JPH03187985A - Heat insulating material for high-temperature furnace - Google Patents

Heat insulating material for high-temperature furnace

Info

Publication number
JPH03187985A
JPH03187985A JP32469189A JP32469189A JPH03187985A JP H03187985 A JPH03187985 A JP H03187985A JP 32469189 A JP32469189 A JP 32469189A JP 32469189 A JP32469189 A JP 32469189A JP H03187985 A JPH03187985 A JP H03187985A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
graphitization
phenolic resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32469189A
Other languages
Japanese (ja)
Inventor
Shinro Katsura
桂 真郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP32469189A priority Critical patent/JPH03187985A/en
Publication of JPH03187985A publication Critical patent/JPH03187985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To improve radiation heat insulating performance and strength by carbonizing a phenolic resin foam, subjecting the carbonized foam to graphitization treatment and providing a carbon cellular substance having a prescribed bulk density and graphitization degree. CONSTITUTION:The aforementioned heat insulating material for high- temperature furnaces is formed from a carbon cellular substance obtained by carbonizing a phenolic resin foam and subjecting the carbonized foam to graphitization treatment. The above-mentioned carbon cellular substance has 0.05-0.15g/cm<3> bulk density and 10-50% graphitization degree. The aforementioned heat insulating material is excellent in radiation heat insulating performance, strength, etc., and used in high-temperature furnaces employed at >=2300 deg.C temperature.

Description

【発明の詳細な説明】 発明の技術分野 本発明は高温炉などに使用される断熱材に関し、さらに
詳しくは、2300℃以上、特に2500℃以上の温度
で使用される高温炉に用いられる断熱材に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a heat insulating material used in high-temperature furnaces and the like, and more particularly, to a heat insulating material used in high-temperature furnaces used at temperatures of 2300° C. or higher, particularly 2500° C. or higher. Regarding.

発明の技術的背景 金属の溶融、あるいはファインセラミック、炭素製品の
焼成などに用いられる高温炉では、その構成部材の一つ
として断熱材が使用されている。
TECHNICAL BACKGROUND OF THE INVENTION In high-temperature furnaces used for melting metals, firing fine ceramics, carbon products, etc., a heat insulating material is used as one of its constituent members.

例えば、近年炭素繊維の高強度化、高弾性率化を行なう
ために、炭素繊維を黒鉛化する試みがなされており、こ
の黒鉛化には、2500℃以上の温度に耐え得る黒鉛化
炉が必要とされている。
For example, in recent years, attempts have been made to graphitize carbon fiber in order to increase its strength and modulus, and graphitization requires a graphitization furnace that can withstand temperatures of 2500°C or higher. It is said that

このような黒鉛化炉において使用されている断熱材とし
ては、従来では炭素繊維をピッチまたはフラン、フェノ
ール樹脂で固めたものを炭化したいわゆる成形フェルト
が使用されていた。しかし、この炭素繊維を主たる構成
成分とする断熱材は、輻射熱を遮る能力が劣り、輻射熱
が支配的になる2000℃以上の温度では充分な断熱性
能が得られないという問題があった。
The heat insulating material used in such graphitization furnaces has conventionally been so-called molded felt, which is made by carbonizing carbon fibers hardened with pitch, furan, or phenol resin. However, this heat insulating material whose main component is carbon fiber has a problem in that it has poor ability to block radiant heat, and sufficient heat insulating performance cannot be obtained at temperatures above 2000° C., where radiant heat becomes dominant.

そこで、輻射熱遮断効果が大きい断熱材として、特定の
フェノール樹脂発泡体を炭化して得た炭素多孔体が提案
されている(例えば特願昭62−64084号明細書)
Therefore, a carbon porous material obtained by carbonizing a specific phenolic resin foam has been proposed as a heat insulating material with a large radiant heat blocking effect (for example, Japanese Patent Application No. 62-64084).
.

ところが、この炭素多孔体から成る断熱材は、2300
℃以上の温度下に晒すと徐々に収縮し、この収縮により
、断熱材間に隙間を生じ、断熱性能が低下し、甚だしい
ときは断熱材間に応力を生じ、クラックが発生すること
すらあり、したがって高温炉用の断熱材として使用でき
る温度範囲が狭いということが判明した。
However, this heat insulating material made of porous carbon material has a heat resistance of 2300
When exposed to temperatures above ℃, it will gradually shrink, and this shrinkage will create gaps between the insulation materials, reducing insulation performance, and in extreme cases, stress will be created between the insulation materials, which may even cause cracks. Therefore, it was found that the temperature range in which it can be used as a heat insulating material for high-temperature furnaces is narrow.

