JPH03186747A - Melting point measuring method - Google Patents

Melting point measuring method

Info

Publication number
JPH03186747A
JPH03186747A JP32557689A JP32557689A JPH03186747A JP H03186747 A JPH03186747 A JP H03186747A JP 32557689 A JP32557689 A JP 32557689A JP 32557689 A JP32557689 A JP 32557689A JP H03186747 A JPH03186747 A JP H03186747A
Authority
JP
Japan
Prior art keywords
measured
substance
melting point
heating container
storage recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32557689A
Other languages
Japanese (ja)
Inventor
Kazutoshi Tokai
和俊 渡海
Akira Fukami
深見 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP32557689A priority Critical patent/JPH03186747A/en
Publication of JPH03186747A publication Critical patent/JPH03186747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To exactly and easily derive a melting point of a high vapor pressure/ high melting point substance by covering the upper part of a containing recessed part of a sample containing and heating container in which a substance to be measured is contained, with a cover material, heating and melting it in a closed state, and measuring its melting point by a radiation thermometer. CONSTITUTION:The upper part of a containing recessed part 20 of a sample containing and heating container 2 in which a substance 1 to be measured is contained is covered with a cover material 3, the containing recessed part 20 is set to a closed state, and thereafter, the substance 1 to be measured is heated and melted, and a melting point of the substance 1 to be measured is measured by a radiation thermometer 4. Also, this heating container 2 is usually installed in a chamber. The heating container 2 is formed from a high melting point metal and its alloy, for instance, tungsten, molybdenum, tantalum, etc., and their alloy. Also, as for a forming material of the cover material 3, any of those which can be used for the forming material of the heating container 2 can be used, and tungsten, molybdenum and tantalum are especially desirable.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は融点測定方法に関し、さらに詳しくは、高融点
・高蒸気圧物質の融点を、試料の蒸発、成分変化、雰囲
気ガスとの反応等を防止して正確かつ容易に求めること
のできる融点測定方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the melting point, and more specifically, the present invention relates to a method for measuring the melting point of a substance with a high melting point and high vapor pressure. The present invention relates to a method for measuring melting point that can be accurately and easily determined while preventing.

[従来技術および発明か解決しようとする課題]たとえ
ば各種の原子炉プラントにおいては、燃料被覆管、配管
、熱交換器、タービンの部品などの種々の構造材料の形
成材料として高融点物質が多用されている。
[Prior Art and Problems to be Solved by the Invention] For example, in various nuclear reactor plants, high melting point substances are often used as forming materials for various structural materials such as fuel cladding tubes, piping, heat exchangers, and turbine parts. ing.

そして、原子炉プラントの安全性を保障するためには各
種構造材料に用いられている各高融点物質の融点を正確
に知る必要かある。
In order to ensure the safety of nuclear reactor plants, it is necessary to accurately know the melting point of each high melting point substance used in various structural materials.

ところで、従来より3000℃近辺の高温域に融点が存
在する物質の融点測定においては、被測定物質またはそ
の構成成分が高い蒸気圧を有するものであると、測定中
に被測定物質またはその構I&戊分の一部が蒸発消失し
てしまうので、たとえば、電子ビーム溶接法により被測
定物質を厚内の高融点金属(例;W、Mo 、Ta等)
製カプセル中に封入し、この状態で被測定物質を加熱し
て放射温度計により被測定物質の融点を測定する方法、
あるいは、たとえば第2図に示すように、被測定物質ま
たはその構成成分の蒸発な無視して、被測定物質Aをオ
ーブン型のボートB上に載置し、この状厖て被測定物質
Aを加熱して放射温度計Cにより被測定物質Aの融点を
測定する方法などが用いられている。
By the way, when measuring the melting point of a substance that has a melting point in the high temperature range of around 3000°C, if the substance to be measured or its constituent components have a high vapor pressure, the substance to be measured or its constituent components may have a high vapor pressure during the measurement. Since a part of the fraction evaporates and disappears, for example, the material to be measured is heated to a high melting point metal (e.g. W, Mo, Ta, etc.) using electron beam welding.
A method of measuring the melting point of the substance to be measured using a radiation thermometer by enclosing it in a manufactured capsule and heating the substance to be measured in this state,
Alternatively, as shown in FIG. 2, for example, the analyte A is placed on an oven-shaped boat B, ignoring the evaporation of the analyte or its constituent components, and the analyte A is placed in this state. A method is used in which the melting point of the substance to be measured A is measured by heating it and using a radiation thermometer C.

