JPH03187279A - Bi-te thermoelectric conversion thin film and its thermoelectric conversion element - Google Patents

Bi-te thermoelectric conversion thin film and its thermoelectric conversion element

Info

Publication number
JPH03187279A
JPH03187279A JP1326043A JP32604389A JPH03187279A JP H03187279 A JPH03187279 A JP H03187279A JP 1326043 A JP1326043 A JP 1326043A JP 32604389 A JP32604389 A JP 32604389A JP H03187279 A JPH03187279 A JP H03187279A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric conversion
thin film
film
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1326043A
Other languages
Japanese (ja)
Inventor
Hisato Noro
寿人 野呂
Katsumi Yamada
克美 山田
Kaoru Sato
馨 佐藤
Hiroshi Kagechika
影近 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1326043A priority Critical patent/JPH03187279A/en
Publication of JPH03187279A publication Critical patent/JPH03187279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To optimize the thermoelectric performance of a film to the direction of the hot flow during film formation by forming the thermoelectric semiconductor film on a substrate out of a Bi-Te crystal in c face orientation. CONSTITUTION:A Bi-Te thermoelectric semiconductor consisting of, for example, Bi-Sb-Se polycrystal in c face orientation is made on a substrate 1. In this case, as the Bi-Te thermoelectric conversion film 2 is made of the Bi-Te thermoelectric semiconductor consisting of Bi-Te polycrystal in c face orientation, since faces are disposed with the c axis direction, in which thermal conductivity is small, parallel with the direction of hot flow, the performance index controlling the performance as a thermoelectric conversion element can be improved. Hereby, making use of this thermoelectric film as a thermoelectric semiconductor chip, the whole thermoelectric conversion element can be miniaturized and highly integrated with the thermoelectric performance equivalent to a bulk maintained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はBi−Te  (ビスマス−テルル)系熱電
変換薄膜及びその熱電変換素子に関し、特に電気産業分
野・エネルギー産業分野・航空宇宙分野において熱電発
電及び電子冷却・加熱用の熱電変換素子に用いられるB
 1−Te系熱電変換薄膜とそれを応用した熱電変換素
子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a Bi-Te (bismuth-tellurium)-based thermoelectric conversion thin film and a thermoelectric conversion element thereof, and is particularly applicable to thermoelectric conversion in the electrical industry, energy industry, and aerospace field. B used in thermoelectric conversion elements for power generation and electronic cooling/heating
This invention relates to a 1-Te-based thermoelectric conversion thin film and a thermoelectric conversion element using the same.

[従来の技術] 一般に熱電変換デバイスに用いられる熱電変換材料には
、熱電半導体と呼ばれるもののうちでもキャリアの移動
度が大きく格子熱伝導率の小さいものが用いられている
。すなわち熱電半導体はベルチェ及びゼーベック効果が
大きく、ジュール熱と熱伝導による損失の小さい、つま
り性能指数2の大きいものが望ましく、デバイスの動作
温度に適した材料をえらんで使用するようになっている
[Prior Art] Thermoelectric conversion materials used in thermoelectric conversion devices generally include those called thermoelectric semiconductors that have high carrier mobility and low lattice thermal conductivity. In other words, thermoelectric semiconductors are desirably ones that have large Bertier and Seebeck effects and small losses due to Joule heat and thermal conduction, that is, have a large figure of merit 2, and materials that are suitable for the operating temperature of the device are selected and used.

比較的低い動作温度で性能指数の高い熱電半導体として
用いられているものとして、Bi−Sb−Te−3e系
を含む8l−Te系の熱電半導体がある。
8l-Te series thermoelectric semiconductors including Bi-Sb-Te-3e series are used as thermoelectric semiconductors that have a relatively low operating temperature and a high figure of merit.