本発明者らは、このような炭素多孔体の収縮を防止する
ために鋭意検討した結果、この収縮は炭素多孔体が長時
間高温に晒され除々に黒鉛化することに起因するとの知
見を得た。
As a result of intensive studies to prevent such shrinkage of the carbon porous material, the present inventors found that this shrinkage is caused by the carbon porous material being exposed to high temperatures for a long period of time and gradually becoming graphitized. Ta.

発明の目的 本発明はこのような現状に鑑みなされたものであり、輻
射断熱性能に優れ、かつ2300℃を越える高温下でも
黒鉛化に起因する収縮を生しない高温炉用断熱材を提供
することを目的としている。
Purpose of the Invention The present invention has been made in view of the current situation, and an object of the present invention is to provide a heat insulating material for a high temperature furnace that has excellent radiation insulation performance and does not shrink due to graphitization even at high temperatures exceeding 2300°C. It is an object.

発明の概要 本発明に係る高温炉用断熱材は、フェノール樹脂発泡体
を炭化、黒鉛化処理して得られた炭素多孔体から成る高
温炉用断熱材であって、上記炭素多孔体は、嵩密度が0
.05〜0.15g/cm3であり、かつ黒鉛化度が1
0〜50%であることを特徴としている。
Summary of the Invention The heat insulating material for a high temperature furnace according to the present invention is a heat insulating material for a high temperature furnace that is made of a porous carbon material obtained by carbonizing and graphitizing a phenolic resin foam, and the porous carbon material is bulky. Density is 0
.. 05 to 0.15 g/cm3, and the degree of graphitization is 1
It is characterized by being 0 to 50%.

本発明に係る高温炉用断熱材は、上記したような嵩密度
および黒鉛化度を有するため、輻射断熱性能に優れかつ
高温下に晒した場合でも黒鉛化による経時的な収縮をほ
とんど生じない。
Since the heat insulating material for a high temperature furnace according to the present invention has the above-mentioned bulk density and degree of graphitization, it has excellent radiation insulation performance and hardly shrinks over time due to graphitization even when exposed to high temperatures.

発明の詳細な説明 本発明で高温断熱材として用いられる炭素多孔体は、原
料として特定のフェノール樹脂発泡体を用いる。
Detailed Description of the Invention The carbon porous body used as a high-temperature heat insulating material in the present invention uses a specific phenolic resin foam as a raw material.

このフェノール樹脂発泡体は、フェノール樹脂を発泡硬
化させることにより得られ、このようなフェノール樹脂
としては、レゾール型フェノール樹脂が用いられる。
This phenol resin foam is obtained by foaming and curing a phenol resin, and a resol type phenol resin is used as such a phenol resin.

レゾール型フェノール樹脂は、公知の方法に従って、フ
ェノール類とアルデヒド類とをアルカリ触媒の存在下で
反応させることにより得られる。
A resol type phenolic resin is obtained by reacting phenols and aldehydes in the presence of an alkali catalyst according to a known method.

フェノール類としては、具体的には、フェノール、クレ
ゾール、キシレノールおよびレゾルシンなどが用いられ
る。
Specifically, phenols include phenol, cresol, xylenol, resorcinol, and the like.

アルデヒド類としては、具体的には、ホルムアルデヒド
、アセトアルデヒドおよびフルフラールなどが用いられ
る。
Specifically, formaldehyde, acetaldehyde, furfural, and the like are used as the aldehydes.

アルカリ触媒としては、具体的には、KOH。Specifically, the alkali catalyst is KOH.

NaOH,NH、’NH40)I、 エタノールアミン
およびエチレンジアミンなどが用いられる。
NaOH, NH, 'NH40)I, ethanolamine, ethylenediamine, etc. are used.

レゾール型フェノール樹脂を発泡させるための発泡剤と
しては、従来公知の種々の分解型発泡剤および蒸発型発
泡剤を用いることができる。このうち、蒸発型発泡剤が
好ましく、具体的には、パラフィン系炭化水素類、アル
コール類、エーテル類、ハロゲン化炭化水素類等を例示
できるが、なかても、ハロゲン化炭化水素類またはパラ
フィン系炭化水素を最も好ましく用いることができる。
As the foaming agent for foaming the resol type phenolic resin, various conventionally known decomposition type foaming agents and evaporation type foaming agents can be used. Among these, evaporative blowing agents are preferred, and specific examples include paraffinic hydrocarbons, alcohols, ethers, halogenated hydrocarbons, etc. Among them, halogenated hydrocarbons and paraffinic blowing agents Hydrocarbons can be most preferably used.

