JPH03186731A - External pressure strength testing method for centrifugal reinforced concrete pipe - Google Patents

External pressure strength testing method for centrifugal reinforced concrete pipe

Info

Publication number
JPH03186731A
JPH03186731A JP32584389A JP32584389A JPH03186731A JP H03186731 A JPH03186731 A JP H03186731A JP 32584389 A JP32584389 A JP 32584389A JP 32584389 A JP32584389 A JP 32584389A JP H03186731 A JPH03186731 A JP H03186731A
Authority
JP
Japan
Prior art keywords
reinforced concrete
external pressure
centrifugal reinforced
concrete pipe
pressure strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32584389A
Other languages
Japanese (ja)
Inventor
Toshitsugu Tanaka
敏嗣 田中
Masayuki Tsuji
正之 辻
Koichiro Nishioka
西岡 耕一郎
Hiroki Fujiwara
藤原 浩己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP32584389A priority Critical patent/JPH03186731A/en
Publication of JPH03186731A publication Critical patent/JPH03186731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To predict the generation of a crack by detecting a minute sound generated from a centrifugal reinforced concrete pipe during loading at the time of deciding a cracking load in the case of the external pressure strength test of the centrifugal reinforced concrete pipe. CONSTITUTION:In the case of deciding a cracking load at the time of the external pressure strength test of a centrifugal reinforced concrete pipe, by detecting a minute sound generated from the centrifugal reinforced concrete pipe in the course of loading, it becomes an auxiliary means for deciding the cracking load. Also, an acoustic detecting sensor is installed on the surface of the pipe, and with respect to an obtained acoustic signal, by analogizing or digitizing a minute acoustic output generated from the pipe by an acoustic signal processor, and deriving the maximum value of a generated acoustic output per unit time, the generation of a crack of 0.05mm width is predicted.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、遠心力鉄筋コンクリート管の外圧強さ試験方
法に関し、特にそのひび割れ荷重の判定方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for testing the external pressure strength of a centrifugal force reinforced concrete pipe, and particularly to a method for determining cracking load thereof.

[従来の技術1 遠心力鉄筋コンクリート管の外圧強さ試験の際のひび割
れ荷重の判定方法は、JIS A 5303に規定され
ている。これによると、ひび割れ荷重の判定は、管体に
幅0.05a+mのひび割れが発生した時の荷重をもっ
て行なうとしている。このひび割れの検出は、一般に肉
眼による目視により行なっており、ひび割れ幅0.05
mmは1通常肉眼で発見できる限度であるため、その発
見は非常に困難であった。
[Prior Art 1 A method for determining cracking load during external pressure strength testing of centrifugal reinforced concrete pipes is specified in JIS A 5303. According to this, the cracking load is determined based on the load when a crack with a width of 0.05a+m occurs in the tube. Detection of this crack is generally done by visual inspection with the naked eye, and the crack width is 0.05.
Since 1 mm is the limit that can normally be detected with the naked eye, its detection has been extremely difficult.

また、ダイヤルゲージなどを取り付けて、加圧に伴う管
の変形量を見るのは、ひび割れの発生時期を予知する上
では有効な方法として、一般に用いられているが、変曲
点がはっきりしないため、正確な判定を行なうことは困
難である。
In addition, attaching a dial gauge or the like to observe the amount of deformation of the pipe due to pressurization is generally used as an effective method for predicting when cracks will occur, but the point of inflection is not clear. , it is difficult to make accurate judgments.

〔発明が解決しようとする課題1 したがって、遠心力鉄筋コンクリート管の外圧強さ試験
時のひび割れ荷重の判定は、目視に依存する部分が多い
ため、真のひび割れ荷重の判定は困難であり、また人為
誤差による結果のばらつきが多かった。
[Problem to be Solved by the Invention 1] Therefore, since the determination of the cracking load during the external pressure strength test of centrifugal reinforced concrete pipes relies on visual inspection in many parts, it is difficult to determine the true cracking load, and it is difficult to determine the true cracking load. There was a lot of variation in the results due to errors.