上述のような熱電変換に利用される旧−Sb−Te−3
e系半導体単結晶の熱電性能は、例えばJournal
or the physics and Chemis
try or So目ds、 49[101(1988
)  (英) P、1237−1247の文献に開示さ
れているように、一般に異方的であることが知られてい
る。したがって、熱電変換素子を形成するのに使われる
バルク型半導体チップには単結晶又は疑似単結晶そのも
のないしは集合組織を持つ多結晶体が使われるため、そ
の熱電性能は、単結晶の熱電性能の異方性の影響を反映
して異方的になる。しかし通常、それを並べて熱雷変換
素子を構成する際には、使用する熱流の方向に応じて最
適なチップの方位を選ぶことができるので、チップの方
位を選んで素子を形成している。
Old-Sb-Te-3 used for thermoelectric conversion as mentioned above
The thermoelectric performance of e-based semiconductor single crystals is described in, for example, Journal
or the physics and chemis
try or so ds, 49 [101 (1988
) (English) P, 1237-1247, it is generally known to be anisotropic. Therefore, since the bulk semiconductor chips used to form thermoelectric conversion elements are made of single crystals, pseudo-single crystals, or polycrystals with a texture, their thermoelectric performance is different from that of single crystals. It becomes anisotropic reflecting the influence of orientation. However, when arranging them to form a thermal lightning conversion element, the optimal chip orientation can be selected depending on the direction of heat flow used, so the element is formed by selecting the chip orientation.

一方、素子を薄膜半導体チップで構成することにより素
子全体の小型化と高集積化を図る場合、チップを構成す
る多結晶体が、一般に、製膜中に集合組織を形成するた
め、熱流の方向を決める基板に対するその方位は製膜時
に固定されてしまい、従来のバルク型チップに対してお
こなわれていたような製膜後のチップ方位の最適化を図
ることができないので実用化が難しいのが現状である。
On the other hand, when attempting to downsize and highly integrate the entire device by constructing the device with a thin-film semiconductor chip, the polycrystalline material that makes up the chip generally forms a texture during film formation, so the direction of heat flow is The orientation with respect to the substrate that determines the film is fixed during film formation, and it is not possible to optimize the chip orientation after film formation, as was done for conventional bulk chips, which makes it difficult to put it into practical use. This is the current situation.

[発明が解決しようとする課題] 上記のようにB 1−3b−Te−Se系熱電変換素子
を薄膜チップで構成する場合には、膜の集合組織(優先
配向)のためにチップの熱電性能は異方的になるが、熱
流の方向を決める基板に対するその方位は製膜時に決定
されてしまうため、従来のバルク型半導体チップの場合
のように製膜後に熱流の方向に対してその方位の最適化
を図ることができないという問題がある。
[Problems to be Solved by the Invention] As described above, when a B 1-3b-Te-Se based thermoelectric conversion element is constructed with a thin film chip, the thermoelectric performance of the chip is deteriorated due to the texture (preferential orientation) of the film. becomes anisotropic, but since its orientation with respect to the substrate, which determines the direction of heat flow, is determined during film formation, its orientation relative to the direction of heat flow is determined after film formation, as in the case of conventional bulk semiconductor chips There is a problem that optimization cannot be achieved.

本発明はこの問題点を解決するためになされたもので、
製膜時に熱流の方向に対する薄膜の熱電性能の最適化を
行ったB 1−Te系熱電変換薄膜とその熱電変換素子
を提供することを目的とするものである。
The present invention was made to solve this problem.
The object of the present invention is to provide a B 1-Te-based thermoelectric conversion thin film and a thermoelectric conversion element thereof, in which the thermoelectric performance of the thin film is optimized in the direction of heat flow during film formation.

[課題を解決するための手段] この発明に係るBi−Te系熱電変換薄膜は、C面配向
している例えばB 1−Sb−Te−3e系多結晶体か
らなるBi−Te系熱電半導体を基板上に形成したもの
である。この場合C面配向した上記構成の熱電半導体膜
はその膜厚方向を熱波及び電流の方向とするものである
[Means for Solving the Problems] The Bi-Te thermoelectric conversion thin film according to the present invention uses a Bi-Te thermoelectric semiconductor composed of, for example, a B1-Sb-Te-3e polycrystalline body oriented in the C-plane. It is formed on a substrate. In this case, the C-plane oriented thermoelectric semiconductor film having the above structure has its thickness direction as the direction of heat waves and current.