しかしながら、前者の方法においては、W。However, in the former method, W.

Mo、Ta等の高融点金属を用いてなるカプセルの加工
か困難であるという問題、使用する電子ビーム溶接装置
が高価である等の問題がある。
Problems include that it is difficult to process capsules made of high-melting point metals such as Mo and Ta, and that the electron beam welding equipment used is expensive.

一方、後者の方法においては、発生する蒸気により放射
温度計に依る測温が妨害され、また、被測定物質の構成
成分の一部が蒸発する場合には、もはや被測定物質とは
異った組成の物質の融点を測定することになり、いずれ
にしても被測定物質の融点を正確に測定することかでき
ないという問題かある。
On the other hand, in the latter method, the generated steam interferes with temperature measurement using a radiation thermometer, and if some of the constituents of the substance to be measured evaporate, the substance is no longer the same as the substance to be measured. The melting point of the substance of the composition is to be measured, and in any case there is a problem in that the melting point of the substance to be measured cannot be accurately measured.

本発明は前記の事情に基いてなされたものである。The present invention has been made based on the above circumstances.

本発明の目的は、高蒸気圧・高融点物質の融点を、被測
定¥@質の蒸発やその成分変化、あるいは雰囲気ガスと
の反応等を防止することが可能であり、したがって、被
測定物質の融点を、正確に、しかも容易に求めることの
てきる融点測定方法を提供することにある。
The purpose of the present invention is to reduce the melting point of a substance with high vapor pressure and high melting point by preventing evaporation of the substance to be measured, changes in its components, or reactions with atmospheric gas, etc. It is an object of the present invention to provide a melting point measuring method that can accurately and easily determine the melting point of.

[課題を解決するための手段] 前記目的を遠戚するための請求項1の発明の構成は、被
測定物質を収納した試料収納加熱容器の収納凹部上を蓋
材で被覆し、前記収納凹部を密封状態にした後、前記被
測定物質を加熱溶融し、放射温度計により前記被測定物
質の融点を測定することを特徴とする融点測定方法であ
り、請求項2の発明の構成は、前記蓋材が、タングステ
ン、モリブデンおよびタンタルのいずれかで形成されて
なる請求項1記載の融点測定方法である。
[Means for Solving the Problems] The structure of the invention according to claim 1 which is distantly related to the above-mentioned object is to cover the storage recess of the sample storage heating container containing the substance to be measured with a lid material, and to A melting point measuring method is characterized in that the substance to be measured is brought into a sealed state, the substance to be measured is heated and melted, and the melting point of the substance to be measured is measured using a radiation thermometer. 2. The melting point measuring method according to claim 1, wherein the lid material is made of tungsten, molybdenum, or tantalum.

本発明の方法においては、たとえば第1図に示すように
、被測定物質1を収納した試料収納加熱容器2の収納凹
部20上を蓋材3て被覆し、収納凹部20を密封状態に
した後、被測定物質1を加熱溶融し、放射温度計4によ
り被測定物質lの融点を測定する。そして、この試料収
納加熱容器2は。
In the method of the present invention, for example, as shown in FIG. 1, after the storage recess 20 of the sample storage heating container 2 containing the substance to be measured 1 is covered with a lid material 3 and the storage recess 20 is sealed. , the substance 1 to be measured is heated and melted, and the melting point of the substance 1 to be measured is measured by the radiation thermometer 4. And this sample storage heating container 2.

通常、チャンバー(図示せず、)内に設置される。Usually, it is installed in a chamber (not shown).

使用に供される試料収納加熱容器は、被測定物質を収納
する収納凹部を備えてなり、たとえば高融点金属および
その合金により好適に形成することができる。このよう
な高融点金属およびその合金としては、具体的にはタン
グステン、モリブデン、タンタル、クロム、バナジウム
、ニオブおよびそれらの合金などを挙げることができる
。これらの中でも、好ましいのはタングステン、モリブ
デン、タンタルである。
The sample storage heating container used is provided with a storage recess for storing the substance to be measured, and can be suitably made of, for example, a high melting point metal or an alloy thereof. Specific examples of such high melting point metals and alloys thereof include tungsten, molybdenum, tantalum, chromium, vanadium, niobium, and alloys thereof. Among these, tungsten, molybdenum, and tantalum are preferred.