〔問題を解決するための手段] 本発明者らは、固体材料に外圧が作用して、ひび割れが
発生する際に、それがいかに微小であっても1弾性エネ
ルギーの急激な開放による音響が発生し、固体内部を広
幅する現象を利用することにより、上記の遠心力鉄筋コ
ンクリート管の外圧強さ試験方法におけるひび割れ荷重
の判定の補助が行なえるとの知見を得て、本発明を完成
するに至った。
[Means for Solving the Problem] The present inventors have discovered that when external pressure acts on a solid material and cracks occur, no matter how small the crack is, sound is generated due to the sudden release of elastic energy. However, by utilizing the phenomenon of widening the inside of a solid, it was found that it is possible to assist in determining the cracking load in the external pressure strength test method for centrifugal reinforced concrete pipes described above, and this led to the completion of the present invention. Ta.

すなわち、本発明は、遠心力鉄筋コンクリート管の外圧
強さ試験の際のひび割れ荷重の判定において、載荷中に
遠心力鉄筋コンクリート管から発生する微細な音響を検
出することにより、ひび割れ荷重の判定の補助手段とす
ることを特徴とする遠心力鉄筋コンクリート管の外圧強
さ試験方法を提供するちのである。
That is, the present invention provides an auxiliary means for determining cracking loads during external pressure strength tests of centrifugal reinforced concrete pipes by detecting minute sounds generated from centrifugal reinforced concrete pipes during loading. The present invention provides a method for testing the external pressure strength of centrifugal force reinforced concrete pipes.

本発明によりひび割れ荷重の判定を行なうには、音響検
出センサーを管表面に装着し、得られた音響信号を音響
信号処理装置により、管から発生する微細な音響出力を
アナログあるいはデジタル化し、単位時間あたりの発生
音響出力の最大値を求めることにより、JIS A 5
303に規定されている幅0.05nnのひび割れの発
生を予洞することによって行なわれる。
In order to determine the cracking load according to the present invention, an acoustic detection sensor is attached to the pipe surface, and the obtained acoustic signal is converted into analog or digital form by an acoustic signal processing device, and the minute acoustic output generated from the pipe is converted into analog or digital form over a unit time. JIS A 5 by determining the maximum value of the sound output generated per
This is done by predicting the occurrence of cracks with a width of 0.05 nn as specified in 303.

本発明で使用する音響検出センサーは、コンクリート中
を広幅する音響を検出できるものなら種類を問わない。
The acoustic detection sensor used in the present invention may be of any type as long as it can detect a wide range of acoustic waves in concrete.

本発明で使用する音響信号処理装置は、音響検出センサ
ーからの音響信号を、電気的信号に変換でき、その信号
をデジタル化して計測し、単位時間あたりの音響出力に
処理できるものであれば種類は問わない。
The acoustic signal processing device used in the present invention can be of any type as long as it can convert the acoustic signal from the acoustic detection sensor into an electrical signal, digitize and measure the signal, and process it into an acoustic output per unit time. I don't care.

〔作用1 遠心力鉄筋コンクリート管に外力が作用し、最初に、管
の内側表面に幅0.05mm以下の目視では発見が困難
なひび割れが出現する際に、この種のひび割れによる音
響の放出量は、最大値を示すと考えられる。
[Action 1: When an external force acts on a centrifugal reinforced concrete pipe and a crack with a width of 0.05 mm or less that is difficult to detect visually appears on the inner surface of the pipe, the amount of sound emitted by this type of crack is , is considered to show the maximum value.

そこで、単位時間あたりの発生音響出力の最大値を示し
た直後から、細心の注意をもって管体の観察を行なうこ
とにより、幅0.051+11のひび割れを見逃す可能
性が極めて小さく、その発生時期を正確に判定すること
ができる。
Therefore, by observing the pipe body with great care immediately after the maximum value of the generated sound output per unit time is reached, the possibility of missing a crack with a width of 0.051 + 11 is extremely small, and the timing of its occurrence can be accurately determined. can be determined.