また、この発明に係るBi−Te系熱電変換素子は、厚
さが1001m以下のC面配向しているBi−Sb−T
e−3e系多結晶熱電変換薄膜を熱電半導体チップとし
て用いることによって形成したものである。
Further, the Bi-Te based thermoelectric conversion element according to the present invention has a C-plane oriented Bi-Sb-T having a thickness of 1001 m or less.
It is formed by using an e-3e polycrystalline thermoelectric conversion thin film as a thermoelectric semiconductor chip.

[作 用) この発明においては、旧−Te系熱電変換薄膜をC面配
向したB 1−Te系多結晶体からなる熱電半導体で形
成するものであるから、熱伝導率の小さいC軸方向を熱
流の方向に平行に配列させているため、熱雷変換素子と
しての性能を支配する性能指数を向上させる方向に寄与
する。このC面配向した熱雷変換薄膜は膜の厚さ方向を
熱波及び電流の方向とする熱雷性能の最適化が製膜時に
達成される。したがって、この膜は高性能の熱雷変換素
子の熱電半導体チップとして好適となる。
[Function] In this invention, since the old-Te-based thermoelectric conversion thin film is formed of a thermoelectric semiconductor consisting of a B1-Te-based polycrystal with C-plane orientation, the C-axis direction, which has low thermal conductivity, is Since they are arranged parallel to the direction of heat flow, they contribute to improving the figure of merit that governs the performance of the thermal lightning conversion element. In this C-plane oriented thermal lightning conversion thin film, optimization of thermal lightning performance is achieved during film formation, with the film thickness direction being the direction of heat waves and current. Therefore, this film is suitable as a thermoelectric semiconductor chip for a high-performance thermal lightning conversion element.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すBI−Sb−Te−
9c系多結晶熱電変換薄膜の模式説明図である。図にお
いて、1は基板であり、2は基板1上に成膜したC面配
向しているBi−Sb−Te−Se系多結晶熱電半導体
からなる熱電変換薄膜である。図中に示した太い矢印は
C軸の方向、細い矢印は熱電変換動作時の熱波及び電流
の方向を示している。
FIG. 1 shows an embodiment of the present invention, BI-Sb-Te-
FIG. 9 is a schematic explanatory diagram of a 9c-based polycrystalline thermoelectric conversion thin film. In the figure, 1 is a substrate, and 2 is a thermoelectric conversion thin film formed on the substrate 1 and made of a C-plane oriented Bi-Sb-Te-Se polycrystalline thermoelectric semiconductor. The thick arrow shown in the figure shows the direction of the C-axis, and the thin arrow shows the direction of heat waves and current during thermoelectric conversion operation.

熱電変換薄[2の成膜条件は、アルゴンイオンビームス
パッタリング法を用い、動作圧2.0×10−’Tor
r、ビーム電圧LOOOV、ビーム電流10mA、基板
温度200℃である。この成膜法によって各結晶粒3が
C面配向されている集合体からなる熱電変換薄H2が得
られる。なお、熱電変換薄膜は旧−9b−Te−Se系
に限定されるものではなく、131−Te系の熱雷半導
体であればどのような組成のものであってもよい。
The film forming conditions for thermoelectric conversion thin film [2] were to use argon ion beam sputtering method, and to operate at an operating pressure of 2.0 x 10-' Tor.
r, beam voltage LOOOV, beam current 10 mA, and substrate temperature 200°C. By this film forming method, a thermoelectric conversion thin film H2 consisting of an aggregate in which each crystal grain 3 is oriented in the C-plane can be obtained. Note that the thermoelectric conversion thin film is not limited to the old-9b-Te-Se system, but may have any composition as long as it is a 131-Te system thermoelectric semiconductor.