本発明の方法においては、試料収納加熱容器に形成され
た収納凹部内に、被測定物質を収納した状態で、この収
納凹部な蓋材で被覆して収納凹部内を密封状態または半
密封状態にすることが必要である。
In the method of the present invention, a substance to be measured is stored in a storage recess formed in a sample storage heating container, and the storage recess is covered with a lid material to seal or semi-seal the storage recess. It is necessary to.

すなわち、本発明の方法においては、被測定物質を収納
した収納凹部内を密封状態または半密封状態にしてこの
収納凹部内の被測定物質を試料収納加熱容器で直接に加
熱溶融し、放射温度計により融点を測定するので、測定
中に、試料の蒸発、成分変化、雰囲気ガスとの反応等が
生じるのを防止することか可能である。
That is, in the method of the present invention, the inside of the storage recess containing the substance to be measured is sealed or semi-sealed, and the substance to be measured in the storage recess is directly heated and melted in the sample storage heating container, and then the radiation thermometer is heated. Since the melting point is measured by the method, it is possible to prevent evaporation of the sample, change in composition, reaction with atmospheric gas, etc., from occurring during the measurement.

前記収納凹部を被覆して、この収納凹部内を密封状態ま
たは半密封状態にする前記蓋材の形成材料としては、前
記試料収納加熱容器の形成材料に好適に用いることので
きるものをいずれも好適に用いることができるが、特に
好ましいのはタングステン、モリブデン、タンタルであ
る。
As the material for forming the lid material that covers the storage recess and makes the inside of the storage recess into a sealed or semi-sealed state, any material that can be suitably used as the material for forming the sample storage heating container is suitable. Particularly preferred are tungsten, molybdenum, and tantalum.

前記蓋材の形態は、通常、板状であり、特にフォイル状
、シート状が好ましい、いずれにせよ、前記蓋材は、被
測定物質を収納した前記収納凹部を完全に被覆すること
のできる大きさを有していなければならない、なお、前
記蓋材がフォイル状もしくはシート状である場合、その
厚みは。
The shape of the lid material is usually a plate shape, and preferably a foil shape or a sheet shape. Furthermore, if the lid material is in the form of a foil or sheet, its thickness must be as follows.

通常、  0.003〜0.5mm 、好ましくは0.
020〜0.1園鵬である。
Usually 0.003 to 0.5 mm, preferably 0.003 to 0.5 mm.
020-0.1 Sonoho.

本発明の方法において、被測定物質を収納した前記収納
凹部を前記蓋材で被覆してこの収納凹部内を密封状態ま
たは半密封状態にするには、たとえば、前記収納凹部を
完全に被覆する状態で該収納凹部上に前記蓋材をtil
t、、前記試料収納加熱容器の上面(前記収納凹部の周
縁面)と前記蓋材とが接触する部分(第1図中、30で
示す、)に、たとえばA r / H2ガス等の任意の
雰囲気中で。
In the method of the present invention, in order to cover the storage recess containing the substance to be measured with the lid material to bring the inside of the storage recess into a sealed or semi-sealed state, for example, the storage recess is completely covered. Til the lid material onto the storage recess.
t. A portion (indicated by 30 in FIG. 1) where the upper surface of the sample storage/heating container (peripheral surface of the storage recess) and the lid material come into contact is filled with an arbitrary gas such as Ar/H2 gas. In the atmosphere.

通常、シーム溶接、スポット溶接等の溶接処理を施せば
よい、なお、半密封状態とは、収納凹部ZOの密封が完
全ではない状態をいう。
Normally, a welding process such as seam welding or spot welding may be performed. Note that the semi-sealed state refers to a state in which the storage recess ZO is not completely sealed.

本発明の方法においては、前述のようにして被測定物質
を収納した前記収納凹部を前記蓋材で被覆し、この収納
凹部内を密封状態または半密封状態にした後、前記試料
収納加熱容器を融点測定チャンバー内の所定の電極に接
続、固定し、被測定物質の融点に至らない任意の昇温−
保持−冷却プログラムに従い、前記収納凹部および被測
定物質を加熱した後、一定時間保持してから冷却する。
In the method of the present invention, the storage recess in which the substance to be measured is stored as described above is covered with the lid material, the inside of the storage recess is sealed or semi-sealed, and then the sample storage heating container is closed. Connected and fixed to a designated electrode in the melting point measurement chamber, and any temperature increase that does not reach the melting point of the substance to be measured.
According to a holding-cooling program, the storage recess and the substance to be measured are heated, held for a certain period of time, and then cooled.

