JPH03187853A - Plastic container to be filled with dispersion liquid - Google Patents

Plastic container to be filled with dispersion liquid

Info

Publication number
JPH03187853A
JPH03187853A JP1327684A JP32768489A JPH03187853A JP H03187853 A JPH03187853 A JP H03187853A JP 1327684 A JP1327684 A JP 1327684A JP 32768489 A JP32768489 A JP 32768489A JP H03187853 A JPH03187853 A JP H03187853A
Authority
JP
Japan
Prior art keywords
container
filling
plastic container
dispersion liquid
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1327684A
Other languages
Japanese (ja)
Other versions
JP2844372B2 (en
Inventor
Keinosuke Isono
啓之介 磯野
Takao Yoshida
孝夫 吉田
Tatsuo Suzuki
鈴木 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Material Engineering Technology Laboratory Inc
Original Assignee
Material Engineering Technology Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Material Engineering Technology Laboratory Inc filed Critical Material Engineering Technology Laboratory Inc
Priority to JP1327684A priority Critical patent/JP2844372B2/en
Publication of JPH03187853A publication Critical patent/JPH03187853A/en
Application granted granted Critical
Publication of JP2844372B2 publication Critical patent/JP2844372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5861Spouts
    • B65D75/5872Non-integral spouts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bag Frames (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

PURPOSE:To provide a plastic container in which fat balls of charged liquid does not cause phase separation easily and which is safety and well-operative by a method wherein at least a part of an inner face of the container in contact with at least content liquid is subjected to hydrophilic treatment. CONSTITUTION:A container 1 to be filled with dispersion system liquid is sealed with a peripheral seal 3 on an periphery of a pair of sheets 2 forming a container wall 21 wherein the inner face of a container 1 has been subjected to hydrophilic treatment as well as a port 4 for putting in or exhausting the dispersion system liquid is attached. The dispersion system liquid, that is, fat emulsion is subjected to conditions severe to the fat emulsion which has a nature to be easily phase-separated naturally such that it is exposed to a high temperature at the time of autoclave sterilization, or left for a long time to cause aging, etc. since it is filled in the container 1 until it is used for a patient. Therefore, while some normal plastic cases wherein an inner face has not been subjected to hydrophilic treatment may cause phase separation of the fat emulsion so that such cases cannot be used, by making the inner face of the plastic case hydrophilic, the container to be filled with dispersed system liquid can be obtained wherein the fat emulsion is not likely to cause phase separation.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は分散系液状物充填用プラスチック容器に関する
ものであり、さらに詳しく言えば、リポソーム様分散質
の分散液、または、脂肪乳剤に代表されるような水中油
滴型エマルジョン製剤等の分散系液状物を充填する容器
に関するものであり、充填された該分散液、または、エ
マルジョン製剤剤の安定性を向上する容器に関するもの
である。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a plastic container for filling a dispersion liquid, and more specifically, a dispersion of liposome-like dispersoids or a plastic container typified by a fat emulsion. The present invention relates to a container for filling a dispersion liquid such as an oil-in-water emulsion preparation, and a container that improves the stability of the filled dispersion or emulsion preparation.

[従来の技術] 脂質を血管を通して栄養剤として投与する場合は、脂質
をそのままのかたち、すなわち、油状のままで投与する
ことは出来ない。なぜなら、脂質は水に溶解しないので
血液に一様に分散することなく油状のまま血管内を流れ
ることになり、血管壁に付着し血栓の原因となったり、
血球の膜の油性物質と結合し溶血を起こす原因となるか
らであり、たとえ、結果として、問題が起こらながった
としても、そのままのかたちでは、血管壁を通過するこ
とが困難なので、体細胞で栄養として利用されにくいか
らである。因に、動物の体内で脂質は微細な脂質の球体
(以下、脂肪球という)として血管内を移動し、細胞に
取り込まれ、利用されている。
[Prior Art] When lipids are administered as nutritional supplements through blood vessels, they cannot be administered in their original form, that is, in their oil form. This is because lipids do not dissolve in water, so they do not disperse uniformly in the blood and flow through blood vessels in an oily state, which can adhere to blood vessel walls and cause blood clots.
This is because it binds with oily substances in the membranes of blood cells and causes hemolysis. Even if no problems occur as a result, it is difficult to pass through blood vessel walls in that form, so it is difficult for the body to pass through. This is because it is difficult for cells to utilize it as nutrients. Incidentally, within the body of an animal, lipids move through blood vessels as minute lipid globules (hereinafter referred to as fat globules), are taken up by cells, and are utilized.

そのため、従来より、術後等の栄養輸液剤としてカロリ
ーの高い脂質の投与が行われているが、その際の製剤と
しては、水中油滴型エマルジョン製剤である脂肪乳剤が
使用されている。
For this reason, high-calorie lipids have traditionally been administered as nutritional infusions after surgery, etc., and fat emulsions, which are oil-in-water emulsion preparations, have been used as formulations for this purpose.

ところが、一般の高カロリー輸液剤が、落としても容易
には割れない安全で、しかも、操作性の良いプラスチッ
ク容器に充填されているにも係わらず、脂肪乳剤は、未
だ、プラスチック容器に充填されたものが市販されてお
らず、ガラス容器に充填されている。
However, although general high-calorie infusions are packaged in safe and easy-to-use plastic containers that do not break easily even if dropped, fat emulsions are still packaged in plastic containers. It is not commercially available and is packed in glass containers.