すなわち、本発明による単位時間当たりの発生音響出力
の検出は、 JIS規格によるひび割れ発生荷重の判定
の予測に極めて有効な補助手段である。
That is, the detection of the generated sound output per unit time according to the present invention is an extremely effective auxiliary means for predicting the determination of the cracking load according to the JIS standard.

第1図は、呼び径600mm、長さ lraの遠心力鉄
筋コンクリート管についで、JIS A 5303に準
じて外圧試験を行ない、そのひび割れ発生を音響検出セ
ンサーで検出し、音響信号処理で単位時間あたりの音響
発生量を測定したグラフである。図の横軸は載荷時間で
、縦軸は音響エネルギーを表わす。音響エネルギーは、
音響波の振幅を電圧(mVlで示し、その二乗値とした
Figure 1 shows that a centrifugal reinforced concrete pipe with a nominal diameter of 600 mm and a length of lra was subjected to an external pressure test in accordance with JIS A 5303, the occurrence of cracks was detected by an acoustic detection sensor, and the occurrence of cracks per unit time was detected by acoustic signal processing. It is a graph showing the amount of sound generated. The horizontal axis of the figure represents loading time, and the vertical axis represents acoustic energy. The acoustic energy is
The amplitude of the acoustic wave was expressed as a voltage (mVl), and its square value was taken as the value.

載荷時間の経過によって荷重が増加し、載荷量が508
0kgf/+に達したとき音響エネルギー値が最大値を
示し、その後載荷荷重5110kgf/mで幅0.05
n+mのひび割れが観察され、この荷重を以ってひび割
れ荷重と判定した。
The load increases as the loading time passes, and the loading amount becomes 508.
The acoustic energy value shows the maximum value when it reaches 0 kgf/+, and then the width is 0.05 at a load of 5110 kgf/m.
A crack of n+m was observed, and this load was determined to be a cracking load.

同じ検体をJISの目視法で判定した結果は、5090
〜5370kgの範囲にあり、音響検出を用いた本発明
による測定値は、この目視法による測定値の範囲にあっ
た。
The result of determining the same sample using the JIS visual method was 5090.
~5370 kg, and measurements according to the invention using acoustic detection were in the range of measurements using this visual method.

[実施例1 以下の実施例及び比較例のコンクリートは第1表の配合
のものを用いた。なお、膨張材をセメントの内側で、呼
び径200mm 、 600++n 、 1800+n
mの場合について、それぞれ10%、12%、15%混
入した。また、測定用コンクリート管としては、各呼び
径のものをそれぞれ10本製造した。
[Example 1 The concretes used in the following Examples and Comparative Examples had the formulations shown in Table 1. In addition, the expansion material is placed inside the cement with a nominal diameter of 200mm, 600++n, 1800+n.
In the case of m, 10%, 12%, and 15% were mixed, respectively. In addition, 10 concrete pipes of each nominal diameter were manufactured as measuring concrete pipes.

第  1  表 比較例1〜3 JIS A 5303に準じて、管径(呼び径) 20
0mm、600問、1800msの三種類の管について
、上記測定用コンクリート管のそれぞれ5本ずつを検体
として外圧試験を行なった。
Table 1 Comparative Examples 1 to 3 According to JIS A 5303, pipe diameter (nominal diameter) 20
External pressure tests were conducted on three types of pipes: 0 mm, 600 questions, and 1800 ms, using five of the concrete pipes for measurement as specimens.

結果を第2表に示す。The results are shown in Table 2.

実流例1〜3 上記比較例に用いた残りの検体各5本について、下記に
示す音響検出センサー及び音響信号処理装置を用いて、
管から発生する微細な音響を測定し、単位時間あたりの
発生音響エネルギーを音響信号処理装置を用いて出力し
、その極大値を検出した時点から、特に慎重にひび割れ
発生の観察を行なった。ひび割れ荷重の判定は目視によ
り行なった。
Actual flow examples 1 to 3 For each of the remaining five samples used in the above comparative examples, using the acoustic detection sensor and acoustic signal processing device shown below,
The minute sound generated from the tube was measured, the sound energy generated per unit time was output using an acoustic signal processing device, and from the moment the maximum value was detected, cracks were observed with particular care. The cracking load was determined visually.