このとき、前記試料収納加熱容器の上面(前記収納凹部
の周縁面)と前記蓋材との接触部分は、金属間の相互拡
散作用により密着するので、前記収納凹部内に収納され
た被測定物質は完全密封されることとなる(以下、この
処理を加熱密封処理と称する。)、シたがって、本発明
の方法において、前記加熱密封処理を行なう以前の前記
収納凹部内は必ずしも密封状態でなくてもよく、前述の
ように半密封状態であってもよい。
At this time, since the contact portion between the upper surface of the sample storage heating container (peripheral surface of the storage recess) and the lid material is in close contact with each other due to mutual diffusion between metals, the sample to be measured stored in the storage recess is is completely sealed (hereinafter, this process is referred to as heat-sealing process). Therefore, in the method of the present invention, the inside of the storage recess is not necessarily in a sealed state before the heat-sealing process is performed. It may be in a semi-sealed state as described above.

また、前記蓋材の厚みと前記収納凹部上への載置方法を
適宜に選択すれば、前記試料収納加熱容器の上面(前記
収納凹部の周縁面)と前記蓋材との接触部分の前述の溶
接処理は省略することが可能である。すなわち、その場
合には、前記蓋材を前記収納凹部上へt置した状態で前
記加熱密封処理を施すことにより、前記収納凹部内に収
納された被測定物質は完全密封されることになる。前記
の溶接処理を省略することのできる前記蓋材の厚みは、
通常、 0.003〜0.5mm 、好ましくは0.0
2〜0.11−の範囲内であることが望ましい、前記蓋
材の厚みが0.003園1未満であると、加熱時の内圧
に耐えられなくなったり、取扱いが難しくなったりする
し、 0.5++nを超えると、前記蓋材と前記試料収
納加熱容器との密着が困難になって密封か不可能になる
ことかある。
Furthermore, if the thickness of the lid material and the method of placing it on the storage recess are appropriately selected, the above-mentioned contact area between the top surface of the sample storage heating container (peripheral surface of the storage recess) and the lid material can be adjusted. The welding process can be omitted. That is, in that case, by performing the heat sealing treatment with the lid material placed on the storage recess, the substance to be measured stored in the storage recess will be completely sealed. The thickness of the lid material that allows the welding process to be omitted is as follows:
Usually 0.003-0.5mm, preferably 0.0
It is desirable that the thickness of the lid material be within the range of 0.003 to 0.11. If it exceeds .5++n, it may become difficult to make close contact between the lid material and the sample storage/heating container, making it impossible to seal them.

本発明の方法においては、前記加熱密封処理を行った後
、前記収納凹部内に収納された被測定物質につき、任意
の融点プログラムに従って、加熱−保持−冷却を行ない
、このとき生じるサーマルアレスト(加熱エネルギーと
放射、伝導等に依って失われるエネルギーとのバランス
に応じて決定される一定量が完全に溶融又は1!に固す
るまでは被測定物質の温度がそれぞれ上昇又は下降しな
い現象)から被測定物質の融点を決定する。
In the method of the present invention, after the heat-sealing process is performed, the substance to be measured stored in the storage recess is heated, held, and cooled according to an arbitrary melting point program, and the thermal arrest (heating The temperature of the substance to be measured does not rise or fall, respectively, until a certain amount determined according to the balance between energy and energy lost due to radiation, conduction, etc. is completely melted or solidified. Determine the melting point of the substance to be measured.

なお、一連の温度変化は放射温度計を用いて測定するこ
とができる。
Note that a series of temperature changes can be measured using a radiation thermometer.

また、本発明の方法においては、測定中、前記のチャン
バー内を不活性ガスおよび還元性ガスの混合ガス雰囲気
あるいは不活性ガス雰囲気にすることか好ましい。
Further, in the method of the present invention, it is preferable that the inside of the chamber be made into a mixed gas atmosphere of an inert gas and a reducing gas or an inert gas atmosphere during the measurement.

本発明の方法は、たとえば各種原子炉、高温ガス炉、核
融合炉等の燃料被覆管、プラズマ容器壁、熱交換器、タ
ービン部品などの形成材料に用いられる高融点・高蒸気
圧物質の融点の測定に好適に用いることができる。
The method of the present invention applies the melting point of high melting point and high vapor pressure substances used for forming materials such as fuel cladding tubes, plasma vessel walls, heat exchangers, turbine parts, etc. of various nuclear reactors, high temperature gas reactors, nuclear fusion reactors, etc. It can be suitably used for the measurement of.