脂肪乳剤は、直径が1μm以下の脂肪球が電解質を含ん
だ水の中に浮遊した状態、すなわち、エマルジョン状態
になっているもので、温度変化、外部の刺激に弱く、す
なわち、いわゆるエマルジョン状態が破壊され易く、ち
ょっとしたことで脂肪球相互の融合、または、脂肪球の
該容器壁への付着等の相分離を起こし易く、プラスチッ
ク容器に充填、保存するだけでエマルジョン状態の安定
性が失われ、相分離を起こしてしまうものであった。
Fat emulsion is a state in which fat globules with a diameter of 1 μm or less are suspended in water containing electrolytes, that is, in an emulsion state, and is susceptible to temperature changes and external stimuli. It is easily destroyed, and the slightest thing can cause phase separation such as fusion of fat globules with each other or adhesion of fat globules to the wall of the container, and the stability of the emulsion state is lost just by filling and storing it in a plastic container. This caused phase separation.

その原因の一つは、硝子容器の脂肪乳剤との接触面が親
水性であるのに反して、プラスチック容器の内面は一般
的に疎水性なので、疎水性を有する面と脂肪球が影響し
合って脂肪球の安定性が損なわれ、脂肪球同士が融合し
てさらに安定性を失うとともに、該容器壁に付着し、つ
いにはエマルジョンが破壊され相分離を起こすものと考
えらる。
One of the reasons for this is that while the surface of a glass container that comes into contact with the fat emulsion is hydrophilic, the inner surface of a plastic container is generally hydrophobic, so the hydrophobic surface and fat globules interact with each other. It is thought that the stability of the fat globules is impaired, and the fat globules fuse with each other, further losing stability and adhering to the container wall, eventually breaking the emulsion and causing phase separation.

高カロリー輸液は長期に継続的に実施する投薬であるた
め投薬中に患者が移動したり、排尿、排便をしたりする
ことが多く、その時の危険性が少なく、移動が容易なよ
うに軽く、安全なプラスチック容器に充填されているこ
とが要望されているにも係わらず、未だ開発されていな
いのが実情である。
Since high-calorie infusions are medications that are administered continuously over a long period of time, patients often move around, urinate, and defecate while taking the medication. Despite the demand for safe plastic containers, the reality is that they have not yet been developed.

[発明が解決しようとする問題点コ したがって、本発明は、従来技術の有する欠点を解消し
ようとするものである。すなわち、充填された薬液の脂
肪球が硝子容器のように相分離を起こしに<<、安全で
操作性の良いプラスチック容器を提供しようとするもの
であり、さらに、その方法が、容器内面の微粒子、微生
物等の付着による汚染が少なく、しかも、汚染が少ない
ことを容易に保証できる工程により製造された容器を提
供することである。
[Problems to be Solved by the Invention] Therefore, the present invention seeks to eliminate the drawbacks of the prior art. In other words, the aim is to provide a plastic container that is safe and easy to operate because the fat globules of the filled drug solution undergo phase separation like in glass containers. It is an object of the present invention to provide a container that is less contaminated by adhesion of microorganisms, etc., and manufactured by a process that can easily guarantee that less contamination occurs.

[問題点を解決しようとする手段] 本発明者らは、上記諸口的を達成すべく、脂肪球の破損
し易いプラスチック容器と破損しにくい硝子容器の違い
、すなわち、プラスチック容器の表面が強い疎水性であ
るのに対し、硝子容器の表面が親水性である点に着目し
検討した結果、本発明に到達したものである。すなわち
、少なくとも内容液と接触する容器内面の少なくとも一
部が、親水化処理されている分散系液状物充填用プラス
チック容器であれば、前記問題点を解決することができ
ることを見いだし本発明に至ったものである。
[Means for Solving the Problems] In order to achieve the above objectives, the present inventors investigated the difference between a plastic container in which fat globules are easily damaged and a glass container in which fat globules are not easily damaged, that is, the surface of the plastic container is strongly hydrophobic. The present invention was developed as a result of focusing on the fact that the surface of the glass container is hydrophilic, whereas the surface of the glass container is hydrophilic. That is, the present inventors have discovered that the above-mentioned problems can be solved by using a plastic container for filling a dispersion liquid, in which at least a portion of the inner surface of the container that comes into contact with the content liquid has been treated to make it hydrophilic. It is something.

[構成の具体的な説明] 以下に、本発明の分散系液状物充填用プラスチック容器
に医療用薬液である脂肪乳剤を充填した場合を例にとっ
て図面を見ながら説明する。
[Specific description of the structure] Hereinafter, a case will be described with reference to the drawings, taking as an example a case in which a plastic container for filling a dispersion liquid according to the present invention is filled with a fat emulsion, which is a medical liquid.

第1図は、本発明の脂肪乳剤を充填した分散系液状物充
填用容器の正面図であり、第2図は、X−X゛断面図で
ある。
FIG. 1 is a front view of a container for filling a dispersion liquid filled with the fat emulsion of the present invention, and FIG. 2 is a cross-sectional view taken along line XX.

本発明の分散系液状物充填用容器1は、該容器1の内側
(以下、内面という)が親水化処理された容器壁21を
形成する1対のシート2の周縁が周縁シール3によりシ
ールされているとともに、分散系液状物を充填または排
出するためのボート4が取り付けられている。
In the container 1 for filling a dispersion liquid of the present invention, the periphery of a pair of sheets 2 forming a container wall 21 whose inner side (hereinafter referred to as the inner surface) of the container 1 has been subjected to a hydrophilic treatment is sealed by a periphery seal 3. At the same time, a boat 4 for filling or discharging the dispersion liquid is attached.