ハロゲン化炭化水素類としては、具体的には、クロロホ
ルム、四塩化炭素、トリクロロモノフルオロメタン(フ
ロンガスR11)、ジクロロモノフルオロメタン(同R
21)、テトラクロロジフルオロエタン(同R112)
、トリクロロトリフルオロメタン(同RII3)、ジク
ロロテトラフルオロエタン(同R114)、ジブロモト
リフルオロエタン(同R114B2)などが好適に用い
られる。
Specifically, halogenated hydrocarbons include chloroform, carbon tetrachloride, trichloromonofluoromethane (Freon gas R11), dichloromonofluoromethane (Freon gas R11), and dichloromonofluoromethane (Freon gas R11).
21), tetrachlorodifluoroethane (same R112)
, trichlorotrifluoromethane (RII3), dichlorotetrafluoroethane (R114), dibromotrifluoroethane (R114B2), and the like are preferably used.

パラフィン系炭化水素としては、プロパン、ブタン、ペ
ンタン、ヘキサン、シクロペンクン、シクロヘキサンな
どが好適に用いられる。
As the paraffinic hydrocarbon, propane, butane, pentane, hexane, cyclopenkune, cyclohexane, etc. are preferably used.

このような発泡剤は、レゾール型フェノール樹脂100
重量部に対し、1〜30重量部の割合で用いることが好
ましい。
Such a blowing agent is resol type phenolic resin 100
It is preferable to use it in a proportion of 1 to 30 parts by weight.

レゾール型フェノール樹脂を発泡硬化させるために、発
泡剤とともに硬化剤が用いられるが、このような硬化剤
として、従来公知の種々の硬化剤が、プレポリマーの種
類に応じて選択され、使用される。具体的には、硫酸、
塩酸、リン酸、フェノールスルホン酸、ベンゼンスルホ
ン酸、トルエンスルホン酸、メタクレゾールスルホン酸
、レゾルシノールスルホン酸、ブチルスルホン酸、プロ
ピルスルホン酸などが挙げられる。
In order to foam and cure resol type phenolic resin, a curing agent is used together with a foaming agent, and various conventionally known curing agents are selected and used according to the type of prepolymer. . Specifically, sulfuric acid,
Examples include hydrochloric acid, phosphoric acid, phenolsulfonic acid, benzenesulfonic acid, toluenesulfonic acid, metacresolsulfonic acid, resorcinolsulfonic acid, butylsulfonic acid, propylsulfonic acid, and the like.

このような硬化剤は、通常、レゾール型フェノール樹脂
100重量部に対し、3〜30重量部の割合で用いられ
ることが好ましい。
It is usually preferable to use such a curing agent in an amount of 3 to 30 parts by weight per 100 parts by weight of the resol type phenolic resin.

本発明の炭素多孔体の原料として使用されるフェノール
樹脂発泡体は、以上述べたレゾール型フェノール樹脂、
硬化剤および発泡剤を含むが、さらに整泡剤を含んでい
てもよく、この整泡剤の量および種類を選択することに
より、発泡体のセル径、および独立気泡率を調節するこ
とができる。
The phenolic resin foam used as a raw material for the porous carbon material of the present invention includes the above-mentioned resol type phenolic resin,
Contains a curing agent and a foaming agent, but may also contain a foam stabilizer, and by selecting the amount and type of this foam stabilizer, the cell diameter and closed cell ratio of the foam can be adjusted. .

本発明で用いることのできる整泡剤は、HLB値が13
以上、好ましくは14以上のいわゆる界面活性剤であり
、例えば具体的には、親水括となるポリオキシエチレン
と、疎水基となるポリプロピレングリコール、ソルビタ
ン、ヒマシ油、ポリメチルシロキサンなどとのブロック
共重合物を挙げることができる。これらのうちでは、ポ
リオキシソルビタンステアレートが特に好ましく、この
整泡剤によれば、整泡力に優れるためにフェノール樹脂
発泡体のセル径を小さくでき、したがってこの発砲体を
炭化、および黒鉛化して得られた炭素多孔体の熱伝導率
を低くできる他、フェノール樹脂発砲体の独立気泡率を
0%に近くすることができ、以後の炭化、黒鉛化処理を
容易とすることができる。
The foam stabilizer that can be used in the present invention has an HLB value of 13.
The above is preferably a so-called surfactant of 14 or more, and specifically, a block copolymerization of polyoxyethylene as a hydrophilic group and polypropylene glycol, sorbitan, castor oil, polymethylsiloxane, etc. as a hydrophobic group. I can name things. Among these, polyoxysorbitan stearate is particularly preferred. This foam stabilizer has excellent foam regulating ability, so it is possible to reduce the cell diameter of the phenolic resin foam, and therefore it is possible to carbonize and graphitize the foam. In addition to lowering the thermal conductivity of the carbon porous body obtained, the closed cell ratio of the phenolic resin foam can be made close to 0%, and subsequent carbonization and graphitization treatments can be facilitated.