第2図は上記のようにして形成した膜厚的2−のBi−
Sb−Te−Se系多結晶熱電変換薄膜(n型)のXv
A回折パターンである。図において、横軸は回折角、縦
軸はX線強度である。X線回折パターンの測定に用いた
X線は、銅ターゲツトから発生させた銅の特性X線をモ
ノクロメータで単色化したものである。なお、第3図は
第2図の測定に用いた薄膜と同一組成の粉末試料を使っ
て測定した無配向状態のX線回折パターンで比較のため
に示したものである。横軸、縦軸は第2図の場合と同様
である。第2図及び第3図を比較してみると、第2図中
の008,0015で表示されたピークは第3図のパタ
ーンの同一ピークより著しく大きくなっていることがわ
かる。これは第2図の測定に用いた熱電変換薄膜が第1
図の実施例に示すようなC面配向した多結晶構造からな
っていることを意味するものである。
Figure 2 shows a 2-layer Bi- film formed as described above.
Xv of Sb-Te-Se polycrystalline thermoelectric conversion thin film (n type)
A diffraction pattern. In the figure, the horizontal axis is the diffraction angle, and the vertical axis is the X-ray intensity. The X-rays used to measure the X-ray diffraction pattern were produced by monochromating copper characteristic X-rays generated from a copper target using a monochromator. Incidentally, FIG. 3 shows an X-ray diffraction pattern in a non-oriented state measured using a powder sample having the same composition as the thin film used in the measurement in FIG. 2 for comparison. The horizontal and vertical axes are the same as in FIG. Comparing FIGS. 2 and 3, it can be seen that the peak labeled 008,0015 in FIG. 2 is significantly larger than the same peak in the pattern of FIG. This means that the thermoelectric conversion thin film used for the measurement in Figure 2 is
This means that it has a C-plane oriented polycrystalline structure as shown in the example in the figure.

ところで、B l−Sb−Te−3e系を含めて旧−T
e系熱電半導体の単結晶の場合、そのゼーベック係数α
の値はほぼ等方向であるが、その抵抗率ρ及び熱電導率
には非常に異方的であり、結晶構造を六方晶として表現
すれば、ρ33/ρ1□−4〜6、に1□/に33−2
〜2.5であることが知られている。このことは前記文
献のほか、列挙はしないが1957〜1961年にかけ
て発表された3〜4件の論文に開示されている。但し、
ρ及びにの添え字11.33はそれぞれ0面に平行な方
向、0面に垂直な方向を表わしている。
By the way, the old-T including the B l-Sb-Te-3e system
In the case of a single crystal of e-based thermoelectric semiconductor, its Seebeck coefficient α
Although the value of is almost isotropic, its resistivity ρ and thermal conductivity are extremely anisotropic, and if the crystal structure is expressed as a hexagonal crystal, ρ33/ρ1□-4 to 6, 1□ / to 33-2
~2.5 is known. In addition to the above-mentioned documents, this is disclosed in three or four papers published from 1957 to 1961, although not listed. however,
The subscripts 11.33 of ρ and ni represent the direction parallel to the 0-plane and the direction perpendicular to the 0-plane, respectively.

したがって、この発明によるC重錘はしたBi−5b−
Te−Se系熱電変換薄膜は、熱伝導率にの小さいC軸
方向を熱流の方向に配列しているため、(使用温度を固
定した時に、)熱電変換素子としての性能を支配する性
能指数2(−α2/にρ)を増大させる方向に寄与する
ようになっている。このようにして、C面配向した結晶
粒の集合組織をもつ熱電変換薄膜を膜厚方向に形成する
ことにより、2 X 1O−3(K ’−’)以上の性
能指数2を実現し、その有用性を確認した。
Therefore, the C weight according to the present invention is Bi-5b-
Te-Se based thermoelectric conversion thin film has a C-axis direction with low thermal conductivity aligned in the direction of heat flow, so it has a figure of merit of 2 which governs the performance as a thermoelectric conversion element (when the operating temperature is fixed). (-α2/ to ρ). In this way, by forming a thermoelectric conversion thin film with a texture of C-plane oriented crystal grains in the film thickness direction, we have achieved a figure of merit 2 of 2 x 1O-3 (K'-') or more. The usefulness was confirmed.

第4図はこの発明によるC面配向した熱電変換薄膜2を
熱電半導体チップとして用いて形成した原形的なり1−
Te系熱電変換素子の模式説明図である。
FIG. 4 shows the original form 1-1 formed using the C-plane oriented thermoelectric conversion thin film 2 according to the present invention as a thermoelectric semiconductor chip.
FIG. 2 is a schematic explanatory diagram of a Te-based thermoelectric conversion element.