該容器1は、該ボート4から分散系液状物、すなわち、
脂肪乳剤5を充填された後で、該ボート5の開口部6を
、点滴または混合するのに便利な構造物、たとえば、ゴ
ム栓8を内部に具備したプラスチック成形物組立品7等
で密封される。
The container 1 receives the dispersion liquid from the boat 4, namely:
After being filled with the fat emulsion 5, the opening 6 of the boat 5 is sealed with a convenient structure for dripping or mixing, such as a plastic molding assembly 7 with a rubber stopper 8 inside. Ru.

上記の方法で製造された本発明の分散系液状物充填用容
器入り脂肪乳剤は、滅菌され、包装されて医師の管理の
もとに患者に使用される。
The fat emulsion in a container for filling a dispersion liquid of the present invention produced by the above method is sterilized, packaged, and used by a patient under the supervision of a doctor.

該脂肪乳剤は該容器に充填されてから、患者に使用され
るまでには、オートクレーブ滅菌時に高温下に晒された
り、長時間放置され経時変化したり、もともと相分離し
易い性質を有する脂肪乳剤にとって、苛酷な条件に晒さ
れるので、通常のプラスチック容器、すなわち、内面が
親水化されていないプラスチック容器の場合には、該脂
肪乳剤が相分離を生じ、採用できないものであったが、
前記のように該プラスチック容器の内面を親水化するこ
とによって脂肪乳剤が相分離を生じにくい分散系液状物
充填用の容器が得られるのである。
After the fat emulsion is filled into the container and before it is used by a patient, it may be exposed to high temperatures during autoclave sterilization, left for a long time and change over time, or the fat emulsion may be prone to phase separation. However, since the fat emulsion is exposed to harsh conditions, it has been impossible to use ordinary plastic containers, that is, plastic containers whose inner surfaces are not made hydrophilic, because the fat emulsion will undergo phase separation.
By making the inner surface of the plastic container hydrophilic as described above, it is possible to obtain a container for filling a dispersion liquid in which the fat emulsion is less likely to undergo phase separation.

ところで、−概に親水化するといっても親水性にはレベ
ルがあるので、親水化レベルをパラメーターを用いて説
明する。
By the way, even though hydrophilicity generally occurs, there are different levels of hydrophilicity, so the level of hydrophilicity will be explained using parameters.

なお、親水性と疎水性を認識するパラメーターとして、
一般に、水を物質の表面に滴下した時の接触角(θ)が
知られており、該接触角の小さいものがより親水性であ
ることが知られているので、ここでは、親水性を数字で
表すパラメーターとして、水との接触角を用いるものと
する。
In addition, as a parameter for recognizing hydrophilicity and hydrophobicity,
In general, the contact angle (θ) when water is dropped onto the surface of a substance is known, and it is known that the smaller the contact angle, the more hydrophilic it is. The contact angle with water is used as the parameter expressed by .

発明者らは、該容器に充填された分散系液状物、すなわ
ち、脂肪乳剤の中の脂肪球の大きさとプラスチック容器
の内面の親水性とに関連性があることに気づき、目標と
する脂肪球、すなわち、脂肪乳剤の脂肪球の直径を測っ
たところ、直径の平均が約0.5μm以下であった。
The inventors noticed that there is a relationship between the size of fat globules in the dispersion liquid filled in the container, that is, the fat emulsion, and the hydrophilicity of the inner surface of the plastic container. That is, when the diameter of the fat globules in the fat emulsion was measured, the average diameter was about 0.5 μm or less.

該脂肪球の直径の平均が0158m以下であれば、該容
器内面の水との接触角(θ)が80”以下で効果があら
れれ、好ましくは水の接触角(θ)が64°以下のもの
が尚良く目的を達成することができる。
If the average diameter of the fat globules is 0.158 m or less, the effect is obtained when the contact angle (θ) with water on the inner surface of the container is 80” or less, preferably when the water contact angle (θ) is 64° or less. Things are better able to achieve their purpose.

プラスチック表面を親水化するには、すなわち、該表面
の水との接触角を小さくするには、該表面を極性化する
、例えば、該表面に電気双極子を付与するか、表面に小
さな傷を付けて荒らせば良いことが知られている。その
具体的な方法としては、プラスチック表面をプラズマと
接触させる方法、例えば、放電処理または火焔処理等、
その他に、低圧水銀ランプ等から発生する紫外線を照射
する方法、電子線等の放射線を照射する方法、硫酸クロ
ム酸混液に浸漬処理する方法、親水性樹脂をコーティン
グする方法、サンドブラスト処理する方法等がある。
To make a plastic surface hydrophilic, i.e. to reduce the contact angle of the surface with water, the surface can be polarized, for example by imparting an electric dipole to the surface, or by making small scratches on the surface. It is known that it is good to apply it and roughen it. Specific methods include methods of bringing the plastic surface into contact with plasma, such as electric discharge treatment or flame treatment.
Other methods include irradiation with ultraviolet rays generated from a low-pressure mercury lamp, etc., irradiation with radiation such as electron beams, immersion treatment in a sulfuric acid chromic acid mixture, coating with hydrophilic resin, and sandblasting. be.