このような整泡剤は、レゾール型フェノール樹脂100
重量部に対し、0.1〜10重量部、好ましくは1〜3
重量部の割合で用いることが好ましい。
Such foam stabilizers include resol type phenolic resin 100
0.1 to 10 parts by weight, preferably 1 to 3 parts by weight
It is preferable to use parts by weight.

また本発明においては、必要に応じてさらに他の成分、
例えば充填剤を併用してもかまわない。
In addition, in the present invention, other components may be added as necessary.
For example, a filler may be used in combination.

上記のようなレゾール型フェノール樹脂、発泡剤および
硬化剤などの原料からのフェノール樹脂発泡体の製造は
、これらの原料を一挙にもしくは逐次に混合撹拌して得
られたクリーム状のフェノール樹脂プレポリマー組成物
を、例えば保温された金型内もしくは二重帯状コンベア
ー上に供給して発泡、硬化させることにより行なわれる
The production of phenolic resin foam from raw materials such as resol type phenolic resin, blowing agent, and hardening agent as described above involves mixing and stirring these raw materials all at once or sequentially to produce a creamy phenolic resin prepolymer. This is carried out by supplying the composition, for example, into a heat-retained mold or onto a double belt conveyor, and then foaming and curing it.

なお本発明では、炭素多孔体の嵩密度は、断熱性能と機
械的強度とのバランスから0.05〜0.15g/cm
3に限定される。このような範囲の嵩密度を有する炭素
多孔体を製造するには、原料であるフェノール樹脂発泡
体の嵩密度を厳密に調整することが必要である。炭素多
孔体の嵩密度は、一般に原料のフェノール樹脂発泡体の
嵩密度よりやや高くなるので、原料のフェノール樹脂発
泡体の嵩密度は上記炭素多孔体の嵩密度よりやや低く設
定される。フェノール樹脂発泡体の嵩密度は、発泡剤の
種類、原料の温度、金型温度などに左右され、これらの
要因を調整することにより11的の嵩密度を有する発泡
体を得ることができる。
In the present invention, the bulk density of the carbon porous material is 0.05 to 0.15 g/cm in view of the balance between heat insulation performance and mechanical strength.
Limited to 3. In order to produce a carbon porous body having a bulk density in such a range, it is necessary to precisely adjust the bulk density of the phenolic resin foam as a raw material. Since the bulk density of the carbon porous body is generally slightly higher than that of the raw material phenol resin foam, the bulk density of the raw material phenol resin foam is set to be slightly lower than the bulk density of the carbon porous body. The bulk density of a phenolic resin foam depends on the type of blowing agent, the temperature of the raw material, the mold temperature, etc., and by adjusting these factors, a foam having a bulk density of 11 can be obtained.

このようにして得られたフェノール樹脂発泡、体は、そ
のまま、もしくは切断して板状体の成形体として用いら
れる。、このように板状体とすることにより、樹脂発砲
体を容易に大量生産することができるため好ましい。
The phenolic resin foam thus obtained can be used as it is or after being cut into a molded plate. By making the resin foam into a plate-like body in this way, it is possible to easily mass-produce the resin foam, which is preferable.

本発明では、このようなフェノール樹脂発砲体は、非酸
化性または微酸化性雰囲気下で焼成し、炭素化すること
によって炭素多孔体とされる。
In the present invention, such a phenolic resin foam is fired in a non-oxidizing or slightly oxidizing atmosphere and carbonized to form a carbon porous body.

すなわち、フェノール樹脂発砲体は、減圧下またはA「
ガス、H,eガス、N2ガス、ハロゲンガス、アンモニ
アガス、水素ガス、−酸化炭素などの中で、好ましくは
600℃以上、さらに好ましくは900℃以上の温度で
焼成される。このようにしてフェノール樹脂発泡体を炭
素化することにより、強度に優れる炭素多孔体を得るこ
とができる。
That is, the phenolic resin foam is prepared under reduced pressure or
The firing is performed preferably at a temperature of 600° C. or higher, more preferably 900° C. or higher, in gas, H, e gas, N2 gas, halogen gas, ammonia gas, hydrogen gas, carbon oxide, or the like. By carbonizing the phenolic resin foam in this manner, a carbon porous body with excellent strength can be obtained.