[作用] 本発明の方法において、試料収納加熱容器の密封された
収納凹部内に収納された被測定物質が試料収納加熱容器
により加熱されると、被測定物質は融点に至って溶融を
開始するが、加熱エネルギーと放射、伝導等に依って失
われるエネルギーとのバランスに応じて決定する一定量
が完全に溶融するまでは被測定物質の温度は上昇しない
で保たれ、所謂サーマルアレストを示す。
[Function] In the method of the present invention, when the substance to be measured stored in the sealed storage recess of the sample storage/heating container is heated by the sample storage/heating container, the substance to be measured reaches its melting point and starts melting. The temperature of the substance to be measured is maintained without rising until a certain amount, determined according to the balance between heating energy and energy lost due to radiation, conduction, etc., is completely melted, exhibiting so-called thermal arrest.

さらに加熱を継続すると、被測定物質は再び昇温を開始
する0本発明の方法においては、この時点で試料収納加
熱容器による加熱を中止する。
If heating is continued further, the temperature of the substance to be measured starts rising again. In the method of the present invention, heating by the sample storage heating container is stopped at this point.

加熱エネルギーが無くなって降温を開始した被測定物質
は融点に至って凝固を開始し、再度サーマルアレストを
示す。
The substance to be measured, which has started to cool down due to the lack of heating energy, reaches its melting point and begins to solidify, exhibiting thermal arrest again.

以上のような昇温→溶融→降温→凝固の全過程にわたっ
て放射温度計により被測定物質における温度変化を測定
すれば、被測定物質の融点を、被測定物質またはその構
T&成分の蒸発を伴なわずに、したかって、蒸発蒸気や
煙霧(フユーム)による測温妨害や被測定物質の組成変
動に依る誤差の発生を防止して高精度に、しかも容易に
測定することか可能である。
If the temperature change in the substance to be measured is measured using a radiation thermometer over the entire process of heating → melting → cooling → solidification, the melting point of the substance to be measured can be determined by the evaporation of the substance or its components. Therefore, it is possible to easily measure the temperature with high precision while preventing interference with temperature measurement due to evaporated steam or fume and errors due to compositional fluctuations of the substance to be measured.

[実施例] 次に本発明の実施例および比較例を示し、本発明につい
てさらに具体的に説明する。
[Example] Next, Examples and Comparative Examples of the present invention will be shown to further specifically explain the present invention.

(実施例1) 厚み0.2mmX幅15s+sX長さ100■璽のタン
グステン製ボート兼ヒーターの半球状凹部(直径l05
mφ)にUO,粉末試料0.13gを収納し、この半球
状凹部の上に、長円状(0,05m5+tx 14mm
φ×24■1φ〉のタングステン製フォイルを載置した
(Example 1) Thickness 0.2 mm x Width 15 s
0.13g of UO and a powder sample were stored in the hemispherical recess (0.05m5 + tx 14mm).
A tungsten foil of φ×24×1φ was placed.

次いで、このタングステン製ボートをチャンバー内で真
空引きした後、A r / Ht  10%ガスを導入
し、タングステン製フォイルを2■巾にわたってタング
ステン製ボート上にシーム溶接し、融点測定装置中のC
u電極に接続、固定した。
Next, after evacuating this tungsten boat in a chamber, 10% Ar/Ht gas was introduced, a 2-inch width of the tungsten foil was seam welded onto the tungsten boat, and the C in the melting point measuring device was heated.
It was connected and fixed to the u electrode.

その後、チャンバー内部をA r / Ht  10%
ガスで置換してから、毎秒20℃の割合で2000℃ま
で昇温し、その温度で10分間保持して再度冷却した。
After that, the inside of the chamber was heated to 10% Ar/Ht.
After replacing with gas, the temperature was raised to 2000°C at a rate of 20°C per second, held at that temperature for 10 minutes, and cooled again.