前記各処理方法で処理を行うことにより、また、2種類
以上の方法を組み合わせて処理を行うことにより、該容
器内面の接触角が80°以下になれば、何れの方法で処
理を行ったとしても、脂肪乳荊の相分離を防止する効果
は少ながらずあるが、好ましい結果を維持するためには
、該接触角が64°以下であれば良い。
If the contact angle on the inner surface of the container becomes 80° or less by treating with each of the above treatment methods, or by treating with a combination of two or more methods, no matter which method is used, However, in order to maintain favorable results, the contact angle should be 64° or less.

なお、医療用容器としてその処理方法が適当か否かを考
えると、前記の処理方法のうち少なくとも、親水性樹脂
をコーティングする方法、硫酸クロム酸混液に浸漬処理
する方法、サンドブラスト処理する方法は余り好ましい
方法とは言えない。
When considering whether the treatment method is appropriate for medical containers, at least the methods of coating with a hydrophilic resin, the method of immersion in a sulfuric acid chromic acid mixture, and the method of sandblasting are not recommended. This is not a desirable method.

水銀ランプには低圧水銀ランプ、高圧水銀ランプ、超高
圧水銀ランプ等があるが、最も効果の高い紫外線ランプ
は低圧水銀ランプであり、中でも効果の高いランプは高
出力型、または、高入力型といわれる低圧水銀ランプで
あった。しがし、他の紫外線うどプでも、被照射物が溶
けない条件を遊んで、照度を強く、且つ、総照射時間を
長くすることにより効果は認められた。
Mercury lamps include low-pressure mercury lamps, high-pressure mercury lamps, and ultra-high-pressure mercury lamps, but the most effective ultraviolet lamp is a low-pressure mercury lamp, and the most effective lamps are high-output or high-input types. It was a low-pressure mercury lamp. However, even with other ultraviolet rays, effects were observed by experimenting with conditions that would not melt the irradiated object, increasing the illumination intensity, and increasing the total irradiation time.

紫外線ランプによるオゾン発生と活性酸素発生のメカニ
ズムは一般的に以下のように考えられている。初めに2
53.7nm、184.9nmの波長の紫外線は気体中
の酸素を酸化し、オゾン(o3)を生成する。生成した
オゾンに、さらに、253゜7nm、184.9nmの
波長の紫外線が照射されると活性化酸素(0)を生成す
る。
The mechanism of ozone generation and active oxygen generation by ultraviolet lamps is generally considered as follows. At the beginning 2
Ultraviolet rays with wavelengths of 53.7 nm and 184.9 nm oxidize oxygen in gas, producing ozone (O3). When the generated ozone is further irradiated with ultraviolet rays having wavelengths of 253°7 nm and 184.9 nm, activated oxygen (0) is generated.

ここで生成された活性化酸素は、一般に、プラスチック
表面の有機物を酸化分解して、プラスチックの表面を気
体として蒸発させると言われている。ところが、蒸発さ
せるだけでは、水溶液に対する接触角低下を完全に説明
することが出来ない。
The activated oxygen generated here is generally said to oxidize and decompose organic matter on the surface of the plastic, causing the surface of the plastic to evaporate as a gas. However, evaporation alone cannot completely explain the decrease in contact angle with an aqueous solution.

すなわち、生成したオゾンと活性化酸素は、前記の挙動
を示す一方、プラスチックの表面に接触した時に酸素を
プラスチック表面の分子に付加するかたちで、プラスチ
ックの表面を酸化し、プラスチックの表面の水との接触
角を小さくすると考えられる。紫外線照射によるプラス
チック表面の水との接触角の低下は、後者の場合が多い
と予想される。
In other words, while the generated ozone and activated oxygen exhibit the above-mentioned behavior, when they come into contact with the plastic surface, they add oxygen to the molecules on the plastic surface, oxidizing the plastic surface and interacting with the water on the plastic surface. This is thought to reduce the contact angle of It is expected that the latter case is likely to cause a decrease in the contact angle of the plastic surface with water due to ultraviolet irradiation.

ここでは、説明を簡単にするために253.7nm、1
84.9nmの2波長の紫外線に限定して説明したが、
プラスチック表面の水との接触角を小さくする働きを有
する紫外線の波長は、前記の2波長に限定されるもので
はなく、その近接した波長またはその他の波長でも、酸
化力の程度はともかく接触角を小さくする効果はあるの
で、低圧水銀ランプ以外のランプにより紫外線照射した
時にもプラスチック表面の水との接触角が低下するもの
と考えられる。
Here, to simplify the explanation, 253.7 nm, 1
Although the explanation was limited to ultraviolet light with two wavelengths of 84.9 nm,
The wavelengths of ultraviolet rays that have the effect of reducing the contact angle with water on plastic surfaces are not limited to the two wavelengths mentioned above, but wavelengths close to these or other wavelengths can also reduce the contact angle, regardless of the degree of oxidizing power. Since there is an effect of reducing the surface area, it is thought that the contact angle with water on the plastic surface is reduced even when UV irradiation is performed using a lamp other than a low-pressure mercury lamp.

放電処理としては、グロー放電処理、コロナ放′電処理
、高周波放電による処理、マイクロ波による放電を利用
する処理、CAS ING処理、プラズマジェット処理
等がある。また、プラズマの種類としてはアルゴン、ヘ
リウム、N 2.02等が挙げられる。
Examples of the discharge treatment include glow discharge treatment, corona discharge treatment, high frequency discharge treatment, treatment using microwave discharge, CASING treatment, plasma jet treatment, and the like. Furthermore, examples of the type of plasma include argon, helium, N2.02, and the like.