また、焼成時の昇温速度は、特に制限はないものの、一
般に樹脂の分解が開始される200〜600℃付近にか
けては、徐々に行なうほうが好ましい。
Further, although there is no particular restriction on the rate of temperature increase during firing, it is preferable to increase the temperature gradually around 200 to 600°C, where decomposition of the resin generally starts.

本発明で高温断熱材として用いる炭素多孔体は、このよ
うにして得られた炭素多孔体に、さらに黒鉛化処理を施
して製造され、その黒鉛化度が10〜50%、好ましく
は20〜40%の範囲である。
The carbon porous body used as a high-temperature heat insulating material in the present invention is produced by further graphitizing the carbon porous body obtained in this way, and the degree of graphitization is 10 to 50%, preferably 20 to 40%. % range.

炭素多孔体の黒鉛化度をこのような範囲とすることによ
り、2500℃以上の温度で使用した場合での経時的な
収縮や反りを生じ難く、かつ強度および輻射断熱性能が
高い高温断熱材を得ることができる。
By setting the degree of graphitization of the carbon porous material within this range, it is possible to create a high-temperature insulation material that is resistant to shrinkage or warping over time when used at temperatures of 2500°C or higher, and has high strength and radiation insulation performance. Obtainable.

なお、本発明における黒鉛化度とは、X線回折強度曲線
における(002)面の回折ピークから計算される黒鉛
的結晶構造パラメータGdであり、以下このパラメータ
Gdを添付第1図を参照して説明する。すなわちこのパ
ラメータGdは、X線回折強度曲線Aの(002)面に
基づくなだらかな0 回折ピーク■、すなわち回折角(2θ)が18〜32″
の間に出現する回折ピーク■、およびこのピーク■のベ
ースラインBで区画される図形の面積S1と、(002
)面に基づく鋭いピーク■、すなわち回折角(2θ)が
25.5〜26.5°の間にピーク■の上に出現する1
つまたは複数個のピーク■およびピーク■で区画される
図形の面積S2とから次式(1)で計算される値で、炭
素多孔体の黒鉛化のし1安となる数値である。
The degree of graphitization in the present invention is a graphitic crystal structure parameter Gd calculated from the diffraction peak of the (002) plane in an X-ray diffraction intensity curve. explain. That is, this parameter Gd is a gentle 0 diffraction peak based on the (002) plane of the X-ray diffraction intensity curve A, that is, a diffraction angle (2θ) of 18 to 32''.
The area S1 of the figure defined by the diffraction peak ■ appearing between and the baseline B of this peak ■, and (002
) A sharp peak ■ based on the surface, that is, a diffraction angle (2θ) of 1 that appears above the peak ■ between 25.5 and 26.5°
This is a value calculated from the following formula (1) from one or more peaks (1) and the area S2 of the figure defined by the peak (2), and is a value that is one of the lowest rates of graphitization of a porous carbon material.

G d−8/ (S  + 82 ) x log(%
)  ・=(+)1 このような黒鉛化炭素多孔体は、黒鉛化前の炭素多孔体
を不活性雰囲気下、特定の温度で一定時間放置すること
により製造される。
G d-8/ (S + 82) x log(%
) ・=(+)1 Such a graphitized carbon porous body is produced by leaving a carbon porous body before graphitization at a specific temperature in an inert atmosphere for a certain period of time.

このような不活性雰囲気は、具体的には、N2、Ar5
Heなどの不活性ガスまたはコークス粉などの詰め粉の
存在下で形成される。
Such an inert atmosphere specifically includes N2, Ar5
It is formed in the presence of an inert gas such as He or a filler powder such as coke powder.

また、黒鉛化温度は、少なくとも2300℃以上、好ま
しくは2400℃以上、3000℃以下である。黒鉛化
処理時間は処理温度との兼ね合いで決定され、高温にな
る程黒鉛化度の進行が早い1ま ため、より短時間とすべきである。
Further, the graphitization temperature is at least 2300°C or higher, preferably 2400°C or higher and 3000°C or lower. The graphitization treatment time is determined in consideration of the treatment temperature, and the higher the temperature, the faster the degree of graphitization progresses, so it should be shorter.