以上のような加熱密封処理を行なった後、同一昇温割合
で2950℃に至り、10秒間保持した後、同一冷却割
合で冷却を行なう通常の融点測定プログラムに従い、試
料の融点を放射温度計によりサーマルアレストの出現か
ら求めたところ、2855℃という値が得られた。
After performing the heat sealing treatment as described above, the temperature reached 2950 °C at the same heating rate, held for 10 seconds, and then cooled at the same cooling rate.The melting point of the sample was measured using a radiation thermometer according to a normal melting point measurement program. When determined from the appearance of thermal arrest, a value of 2855°C was obtained.

この値は文献値2845℃±25℃と良く一致していた
This value was in good agreement with the literature value of 2845°C±25°C.

また、II4定中4シーム溶接したタングステン製フォ
イルか試料収納部分を完全密封しているので、外部への
蒸気、煙霧(フユーム)等の発生はiII察されなかっ
た。
In addition, since the sample storage area was completely sealed with a tungsten foil welded at four seams during the II4 test, no generation of steam, fumes, etc. to the outside was detected.

(比較例1) 前記実施例1におけるのと同一形状のボート兼ヒーター
に、UO2/1.3モル%−Nb、05粉末試料0.1
5gを収納し、前記実施例1と同様にしてガス置換を行
なった後、前記実施例1と同一の融点測定プログラムに
従って加熱を開始したが、試料溶融開始と共に蒸気およ
び煙霧(フユーム)がボート上からチャンバー内に舞い
上がり、これにより放射温度計に依る測温は妨害を受け
、2300°C近辺から激しく温度ドリフトを生じた。
(Comparative Example 1) In a boat/heater having the same shape as in Example 1, 0.1% of UO2/1.3 mol%-Nb, 05 powder sample was placed.
After the gas was replaced in the same manner as in Example 1, heating was started according to the same melting point measurement program as in Example 1. However, as the sample began to melt, steam and fumes were generated on the boat. This caused the temperature measurement by the radiation thermometer to be interfered with, resulting in a severe temperature drift from around 2300°C.

測定終了後の試料を分析したところ。Analyzing the sample after the measurement was completed.

Nb2O,含有率は0.7モル%であった。その理由は
、加熱溶融中に蒸発消失したために組成変化を生したも
のと推定される。
The Nb2O content was 0.7 mol%. The reason for this is presumed to be that the composition changed due to evaporation and disappearance during heating and melting.

[発明の効果] 本発明によると、被測定物質を収納した収納凹部内を密
封状態にして被測定物質を加熱溶融するとともに放射温
度計により被測定物質の融点を測定するので、 (1)  測定中に被測定物質またはその構成成分が蒸
発消滅するのを防止することが可能であり、したがって
、蒸発蒸気や煙霧(フユーム)による測温妨害や被測定
物質の組成変動に依る誤差の発生を排除して高い精度で
融点の測定を行なうことが可能であり、 (2)シかも、操作か容易である、 という利点を有する工業的に有用な融点測定方法を提供
することがてきる。
[Effects of the Invention] According to the present invention, the storage recess containing the substance to be measured is sealed, the substance to be measured is heated and melted, and the melting point of the substance to be measured is measured using a radiation thermometer. (1) Measurement. It is possible to prevent the substance to be measured or its constituent components from evaporating and disappearing during the process, thus eliminating interference with temperature measurement due to evaporated steam or fumes and errors caused by compositional fluctuations of the substance to be measured. It is possible to provide an industrially useful melting point measuring method which has the following advantages: (2) it is easy to operate; and (2) it is easy to operate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明の方法における測定系の構成の一
例を示す断面説明図、同図(ロ)はその平面説明図、第
2図(イ〉は従来法における測定系の構成の一例を示す
断面説明図、同図(ロ)はその平面説明図である。 l・・・被測定物質、 2・・・試料収納加熱容器、3
・・・蓋材、20・・・収納凹部第1図 (イ) (ロ) 第2図 (イ) (ロ)
FIG. 1(a) is a cross-sectional explanatory diagram showing an example of the configuration of the measurement system in the method of the present invention, FIG. 1(b) is an explanatory plan view thereof, and FIG. A cross-sectional explanatory diagram showing an example, and FIG.
...Lid material, 20...Storage recess Fig. 1 (A) (B) Fig. 2 (A) (B)

