図は第一面側の表面部域、第7図は複層の境界部域
、第8図は中間の素地層および第9図は第二面側の表面
部域の各金属組織である。
FIGS. 6 to 9 are photographs showing metal structures in examples of the present invention, in which FIG. 6 shows the surface area on the first surface side, FIG. The figure shows the metal structure of the intermediate base layer, and FIG. 9 shows the metal structure of the surface area on the second surface side.

1・・・カプセル      6・・・ヒータ2・・・
深硬化性金属粉末 7・・・圧縮ガス3・・・浅硬化性
金属粉末 8・・・焼結体第4図 第3図 第5図 第6図 第7図 第8図 第9図
1...Capsule 6...Heater 2...
Deep hardening metal powder 7... Compressed gas 3... Shallow hardening metal powder 8... Sintered body Fig. 4 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】 1 第一および第二の耐摩耗性面を表裏関係に有する耐
摩耗性機械部品において、 焼入れ硬度が高く、深い硬化層が得られる第一の金属粉
末材料より生成される前記第一耐摩耗性面側を形成する
金属部、 浅い硬化層が得られる第二の金属粉末材料より生成され
る前記第二耐摩耗性面側を形成する金属部および、 前記第一耐摩耗性面側の金属部と第二耐摩耗性面側の金
属部間に存在する金属素地部 を有する複層構造の金属体より構成されることを特徴と
する耐摩耗性機械部品。 2 第一および第二の耐摩耗性面を表裏関係に有する耐
摩耗性機械部品において、 前記第一耐摩耗性面側には、焼入れ硬度が高く深い硬化
層が得られる第一の金属粉末材料が、また前記第二耐摩
耗性面側には浅い硬化層が得られる第二の金属粉末材料
が位置するようにそれら第一および第二の金属粉末材料
の複層構造を形成する工程、 この形成される第一および第二の金属粉末材料の複層構
造を熱間アイソスタチックプレスにより焼結する工程お
よび この焼結される第一および第二の金属粉末材料の複層構
造を焼入れ加工する工程 よりなることを特徴とする耐摩耗性機械部品の製造方法
。 3 前記焼入れ加工する工程は、高圧水スプレ焼入れ加
工をする工程であることを特徴とする請求項2に記載の
耐摩耗性機械部品の製造法。 4 前記焼入れ加工する工程は、油焼入れ加工する工程
であることを特徴とする請求項2に記載の耐摩耗性機械
部品の製造法。 5 前記焼入れ加工する工程は、水焼入れ加工する工程
であることを特徴とする請求項2に記載の耐摩耗性機械
部品の製造法。
[Claims] 1. A wear-resistant mechanical component having first and second wear-resistant surfaces facing each other, which is produced from a first metal powder material that has high quench hardness and can form a deep hardened layer. a metal part forming the first wear-resistant side, a metal part forming the second wear-resistant side produced from a second metal powder material that provides a shallow hardened layer, and the first wear-resistant side. 1. A wear-resistant mechanical component comprising a metal body having a multilayer structure having a metal base portion existing between a metal portion on a wear-resistant side and a metal portion on a second wear-resistant side. 2. In a wear-resistant mechanical component having a first and a second wear-resistant surface in a front-back relationship, a first metal powder material having high quench hardness and capable of forming a deep hardened layer on the first wear-resistant surface side. and a step of forming a multilayer structure of the first and second metal powder materials such that a second metal powder material that provides a shallow hardened layer is located on the second wear-resistant surface side; A step of sintering the formed multilayer structure of the first and second metal powder materials by hot isostatic pressing, and a quenching process of the sintered multilayer structure of the first and second metal powder materials. A method of manufacturing a wear-resistant mechanical part, comprising the steps of: 3. The method of manufacturing a wear-resistant mechanical component according to claim 2, wherein the hardening process is a high-pressure water spray hardening process. 4. The method of manufacturing a wear-resistant mechanical component according to claim 2, wherein the quenching step is an oil quenching step. 5. The method of manufacturing a wear-resistant mechanical component according to claim 2, wherein the quenching step is a water quenching step.
JP32508489A 1989-12-14 1989-12-14 Wear resistant machine parts and manufacture thereof Pending JPH03188205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32508489A JPH03188205A (en) 1989-12-14 1989-12-14 Wear resistant machine parts and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32508489A JPH03188205A (en) 1989-12-14 1989-12-14 Wear resistant machine parts and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03188205A true JPH03188205A (en) 1991-08-16

Family

ID=18172966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32508489A Pending JPH03188205A (en) 1989-12-14 1989-12-14 Wear resistant machine parts and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03188205A (en)

Similar Documents

Publication Publication Date Title
KR100520701B1 (en) Method of production of surface densified powder metal components
EP0619157B1 (en) Gear making process
US4251273A (en) Method of forming valve lifters
US6153023A (en) Hardened metal product produced by shot peening with shot having high hardness
CN110565048B (en) Heat treatment process for improving hot hardness and high-temperature wear resistance of hot die steel
JP3278262B2 (en) Manufacturing method of sintered gear
JP5642386B2 (en) High carbon surface densified sintered steel product and its production method
Blarasin et al. Development of a laser surface melting process for improvement of the wear resistance of gray cast iron
JPH03188205A (en) Wear resistant machine parts and manufacture thereof
US4471899A (en) Method for fabricating hollow cylinders of machines
US20110038750A1 (en) Net or near net shape powder metallurgy process
EP0605175B1 (en) A coated article and a method of coating said article
RU2354502C1 (en) Production method of surface-hardened powdered carbonised steel
KR20070084359A (en) Sintered alloys for cam lobes and other high wear articles
JPS627802A (en) Composite ring and its production
RU2287404C2 (en) Method for making iron-base sintered tool for working metal
Rao et al. Role of interacting surfaces in the performance enhancement of interference fits
Babu A material based approach to creating wear resistant surfaces for hot forging
Newkirk Heat Treatment of Powder Metallurgy Steels
KR0184417B1 (en) Method of forming sintered powdered layer by spray processing
KR100240043B1 (en) Heat treatment of die material
JPH01252704A (en) Complex member and its manufacture
JPS5836649B2 (en) Method for manufacturing hot rolling mill work rolls
JPH03240940A (en) Screw for plastic molding machine and its manufacture
KR0173774B1 (en) Surface hardening method of wearing parts