以上説明したように、本発明に係る高温炉用断熱材は、
フェノール樹脂発泡体を原料とし、嵩密度が0.05〜
0.15g/cm3で、黒鉛化度Gdが10〜40%で
あるため、特に高温での断熱性能に優れ、高温下で収縮
、反りを生じず、かつ断熱材として充分な強度を有して
いる。したがって、従来では適当な断熱材料がなかった
2500℃以上の温度での加熱を必要とする炉、例えば
高強度、高剛性の炭素繊維を製造するための黒鉛化炉に
用いる断熱材として有用である。
As explained above, the heat insulating material for high temperature furnace according to the present invention is
Made from phenolic resin foam, bulk density is 0.05~
Since it has a graphitization degree Gd of 0.15 g/cm3 and 10 to 40%, it has particularly excellent heat insulation performance at high temperatures, does not shrink or warp at high temperatures, and has sufficient strength as a heat insulating material. There is. Therefore, it is useful as a heat insulating material for use in furnaces that require heating at temperatures of 2,500°C or higher, for example, graphitization furnaces for producing high-strength, high-rigidity carbon fibers, for which no suitable heat-insulating materials have been available in the past. .

発明の効果 本発明に係る高温炉用断熱材は、フェノール樹脂発泡体
を炭化、黒鉛化処理して得られた炭素多孔体から成る高
温炉用断熱材であって、上記炭素多孔体は、嵩密度が0
.05〜0.15g/cm3であり、かつ黒鉛化度が1
0〜50%であるため、輻射断熱性能に優れかつ高温下
に晒した場合でも黒鉛化による紅時的な収縮および反り
をほとんど生しない。
Effects of the Invention The heat insulating material for a high temperature furnace according to the present invention is a heat insulating material for a high temperature furnace made of a porous carbon material obtained by carbonizing and graphitizing a phenolic resin foam, and the porous carbon material is bulky. Density is 0
.. 05 to 0.15 g/cm3, and the degree of graphitization is 1
Since it is 0 to 50%, it has excellent radiation heat insulation performance and hardly causes shrinkage or warping due to graphitization even when exposed to high temperatures.

 2 また、断熱材として充分な強度を有しているため、従来
適当な断熱材料がなかった2500℃以上の温度で加熱
するための炉、たとえば高強度、高剛性の炭素繊維を得
るための黒鉛化炉用の断熱材として有用である。
2 In addition, since it has sufficient strength as a heat insulating material, it can be used in furnaces for heating at temperatures of 2,500°C or higher, for which there were no suitable heat insulating materials, such as graphite for obtaining high strength and high rigidity carbon fibers. It is useful as a heat insulating material for chemical furnaces.

次に実施例を挙げて本発明をさらに詳しく説明するが、
本発明はその要旨を超えないかぎり、これらの実施例に
何ら制約されるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples in any way as long as it does not go beyond the gist of the invention.

実施例ル ゾール100重量部、硬化剤としてのパラトルエンスル
ホン酸10重量部および発泡剤としてのフロンガス(オ
レフィン123)6重量部を高速ミキサーで充分に撹拌
した後、該混合物を木型内に流し込んで蓋をした後、8
0℃のエアーオーブン内に30分放置することにより、
縦50cm。
Example 100 parts by weight of Luzol, 10 parts by weight of para-toluenesulfonic acid as a hardening agent, and 6 parts by weight of chlorofluorocarbon gas (olefin 123) as a blowing agent were sufficiently stirred with a high-speed mixer, and the mixture was poured into a wooden mold. After closing the lid, 8
By leaving it in an air oven at 0℃ for 30 minutes,
Height 50cm.

横500111%熱さ5cm、嵩密度0.08g/cm
3の板状フェノール樹脂発泡体を得た。
Width 500111% Height 5cm, Bulk density 0.08g/cm
A plate-shaped phenolic resin foam of No. 3 was obtained.

この成形板をマツフル炉に入れ、窒素雰囲気下で昇温速
度60℃/時間で温度800℃まで昇温して加熱し、次
いで同温度で2時間保持後冷却し3 て炭素多孔体を製造した。
This molded plate was placed in a Matsufuru furnace and heated under a nitrogen atmosphere at a temperature increase rate of 60°C/hour to a temperature of 800°C, then held at the same temperature for 2 hours, and then cooled to produce a carbon porous body. .