以上の方法は、医療用容器を製造する上でも適した処理
方法であるが、目−的−0容−器が、医−療一用−容−
器以外である場合は、セルロース系樹脂、酢酸ビニル系
樹脂、メタクリレート系の親水性樹脂等のコーティング
、酸処理等も有効である。
The above method is also suitable for manufacturing medical containers, but if the purpose-0 container is a medical container
In cases other than containers, coating with cellulose resin, vinyl acetate resin, methacrylate hydrophilic resin, etc., acid treatment, etc. are also effective.

本発明の分散系液状物充填用プラスチック容器の容器壁
を形成する材料は、単層であっても、多層であってもよ
く、それらを形成する樹脂とじては、直鎖状低密度ポリ
エチレン樹脂、ポリエステル樹脂、塩化ビニール樹脂、
ポリウレタン樹脂、低密度ポリエチレン樹脂、高密度ポ
リエチレン樹脂、エチレン−酢酸ビニール共重合樹脂、
ポリプロピレン樹脂、ポリカーボネイト樹脂等およびそ
れらの樹脂混合物が挙げられる。特に、該分散系液状物
が注射用の薬液の場合には、ポリオレフィン系の樹脂、
すなわち、直鎖状低密度ポリエチレン樹脂、低密度ポリ
エチレン樹脂、高密度ポリエチレン樹脂、エチレン−酢
酸ビニール共重合樹脂、ポリプロピレン樹脂等が好まし
い。
The material forming the container wall of the plastic container for filling a dispersion liquid of the present invention may be a single layer or a multilayer, and the resin forming them may be a linear low density polyethylene resin. , polyester resin, vinyl chloride resin,
Polyurethane resin, low density polyethylene resin, high density polyethylene resin, ethylene-vinyl acetate copolymer resin,
Examples include polypropylene resin, polycarbonate resin, etc., and resin mixtures thereof. In particular, when the dispersion liquid is an injectable drug, polyolefin resin,
That is, linear low-density polyethylene resin, low-density polyethylene resin, high-density polyethylene resin, ethylene-vinyl acetate copolymer resin, polypropylene resin, etc. are preferable.

なお、ここでは、分散系液状物として医療用の薬液であ
る脂肪乳剤を例にして説明したが、本発明の分散系液状
物充填用プラスチック容器の用途としては、医療用に必
ずしも限定されるものではなく、食品、その他の単なる
保存容器であっても良い。
Note that although the dispersion liquid material is explained using a fat emulsion, which is a medical liquid, as an example, the use of the plastic container for filling the dispersion liquid material of the present invention is not necessarily limited to medical use. Instead, it may be a storage container for food or other items.

また、説明を簡単にするために本発明の分散系液状物充
填用プラスチック容器の形状を第1図または第2図の形
状を例にして説明したが、本発明の分散系液状物充填用
プラスチック容器の形状としては、前記形状に必ずしも
限定されるものではなく、いろいろの構造のものが考え
られる。
Further, in order to simplify the explanation, the shape of the plastic container for filling a dispersion liquid of the present invention was explained using the shape of FIG. 1 or 2 as an example, but the plastic container of the present invention for filling a dispersion liquid The shape of the container is not necessarily limited to the shape described above, and various structures can be considered.

[実施例] 次に、実施例に基づいて具体的に説明する。[Example] Next, a detailed description will be given based on an example.

実施例1 押出成形した厚さ約250μmの直鎖状低密度ポリエチ
レン樹脂(L−LDPE :水との接触角θ=95°)
のシートに高出力型低圧水銀ランプ(250ワツト)で
25+u+離した距離から紫外線を6秒間づつ間欠的に
総照射時間が48秒間になるように照射したところ、水
との接触角(θ)が70°の表面が親水化されたシート
が得られた。
Example 1 Extruded linear low density polyethylene resin with a thickness of about 250 μm (L-LDPE: contact angle with water θ = 95°)
When the sheet was irradiated with ultraviolet rays from a distance of 25+u+ using a high-output low-pressure mercury lamp (250 watts) intermittently for 6 seconds at a time for a total irradiation time of 48 seconds, the contact angle (θ) with water was A sheet with a 70° surface made hydrophilic was obtained.

このシート2枚を照射した側が対面するようにして重ね
合わせ、3方をインパルスシーラーでシールして袋状の
容器を造った。次に、医家向けに市販されている脂肪乳
剤(ミドリ十字社製インドラリポス10%)を充填し、
窒素置換をし、シールした。
These two sheets were stacked one on top of the other with the irradiated sides facing each other, and three sides were sealed with an impulse sealer to create a bag-shaped container. Next, a commercially available fat emulsion for doctors (Indralipos 10% manufactured by Midori Juji Co., Ltd.) is filled.
It was replaced with nitrogen and sealed.

次に、上記で調整したサンプル4個を60°Cで1時間
恒温槽で加熱後、振動中10cmで一分間に150回上
下する振どう機にかけて1時間振とうし、脂肪球の破壊
を見た。
Next, the four samples prepared above were heated in a constant temperature bath at 60°C for 1 hour, and then shaken for 1 hour in a shaker that moves up and down at 10 cm 150 times per minute to check for destruction of fat globules. Ta.