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物質を収納した試料収納加熱容器の収納凹
部上を蓋材で被覆し、前記収納凹部を密封状態または半
密封状態にした後、前記被測定物質を加熱溶融し、放射
温度計により前記被測定物質の融点を測定することを特
徴とする融点測定方法。
(1) After covering the storage recess of the sample storage heating container containing the substance to be measured with a lid material and making the storage recess into a sealed or semi-sealed state, the substance to be measured is heated and melted, and the radiation thermometer is A method for measuring a melting point, comprising: measuring the melting point of the substance to be measured.
(2)前記蓋材が、タングステン、モリブデンおよびタ
ンタルのいずれかで形成されてなる請求項1記載の融点
測定方法。
(2) The melting point measuring method according to claim 1, wherein the lid material is made of any one of tungsten, molybdenum, and tantalum.
JP32557689A 1989-12-15 1989-12-15 Melting point measuring method Pending JPH03186747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32557689A JPH03186747A (en) 1989-12-15 1989-12-15 Melting point measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32557689A JPH03186747A (en) 1989-12-15 1989-12-15 Melting point measuring method

Publications (1)

Publication Number Publication Date
JPH03186747A true JPH03186747A (en) 1991-08-14

Family

ID=18178431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32557689A Pending JPH03186747A (en) 1989-12-15 1989-12-15 Melting point measuring method

Country Status (1)

Country Link
JP (1) JPH03186747A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443616B1 (en) * 1999-05-13 2002-09-03 Gregory R. Brotz Material melting point determination apparatus
US6536944B1 (en) * 1996-10-09 2003-03-25 Symyx Technologies, Inc. Parallel screen for rapid thermal characterization of materials
JP2008170250A (en) * 2007-01-11 2008-07-24 Japan Atomic Energy Agency Specimen container for melting point measurement of mox fuel and melting point measurement specimen using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536944B1 (en) * 1996-10-09 2003-03-25 Symyx Technologies, Inc. Parallel screen for rapid thermal characterization of materials
US6443616B1 (en) * 1999-05-13 2002-09-03 Gregory R. Brotz Material melting point determination apparatus
JP2008170250A (en) * 2007-01-11 2008-07-24 Japan Atomic Energy Agency Specimen container for melting point measurement of mox fuel and melting point measurement specimen using the same
JP4604154B2 (en) * 2007-01-11 2010-12-22 独立行政法人 日本原子力研究開発機構 MOX fuel melting point measurement sample

Similar Documents

Publication Publication Date Title
Kurtz et al. Self-diffusion of gold in gold-nickel alloys
Mirković et al. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
JPH03186747A (en) Melting point measuring method
Pietriková et al. In situ investigation of SnAgCu solder alloy microstructure
Peterson et al. The Strontium-Strontium Hydride Phase System1
Ju et al. Fluoride evaporation and melting characteristics of CaF2–CaO–Al2O3–MgO–Li2O–(TiO2) slag for electroslag remelting
James et al. Corrosion of steels in liquid bismuth and lead
Barker et al. The effect of oxygen impurities on the behaviour of type 316 stainless steel in Pb-17Li
Nagarajan et al. Enthalpies of formation of UAl4 and UAl3 by calorimetry
Beneš et al. The high-temperature heat capacity of the (Li, Na) F liquid solution
Abou-Sena et al. Chemical compatibility of Eurofer steel with sodium-potassium NaK-78 eutectic alloy
Feschotte et al. Thermochemical properties of the laves phase, Cr 2 Ta
US3742367A (en) Non destructive detection process for nuclear fuel rods
JPS62107895A (en) Sealing method for high-temperature heat-resistant capsule
Chandrasekharaiah et al. High temperature phase diagrams of Re-U, Ta-U, and WU
Samanta et al. Experimental determination of phase equilibria in the system Fe–Zr (0–100 at.% Zr) by using the “spot” technique, DSC, and XRD
Perring et al. Enthalpies of formation of Ru Ge compounds and of the Gerich RuGe liquid by direct reaction calorimetry
Busfield et al. Studies in the thermochemistry of sulphones. Part 3.—Fusion and vaporization heats of sulphones of the type RSO 2 CH 3
Eichelberger et al. SOLUBILITY STUDIES OF Cr, Co, Mn, Mo, Ni, Nb, Ti, V, AND Zr IN LIQUID SODIUM.
JPH04344095A (en) Manufacture of heat pipe
JPH01244349A (en) Melting-point measuring method
Arrigo et al. Fabrication and Characterization of Plutonium Targets for Irradiation in the Flattop Critical Assembly
JPH02208547A (en) Measurement of melting point
Horrocks et al. A Smith thermal analysis and DSC study of the In-Cd system
JPH03110455A (en) Method for measuring melting point