以上の方法で得た炭素多孔体を黒鉛トレー内に入れ、該
トレーを抵抗加熱炉に入れ、炉内をN2雰囲気に置換し
た後、3℃/分の速度で2600℃の温度まで昇温し、
同温度を5時間保持し、次いで炭素多孔体をそのまま炉
内に放置し、冷却してから取り出した。
The porous carbon material obtained by the above method was placed in a graphite tray, the tray was placed in a resistance heating furnace, and after replacing the inside of the furnace with N2 atmosphere, the temperature was raised to a temperature of 2600°C at a rate of 3°C/min. ,
The same temperature was maintained for 5 hours, and then the porous carbon material was left in the furnace, cooled, and then taken out.

以上の方法で得た炭素多孔体の物性、性能を次の方法で
評価した。
The physical properties and performance of the carbon porous material obtained by the above method were evaluated by the following method.

熱伝導率:厚さ30關、直径300 +nの板を平板比
較法で上流温度2500℃、下流 温度50℃で総環流熱量を測定するこ とにより熱伝導率を91算して求め た。
Thermal conductivity: The thermal conductivity was calculated by calculating 91 by measuring the total reflux heat amount of a plate with a thickness of 30 mm and a diameter of 300 mm using the flat plate comparison method at an upstream temperature of 2500°C and a downstream temperature of 50°C.

圧縮強度:JISKに基づいて測定した。Compressive strength: Measured based on JISK.

黒鉛化度:理学電機■製回転対陰極型X線回折装Typ
eローターフレックスRU800を用い、50kV、3
00mASCuk α−線(λ−1,5418A)、ス リット巾は1/2″、0.15關、走 4 査速度1°/分、フルスケール800 cpsの測定条件において反射法で測定した。
Degree of graphitization: Rotating anode cathode type X-ray diffraction system manufactured by Rigaku Corporation ■
Using e-rotorflex RU800, 50kV, 3
Measurement was performed using a reflection method under the following measurement conditions: 00mASCuk α-ray (λ-1, 5418A), slit width of 1/2″, 0.15mm, scanning speed of 1°/min, and full scale of 800 cps.

熱収縮度: 200 X 200 X 500 mの板
状炭素多孔体をN2雰囲気、2500℃の 炉内に放置し、50時間後の\」法を測定し、寸法収縮
率(%)を求めた。
Heat shrinkage: A plate-shaped carbon porous body measuring 200 x 200 x 500 m was left in a furnace at 2500° C. in an N2 atmosphere, and after 50 hours it was measured by the \'' method to determine the dimensional shrinkage rate (%).

結果を表1に示す。The results are shown in Table 1.

実施例2〜4 黒鉛化処理における処理温度と時間とを表1に示すよう
に変更した以外は、実施例1と同様にして炭素多孔体を
製造し、得られた炭素多孔体の物性を測定した。
Examples 2 to 4 Carbon porous bodies were produced in the same manner as in Example 1, except that the treatment temperature and time in the graphitization treatment were changed as shown in Table 1, and the physical properties of the obtained carbon porous bodies were measured. did.

結果を表1に示す。The results are shown in Table 1.

比較例1 黒鉛化処理を行なわない以外は、実施例1と同様にして
炭素多孔体を製造し、得られた炭素多孔体の物性を測定
した。
Comparative Example 1 A carbon porous body was produced in the same manner as in Example 1 except that the graphitization treatment was not performed, and the physical properties of the obtained carbon porous body were measured.

結果を表1に示す。The results are shown in Table 1.

比較例2〜3 5 黒鉛化処理における処理温度と時間とを表1に示すよう
に変更した以外は、実施例1と同様にして炭素多孔体を
製造し、得られた炭素多孔体の物性を測定した。
Comparative Examples 2 to 3 5 Carbon porous bodies were produced in the same manner as in Example 1, except that the treatment temperature and time in the graphitization treatment were changed as shown in Table 1, and the physical properties of the obtained carbon porous bodies were It was measured.

結果を表1に示す。The results are shown in Table 1.

実施例5 原料フェノール樹脂発泡体の発泡倍率を、表1に示すよ
うに変更すた以外は実施例1と同様にして、嵩密度0.
06g/cm3の炭素多孔体を得、この炭素多孔体の物
性を実施例1と同様にして測定した。 、 結果を表2に示す。
Example 5 The procedure was the same as in Example 1 except that the foaming ratio of the raw material phenolic resin foam was changed as shown in Table 1, and the bulk density was 0.
A porous carbon material having a weight of 0.6 g/cm3 was obtained, and the physical properties of this porous carbon material were measured in the same manner as in Example 1. , the results are shown in Table 2.