脂肪球の破壊の評価方法としては、直径が13龍の正確
な硝子試験管に取り、3000rpmで2時間血液分収
用の遠心機にかけて遠心後、試験管の上層に遊離したオ
イル状液体層の厚さを、ノギスにより測定したところ表
1に示す結果が得られた。
To evaluate the destruction of fat globules, place the sample in a precise glass test tube with a diameter of 13 mm, centrifuge it in a centrifuge for blood collection at 3000 rpm for 2 hours, and then measure the thickness of the oily liquid layer released in the upper layer of the test tube. When the thickness was measured using a caliper, the results shown in Table 1 were obtained.

また、もう一つの評価方法として、前記の処置を行った
容器から脂肪乳剤をスポイトに取り、スライドガラス上
に一滴たらし、800倍の顕微鏡で脂肪球の状態を観察
したところ表2の結果が得られた。
In addition, as another evaluation method, we took the fat emulsion from the container that had undergone the above treatment into a dropper, put a drop on a slide glass, and observed the state of the fat globules under a microscope with a magnification of 800 times.The results shown in Table 2 were obtained. Obtained.

さらに、もう一つの評価方法として、前記の処置を行っ
た脂肪乳剤の着色度合いを観察したところ表3の結果が
得られた。なお、脂肪乳剤の着色については、一般に脂
肪乳剤の脂肪球、すなわち、球状粒子が油水分離を起こ
し、または、巨大粒子が形成されると、初め白かった脂
肪乳剤の外観が黄色に変化することが知られている。
Furthermore, as another evaluation method, the degree of coloring of the fat emulsion subjected to the above treatment was observed, and the results shown in Table 3 were obtained. Regarding the coloring of fat emulsions, in general, when the fat globules of a fat emulsion, that is, spherical particles, undergo oil-water separation or when giant particles are formed, the initially white appearance of the fat emulsion may change to yellow. Are known.

実施例2 押出成形した厚さ約250μmの直鎖状低密度・ポリエ
チレン樹脂(L−LDPE)のシートを、グロー放電装
置により、周波数5kHz、真空度0.6Torr、放
電時間1秒の条件でグロー放電処理を施したところ、水
との接触角(θ)が74°の表面が親水化されたシート
が得られた。
Example 2 An extruded sheet of linear low-density polyethylene resin (L-LDPE) with a thickness of approximately 250 μm was subjected to glow discharge using a glow discharge device at a frequency of 5 kHz, a degree of vacuum of 0.6 Torr, and a discharge time of 1 second. When subjected to electric discharge treatment, a sheet with a hydrophilic surface having a contact angle (θ) with water of 74° was obtained.

このシートを用いて実施例1と同じように容器入りの脂
肪乳剤を調整し、実施例1と同じ方法で評価したところ
表1、表2、表3に示す結果が得られた。
Using this sheet, a container-packed fat emulsion was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1, and the results shown in Tables 1, 2, and 3 were obtained.

実施例3 放電時間を3秒とした以外実施例と同じ条件で放電処理
し、水との接触角(θ)が64°の表面が親水化された
シートを用いたこと以外は、実施例2と同じ方法で調整
した容器入りの脂肪乳剤について、実施例1と同じ方法
で脂肪球の破壊状態を評価したところ、表1、表2、表
3に示す結果が得られた。
Example 3 Example 2 was performed except that the discharge treatment was performed under the same conditions as in Example except that the discharge time was 3 seconds, and a sheet whose surface was made hydrophilic and whose contact angle with water (θ) was 64° was used. Regarding the fat emulsion in a container prepared in the same manner as in Example 1, the state of destruction of fat globules was evaluated in the same manner as in Example 1, and the results shown in Tables 1, 2, and 3 were obtained.

実施例4 押出成形した厚さ約250μmの直鎖状低密度ポリエチ
レン樹脂(L−LDPE)のシートを、コロナ放電装置
(周波数40 k Hz 〜50 k Hz )により
、電極間距離1.5mm、電流6.5A、ライン速度5
00mm/分、繰り返し処理回数10回の条件でコロナ
放電処理を施したところ、水との接触角(θ)が56°
の表面が親水化されたシートが得られた。このシートを
用いて実施例1と同じように容器入りの脂肪乳剤を調整
し、実施例1と同じ方法で評価したところ表1、表2、
表3に示す結果が得られた。
Example 4 An extruded sheet of linear low-density polyethylene resin (L-LDPE) with a thickness of approximately 250 μm was heated using a corona discharge device (frequency: 40 kHz to 50 kHz) with an interelectrode distance of 1.5 mm and a current. 6.5A, line speed 5
When corona discharge treatment was performed at 00mm/min and 10 times, the contact angle (θ) with water was 56°.
A sheet whose surface was made hydrophilic was obtained. Using this sheet, a containerized fat emulsion was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1.
The results shown in Table 3 were obtained.

実施例5 グロー放電処理を施す前に実施例1と同じ方法で紫外線
照射した以外実施例2と同じ条件で放電処理し、水との
接触角(θ)が56°の表面が親水化されたシートを用
いたこと以外は、実施例2と同じ方法で調整した容器入
りの脂肪乳剤について、実施例1と同じ方法で脂肪球の
破壊状態を評価したところ、表1、表2、表3に示す結
果が得られな。
Example 5 Discharge treatment was performed under the same conditions as Example 2 except that ultraviolet rays were irradiated in the same manner as Example 1 before glow discharge treatment, and the surface with a contact angle (θ) with water of 56° was made hydrophilic. The state of destruction of fat globules was evaluated in the same manner as in Example 1 for a containerized fat emulsion prepared in the same manner as in Example 2, except that a sheet was used. I can't get the results shown.