図において、図示しない基板上に所定の位置に分離形成
された電極4g、4c、4e上に第1図の実施例で説明
した熱電変換薄膜(以下熱電薄膜という)2からなる例
えばn型熱電薄膜2a、p型熱電薄膜2bを配設する。
In the figure, for example, an n-type thermoelectric thin film consisting of the thermoelectric conversion thin film (hereinafter referred to as thermoelectric thin film) 2 explained in the embodiment of FIG. 2a, a p-type thermoelectric thin film 2b is provided.

配設の仕方は、例えば電極4C上にp型熱電薄膜2b、
n型熱電薄膜2aの一対を所定間隔で成膜形成するよう
にする。
For example, the p-type thermoelectric thin film 2b is placed on the electrode 4C,
A pair of n-type thermoelectric thin films 2a are formed at predetermined intervals.

さらに例えばn型熱電薄膜2a+  p型熱電薄膜2b
の一対分を覆うように電極4b、4dを形成し、上下の
電極間に熱電薄膜がサンドイッチされるように熱雷変換
素子が形成される。したがって、この素子の一単位分は
、例えば電極4a、4b、4Cとこれによってサンドイ
ッチされたn型熱電薄膜2a、p型熱電薄膜2bとが構
成する部分となる。このような幅数1Jffl〜数10
−の単位熱電薄膜を交互に上下電極を介して連結するこ
とによって単位面積あたりのチップの数が多い、すなわ
ち、エネルギー輸送密度が大きい熱雷変換素子を形成す
ることができる。
Furthermore, for example, n-type thermoelectric thin film 2a + p-type thermoelectric thin film 2b
Electrodes 4b and 4d are formed to cover a pair of electrodes, and a thermal lightning conversion element is formed such that a thermoelectric thin film is sandwiched between the upper and lower electrodes. Therefore, one unit of this element is constituted by, for example, the electrodes 4a, 4b, and 4C, and the n-type thermoelectric thin film 2a and the p-type thermoelectric thin film 2b sandwiched therebetween. Such width number 1 Jffl ~ number 10
By alternately connecting unit thermoelectric thin films of - through upper and lower electrodes, it is possible to form a thermoelectric conversion element with a large number of chips per unit area, that is, with a large energy transport density.

第4図のような構成において、例えば上側を吸熱、下側
を発熱面としたときの電流の方向は矢印に示したように
なり、熱流(温度勾配)の方向も枠線の矢印で示すよう
に動作する。したがって、熱電薄膜の電流の方向はその
膜厚の方向になる。
In the configuration shown in Figure 4, for example, when the upper side is the heat-absorbing surface and the lower side is the heat-generating surface, the direction of current will be as shown by the arrow, and the direction of heat flow (temperature gradient) will also be as shown by the arrow in the frame. works. Therefore, the direction of current in the thermoelectric thin film is the direction of its thickness.

一般に、単位半導体チップの性能はその形状比、すなわ
ち断面積/高さ(厚さ)にのみ依存しているので、この
形状比が一定ならば、その厚さが薄いはと、素子の小型
化と材料コストの低減の効果が大きい。蒸着やスパッタ
リングなどの薄膜形成プロセスを使えば、溶融成形や焼
結法などのバルクの製造プロセスで実現できない(ある
いは歩留りの面で実用的でない)厚さ10〇−以下の半
導体薄膜を形成することは容易であり、このような薄膜
形成プロセスによって作成したC面配向したBi−Te
系熱電薄膜は小型化・高集積化が可能で、かつ、材料コ
ストの大幅な低減が可能な熱電変換素子を提供すること
ができる。
In general, the performance of a unit semiconductor chip depends only on its shape ratio, that is, its cross-sectional area/height (thickness), so if this shape ratio is constant, the thickness will be thinner, and the device will be smaller. and the effect of reducing material costs is significant. By using thin film formation processes such as vapor deposition and sputtering, it is possible to form semiconductor thin films with a thickness of 100 mm or less, which cannot be achieved (or is not practical in terms of yield) with bulk manufacturing processes such as melt molding and sintering. is easy, and C-plane oriented Bi-Te prepared by such a thin film formation process
Thermoelectric thin films can provide thermoelectric conversion elements that can be downsized and highly integrated, and can significantly reduce material costs.