比較例4〜5 原料フェノール樹脂発泡体の発泡倍率を表2に示すよう
に変更し、実施例1と同様にして嵩密度0.20g/i
、および0.04g/cm3の炭素多孔体を得た。この
炭素多孔体の物性を実施例1と同様にして測定した。
Comparative Examples 4 to 5 The foaming ratio of the raw material phenolic resin foam was changed as shown in Table 2, and the bulk density was 0.20 g/i in the same manner as in Example 1.
, and a carbon porous body of 0.04 g/cm3 was obtained. The physical properties of this carbon porous body were measured in the same manner as in Example 1.

結果を表2に示す。The results are shown in Table 2.

 6 表 一  1q − 86 table 1 1q - 8

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の炭素多孔体のX線回折強度曲線の一例
を示したグラフである。 ■・・・なだらかなピーク ■・・・鋭いピーク B・・・ベースライン
FIG. 1 is a graph showing an example of the X-ray diffraction intensity curve of the carbon porous material of the present invention. ■...Gentle peak ■...Sharp peak B...Baseline

Claims (1)

【特許請求の範囲】 フェノール樹脂発泡体を炭化、黒鉛化処理して得られた
炭素多孔体から成る高温炉用断熱材であって、 上記炭素多孔体は、嵩密度が0.05〜 0.15g/cm^3であり、かつ黒鉛化度が10〜5
0%であることを特徴とする高温炉用断熱材。
[Claims] A heat insulating material for a high temperature furnace comprising a carbon porous body obtained by carbonizing and graphitizing a phenolic resin foam, wherein the carbon porous body has a bulk density of 0.05 to 0.0. 15g/cm^3, and the degree of graphitization is 10-5
A heat insulating material for high-temperature furnaces, characterized in that it is 0%.
JP32469189A 1989-12-14 1989-12-14 Heat insulating material for high-temperature furnace Pending JPH03187985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32469189A JPH03187985A (en) 1989-12-14 1989-12-14 Heat insulating material for high-temperature furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32469189A JPH03187985A (en) 1989-12-14 1989-12-14 Heat insulating material for high-temperature furnace

Publications (1)

Publication Number Publication Date
JPH03187985A true JPH03187985A (en) 1991-08-15

Family

ID=18168648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32469189A Pending JPH03187985A (en) 1989-12-14 1989-12-14 Heat insulating material for high-temperature furnace

Country Status (1)

Country Link
JP (1) JPH03187985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12030779B2 (en) 2021-06-24 2024-07-09 Nippon Kornmeyer Carbon Group Gmbh Method for producing carbon- or graphite-foam parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12030779B2 (en) 2021-06-24 2024-07-09 Nippon Kornmeyer Carbon Group Gmbh Method for producing carbon- or graphite-foam parts

Similar Documents

Publication Publication Date Title
US6261485B1 (en) Pitch-based carbon foam and composites
US6287375B1 (en) Pitch based foam with particulate
US6146611A (en) Graphitizable foam preform
JP2006117507A (en) High strength monolithic carbon foam
EP0714869B1 (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
US8003026B2 (en) Pitch-only densification of carbon-carbon composite materials
US6689295B2 (en) Carbonaceous porous body and method for producing the same
EP1763644A1 (en) Method for producing carbon-carbon brake material with improved initial friction coefficient or &#34;bite&#34;
US6261692B1 (en) Carbon-carbon composites containing ceramic power and method for preparing the same
JPH03187985A (en) Heat insulating material for high-temperature furnace
Shimoo et al. Effect of Firing Temperature on the Thermal Stability of Low‐Oxygen Silicon Carbide Fibers
WO2021206168A1 (en) C/c composite and method for producing same, and heat-treatment jig and method for producing same
JPS62297280A (en) Carbon base foam heat insulating formed body and manufacture
JP3853058B2 (en) Oxidation resistant C / C composite and method for producing the same
US4503215A (en) Furfural or furfural alchol impregnants for carbonacious bodies
US20070155848A1 (en) Oxidation resistant carbon foam
JPS62297293A (en) Insulating foam material of single crystal-pulling up system
KR0143615B1 (en) A method for manufacturing c/c composites of high thermal conductivity
RU2433982C1 (en) Method for manufacturing of products from composite material
JPH03205383A (en) Production of porous carbon material
JPH01257175A (en) Production of carbonaceous porous body
JP3736887B2 (en) Electrode plate for plasma etching
JPS5997511A (en) Carbonaceous structure and its manufacture
JPH01197376A (en) Porous carbon material and production thereof
JPH02275193A (en) Heat insulating material for high temperature pressurizing device