比較例 紫外線を照射しなかった以外は、実施例1と同じ方法で
調整した脂肪乳剤について、実施例1と同じ方法で脂肪
球の破壊状層を評価したところ、表1、表2、表3に示
す結果が得られた。
Comparative Example A fat emulsion prepared in the same manner as in Example 1 except that it was not irradiated with ultraviolet rays was evaluated for the fractured layer of fat globules in the same manner as in Example 1. Tables 1, 2, and 3 The results shown are obtained.

表3.脂肪乳剤の黄変の観察結果 よる汚染が少なく、しかも、製造された容器の内面の汚
染が少ないことを容易に保証できる工程により製造され
た容器を提供することができる。
Table 3. It is possible to provide a container manufactured by a process that can easily guarantee that there is little contamination due to observation of yellowing of the fat emulsion and that there is little contamination on the inner surface of the manufactured container.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の脂肪乳剤を充填した分散系液状物充
填用容器の正面図であり、第2図は、X−X′断面図で
ある。 [発明の効果] 以上のように本発明によれば、少なくとも内容液と接触
する容器内面の少なくとも一部が、親水化処理されてい
る分散系液状物充填用プラスチック容器であれば、充填
された薬液の脂肪球が硝子容器のように相分離を起こし
に<<、安全で操作性の良いプラスチック容器を提供し
ようとするものであり、ざらに、その親水化する方法を
紫外線の照射、コロナ放電処理、グロー放電処理等非接
触で連続化できるいろいろな方法の中から採用できるの
で、容器内面の微粒子、微生物等の付着に分散系液状物
充填用容器 シート 周縁シール ボート 脂肪乳剤 ボートの開口部 プラスチック成形物組立品 ゴム栓 、容器壁
FIG. 1 is a front view of a container for filling a dispersion liquid filled with the fat emulsion of the present invention, and FIG. 2 is a sectional view taken along line XX'. [Effects of the Invention] As described above, according to the present invention, if at least a part of the inner surface of the container that comes into contact with the content liquid is hydrophilized, it is possible to The objective is to provide a plastic container that is safe and easy to operate because the fat globules of the drug solution undergo phase separation like in glass containers. It can be adopted from among various methods that can be continuous without contact, such as treatment and glow discharge treatment, so that it can prevent fine particles, microorganisms, etc. from adhering to the inner surface of the container. Molded assembly rubber stopper, container wall

Claims (12)

【特許請求の範囲】[Claims] (1)少なくとも充填された分散系の液状物と接触する
容器内面の少なくとも一部が、親水化処理されているこ
とを特徴とする分散系液状物充填用プラスチック容器。
(1) A plastic container for filling a dispersion liquid, characterized in that at least a portion of the inner surface of the container that comes into contact with the filled dispersion liquid has been subjected to a hydrophilic treatment.
(2)該容器の少なくとも親水化処理された内面に対す
る蒸留水の接触角(θ)が、80゜以下であることを特
徴とする特許請求の範囲第1項に記載の分散系液状物充
填用プラスチック容器。
(2) The dispersion system for filling a liquid according to claim 1, wherein the contact angle (θ) of distilled water with at least the hydrophilized inner surface of the container is 80° or less. plastic container.
(3)該容器の少なくとも親水化処理された内面の親水
性が、紫外線を照射することによって得られたものであ
ることを特徴とする特許請求の範囲第1項、または、第
2項に記載の分散系液状物充填用プラスチック容器。
(3) The hydrophilicity of at least the hydrophilic-treated inner surface of the container is obtained by irradiating ultraviolet rays, as set forth in claim 1 or 2. A plastic container for filling dispersion liquids.
(4)該容器の少なくとも親水化処理された内面の親水
性が、該内面をプラズマと接触させることにより得られ
たものであることを特徴とする特許請求の範囲第1項、
または、第2項に記載の分散系液状物充填用プラスチッ
ク容器。
(4) Claim 1, characterized in that the hydrophilicity of at least the hydrophilic-treated inner surface of the container is obtained by bringing the inner surface into contact with plasma;
Alternatively, the plastic container for filling a dispersion liquid according to item 2.
(5)該内面をプラズマと接触させる処理が、放電処理
であることを特徴とする特許請求の範囲第4項に記載の
分散系液状物充填用プラスチック容器。
(5) The plastic container for filling a dispersed liquid material according to claim 4, wherein the treatment for bringing the inner surface into contact with plasma is a discharge treatment.
(6)該容器の少なくとも親水化処理された内面の親水
性が、紫外線照射および放電処理の両方を施すことによ
って得られたものであることを特徴とする特許請求の範
囲第1項、または、第2項に記載の分散系液状物充填用
プラスチック容器。
(6) Claim 1, wherein the hydrophilicity of at least the hydrophilic-treated inner surface of the container is obtained by applying both ultraviolet irradiation and discharge treatment, or The plastic container for filling a dispersion liquid according to item 2.
(7)照射する紫外線の発生源が、低圧水銀ランプであ
ることを特徴とする特許請求の範囲第3項または第6項
に記載の分散系液状物充填用プラスチック容器。
(7) The plastic container for filling a dispersion liquid according to claim 3 or 6, wherein the source of the ultraviolet rays to be irradiated is a low-pressure mercury lamp.
(8)該放電処理がグロー放電処理であることを特徴と
する特許請求の範囲第5項または第6項に記載の分散系
液状物充填用プラスチック容器。
(8) The plastic container for filling a dispersion liquid according to claim 5 or 6, wherein the discharge treatment is a glow discharge treatment.
(9)該放電処理がコロナ放電処理であることを特徴と
する特許請求の範囲第5項または第6項に記載の分散系
液状物充填用プラスチック容器。
(9) The plastic container for filling a dispersion liquid according to claim 5 or 6, wherein the discharge treatment is a corona discharge treatment.
(10)該容器に充填する該分散系液状物が、注射用の
薬液であることを特徴とする特許請求範囲第1項ないし
第9項に記載の分散系液状物充填用プラスチック容器。
(10) A plastic container for filling a liquid dispersion according to any one of claims 1 to 9, wherein the liquid dispersion filled in the container is a medicinal solution for injection.
(11)少なくとも分散質の平均粒子径が0.5μm以
下の乳濁液が充填されていることを特徴とする特許請求
範囲第1項ないし第9項に記載の分散系液状物充填用プ
ラスチック容器。
(11) A plastic container for filling a dispersion liquid according to claims 1 to 9, characterized in that it is filled with an emulsion in which the average particle diameter of at least the dispersoid is 0.5 μm or less. .
(12)少なくとも脂肪乳剤が充填されていることを特
徴とする特許請求の範囲第10項及び第11項に記載の
分散系液状物充填用プラスチック容器。
(12) A plastic container for filling a dispersion liquid according to claims 10 and 11, characterized in that it is filled with at least a fat emulsion.
JP1327684A 1989-12-18 1989-12-18 Plastic container for filling dispersion liquid Expired - Lifetime JP2844372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1327684A JP2844372B2 (en) 1989-12-18 1989-12-18 Plastic container for filling dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1327684A JP2844372B2 (en) 1989-12-18 1989-12-18 Plastic container for filling dispersion liquid