[発明の効果] 以上のようにこの発明によれば、C面配向したBi−T
e系多結晶熱電変換薄膜が通常の薄膜形成プロセス技術
を応用することにより達成され、その有用性が確認され
た。そしてこの熱雷薄膜を熱電半導体チップとして利用
することにより、バルク並の熱電性能を維持したまま熱
電変換素子全体を小型化・高集積化することが可能にな
るので、材料コストひいては素子価格をバルク型のもの
よりも大幅に下げることができる。また、バルク型の半
導体チップを使用している従来の素子は、素子そのもの
の大きさの制約から半導体チップの直列配列の数を大き
くできないため、低電圧・大電流でしか使用できないの
が普通であるが、本発明の薄膜型の小型チップを使えば
、チップの形状比(Ifr而積面高さ)と直列配列の数
を大幅に変更することが可能になるので、大電圧・低電
流での使用も可能になり、素子と組み合わせられる電子
回路などの範囲が拡大する効果がある。
[Effects of the Invention] As described above, according to the present invention, C-plane oriented Bi-T
An e-based polycrystalline thermoelectric conversion thin film was achieved by applying ordinary thin film formation process technology, and its usefulness was confirmed. By using this thermoelectric thin film as a thermoelectric semiconductor chip, it becomes possible to downsize and highly integrate the entire thermoelectric conversion element while maintaining thermoelectric performance equivalent to that of the bulk, thereby reducing material costs and, ultimately, the element price. It can be significantly lower than the type. Furthermore, conventional devices that use bulk semiconductor chips cannot be used in large numbers due to the size of the device itself, so they can only be used at low voltages and high currents. However, by using the thin film type small chip of the present invention, it is possible to significantly change the chip shape ratio (Ifr surface height) and the number of series arrays, so it can be used at high voltage and low current. This has the effect of expanding the range of electronic circuits that can be combined with the element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すC面配向しているB
 l−9b−Te−Se系多結晶熱電変換薄膜の模式説
明図、第2図は第1図の実施例の膜厚的21a+の熱電
薄膜のX線回折パターン、tJ3図は第2図の測定試料
と同一組成を有する粉末試料のX線回折パターン、第4
図はこの発明の一実施例を示す原形的な旧−Te系熱電
変換素子の模式説明図である。 図において、1は基板、2,2a、2bは熱電変換薄膜
、3は結晶粒、4a、4b、4c、4d。 4eは電極である。
FIG. 1 shows an embodiment of the present invention with C-plane oriented B.
A schematic explanatory diagram of l-9b-Te-Se based polycrystalline thermoelectric conversion thin film, Figure 2 is the X-ray diffraction pattern of the thermoelectric thin film of 21a+ film thickness of the example in Figure 1, and tJ3 diagram is the measurement of Figure 2. X-ray diffraction pattern of a powder sample having the same composition as the sample, 4th
The figure is a schematic explanatory diagram of an original old-Te type thermoelectric conversion element showing an embodiment of the present invention. In the figure, 1 is a substrate, 2, 2a, and 2b are thermoelectric conversion thin films, and 3 is a crystal grain, and 4a, 4b, 4c, and 4d. 4e is an electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に形成した熱電半導体膜がc面配向してい
るBi−Te系多結晶体からなることを特徴とするBi
−Te系熱電変換薄膜。
(1) Bi characterized in that the thermoelectric semiconductor film formed on the substrate is made of a Bi-Te-based polycrystalline body oriented in the c-plane.
-Te-based thermoelectric conversion thin film.
(2)熱電半導体膜の厚さ方向を熱波及び電流の方向と
することを特徴とする請求項1記載のBi−Te系熱電
変換薄膜。
(2) The Bi-Te based thermoelectric conversion thin film according to claim 1, wherein the thickness direction of the thermoelectric semiconductor film is the direction of heat waves and current.
(3)厚さが100μm以下のc面配向、しているBi
−Sb−Te−Se系多結晶熱電変換薄膜を熱電半導体
チップとして有することを特徴とするBi−Te系熱電
変換素子。
(3) C-plane oriented Bi with a thickness of 100 μm or less
- A Bi-Te-based thermoelectric conversion element comprising a Sb-Te-Se-based polycrystalline thermoelectric conversion thin film as a thermoelectric semiconductor chip.
JP1326043A 1989-12-18 1989-12-18 Bi-te thermoelectric conversion thin film and its thermoelectric conversion element Pending JPH03187279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326043A JPH03187279A (en) 1989-12-18 1989-12-18 Bi-te thermoelectric conversion thin film and its thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326043A JPH03187279A (en) 1989-12-18 1989-12-18 Bi-te thermoelectric conversion thin film and its thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH03187279A true JPH03187279A (en) 1991-08-15