Publications (2)

Publication Number Publication Date
JPH03187853A true JPH03187853A (en) 1991-08-15
JP2844372B2 JP2844372B2 (en) 1999-01-06

Family

ID=18201823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1327684A Expired - Lifetime JP2844372B2 (en) 1989-12-18 1989-12-18 Plastic container for filling dispersion liquid

Country Status (1)

Country Link
JP (1) JP2844372B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049819A1 (en) * 2010-10-13 2012-04-19 東洋製罐株式会社 Culture container for adherent cells and method for producing culture container for adherent cells
JP2012131076A (en) * 2010-12-20 2012-07-12 Terumo Corp Production process of medical bag and medical bag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049819A1 (en) * 2010-10-13 2012-04-19 東洋製罐株式会社 Culture container for adherent cells and method for producing culture container for adherent cells
JP2012080836A (en) * 2010-10-13 2012-04-26 Toyo Seikan Kaisha Ltd Culture container for adherent cells and method for manufacturing culture container for adherent cells
US9926522B2 (en) 2010-10-13 2018-03-27 Toyo Seikan Kaisha, Ltd. Culture container for adherent cells and method for producing culture container for adherent cells
JP2012131076A (en) * 2010-12-20 2012-07-12 Terumo Corp Production process of medical bag and medical bag

Also Published As

Publication number Publication date
JP2844372B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US10058646B2 (en) Blood bag system and process for the inactivation of pathogens in platelet concentrates by use of the blood bag system
DK175119B1 (en) Apparatus, method and container for the treatment of biological fluids
US7011790B2 (en) Non-thermal disinfection of biological fluids using non-thermal plasma
CA2393315C (en) A process for preparing an autologous platelet gel and membranes thereof, and a kit for carrying out this process
AU2006332291B2 (en) Method for the inactivation of pathogens in donor blood, blood plasma or erythrocyte concentrations in flexible containers using agitation
US10058837B2 (en) Systems, methods, and devices for production of gas-filled microbubbles
WO2017167409A1 (en) Plastic container comprising an oil-in-water krill oil emulsion
CA2693293A1 (en) Method and bag set for concentrating white cells
CA2950483C (en) Methods, devices, systems and kits for preparing compositions for care and repair of varicose veins
US8979817B2 (en) Multi-chamber container with seal breach detection
JPH03187853A (en) Plastic container to be filled with dispersion liquid
US20030118473A1 (en) Method and apparatus for ozone decontamination of biological liquids
JPH06510455A (en) Gas plasma treated porous medium and separation method using the same
RU2756246C1 (en) Method for obtaining bone implant based on sterile bone matrix
WO2021084869A1 (en) Manufacturing method for microbubble-containing electrolyte and manufacturing method for microbubble-containing solvent for use in preparing microbubble-containing electrolyte
Jarnvig et al. Platelet responses to intravenous infusion of Intralipid in healthy volunteers
Yoshikami et al. [60] Technique for introducing retinol analogs into the isolated retina
CN104357388A (en) Red cell membrane rupturing method
JPS61103446A (en) Sterilized medical apparatus
US20160030344A1 (en) Compositions including apolipoprotein and methods using focused acoustics for preparation thereof
WO2004007066A1 (en) Non-thermal disinfection of biological fluids using non-thermal plasma
WO2023096509A1 (en) A system containing an activator that increases the level of an endogenous inhibitor of the wnt pathway
Mineart et al. Size reduction, purification, sterilization and storage/packaging of liposomes
JPH02305841A (en) Gas barrier material, container prepared therefrom and its production
JP2000175987A (en) Double-chamber bag