Family

ID=18183470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326043A Pending JPH03187279A (en) 1989-12-18 1989-12-18 Bi-te thermoelectric conversion thin film and its thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH03187279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035840A1 (en) * 2000-07-14 2002-01-31 Hahn Meitner Inst Berlin Gmbh Thermoelectric semiconductor device has compound semiconductors orientated so that polar axis is aligned with temperature gradient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035840A1 (en) * 2000-07-14 2002-01-31 Hahn Meitner Inst Berlin Gmbh Thermoelectric semiconductor device has compound semiconductors orientated so that polar axis is aligned with temperature gradient
DE10035840B4 (en) * 2000-07-14 2007-06-06 Hahn-Meitner-Institut Berlin Gmbh Thermoelectric semiconductor component

Similar Documents

Publication Publication Date Title
JP3874365B2 (en) Thermoelectric conversion device, cooling method and power generation method using the same
US7723607B2 (en) High performance thermoelectric materials and their method of preparation
US8455751B2 (en) Thermoelectric devices and applications for the same
US6399871B1 (en) Thermoelectric materials: ternary penta telluride and selenide compounds
JP4998897B2 (en) Thermoelectric conversion material and manufacturing method thereof
Scudder et al. Highly efficient transverse thermoelectric devices with Re 4 Si 7 crystals
US20080173537A1 (en) Thermoelectric devices and applications for the same
Singh et al. Investigation of thermoelectric properties of ZnV2O4 compound at high temperatures
Korobeinikov et al. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics
Miller et al. Polycrystalline ZrTe 5 parametrized as a narrow-band-gap semiconductor for thermoelectric performance
US4465895A (en) Thermoelectric devices having improved elements and element interconnects and method of making same
Singh et al. Thermoelectric properties of Na x CoO 2 and prospects for other oxide thermoelectrics
Linseis et al. Thickness and temperature dependent thermoelectric properties of Bi87Sb13 nanofilms measured with a novel measurement platform
US20130008479A1 (en) Thermoelectric element design
Mu et al. High-performance YbAl3/Bi0. 5Sb1. 5Te3 artificially tilted multilayer thermoelectric devices via material genome engineering method
Lim et al. Combined hot extrusion and spark plasma sintering method for producing highly textured thermoelectric Bi2Te3 alloys
Zhu et al. Fabrication and performance prediction of Ni/Bi0. 5Sb1. 5Te3 artificially-tilted multilayer devices with transverse thermoelectric effect
Dong et al. A quasi-one-dimensional bulk thermoelectrics with high performance near room temperature
CN100461479C (en) Thermoelectric conversion device, and cooling method and power generating method using the device
JPH03187280A (en) Bi-te thermoelectric conversion thin film and its thermoelectric conversion element
JPH03187279A (en) Bi-te thermoelectric conversion thin film and its thermoelectric conversion element
WO2018131532A1 (en) Thermoelectric conversion element and method for manufacturing same
Omprakash et al. Conserved axis-dependent conduction polarity in NaSnAs polycrystalline bulk sample for transverse thermoelectric application
US20060283494A1 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic apparatus and cooling device comprising the element
Singsoog et al. Effecting the thermoelectric properties of p-MnSi1. 75 and n-Mg1. 98Ag0. 02Si module on power generation