音響検出センサー: AE−200(メガセラ社製) 片前信号処理装置: Megasor AE−I+ (メガセラ社製)結果を
第2表に示す。
Acoustic detection sensor: AE-200 (manufactured by Megacera) Single-sided signal processing device: Megasor AE-I+ (manufactured by Megacera) The results are shown in Table 2.

〔発明の効果1 本発明によれば、遠心力鉄筋コンクリート管の外圧強さ
試験の際のひび割れ荷重の判定にあたり、載荷中に遠心
力鉄筋コンクリート管から発生する微細な音響を検出す
ることにより、ひび割れ発生の予測が得られ、その測定
結果はJIS規格法によるちのと同一レベルであり、従
来の目視のみによるひび割れ発生の判定における人為誤
差による結果のばらつきが大幅に減少した。
[Effect of the invention 1 According to the present invention, when determining the cracking load during an external pressure strength test of a centrifugal reinforced concrete pipe, cracks can be detected by detecting minute sounds generated from the centrifugal reinforced concrete pipe during loading. prediction was obtained, and the measurement results were at the same level as those obtained by the JIS standard method, and the variation in results due to human error in the conventional judgment of crack occurrence based only on visual inspection was significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法による測定結果の一例である。 FIG. 1 shows an example of measurement results obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)遠心力鉄筋コンクリート管の外圧強さ試験の際の
ひび割れ荷重の判定において、載荷中に遠心力鉄筋コン
クリート管から発生する微細な音響を検出することによ
り、ひび割れ荷重の判定の補助手段とすることを特徴と
する遠心力鉄筋コンクリート管の外圧強さ試験方法。
(1) In determining cracking loads during external pressure strength tests of centrifugal reinforced concrete pipes, detecting minute sounds generated from centrifugal reinforced concrete pipes during loading can be used as an auxiliary means for determining cracking loads. A method for testing the external pressure strength of centrifugal reinforced concrete pipes.
JP32584389A 1989-12-18 1989-12-18 External pressure strength testing method for centrifugal reinforced concrete pipe Pending JPH03186731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32584389A JPH03186731A (en) 1989-12-18 1989-12-18 External pressure strength testing method for centrifugal reinforced concrete pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32584389A JPH03186731A (en) 1989-12-18 1989-12-18 External pressure strength testing method for centrifugal reinforced concrete pipe

Publications (1)

Publication Number Publication Date
JPH03186731A true JPH03186731A (en) 1991-08-14

Family

ID=18181239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32584389A Pending JPH03186731A (en) 1989-12-18 1989-12-18 External pressure strength testing method for centrifugal reinforced concrete pipe

Country Status (1)

Country Link
JP (1) JPH03186731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769143A1 (en) * 1994-06-07 1997-04-23 Washington Suburban Sanitary Commission Methods for the non-destructive evaluation of prestressed concrete structures
JP2010223761A (en) * 2009-03-24 2010-10-07 Taiheiyo Cement Corp Method of estimating cracking load of high-strength fiber-reinforced concrete

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769143A1 (en) * 1994-06-07 1997-04-23 Washington Suburban Sanitary Commission Methods for the non-destructive evaluation of prestressed concrete structures
EP0769143A4 (en) * 1994-06-07 1997-07-09 Washington Suburban Sanitary C Methods for the non-destructive evaluation of prestressed concrete structures
JP2010223761A (en) * 2009-03-24 2010-10-07 Taiheiyo Cement Corp Method of estimating cracking load of high-strength fiber-reinforced concrete

Similar Documents

Publication Publication Date Title
CA2575036C (en) Buried pipe examining method
US8820163B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
CN203772787U (en) Real-time metal structure crack monitoring device
Sun et al. Acoustic emission sound source localization for crack in the pipeline
CN109341912A (en) A kind of ultrasonic wave plane voussoir is used for the residual stress measuring method of curve surface work pieces
CN112858474A (en) Ultrasonic testing method and system for stress of ceramic rock plate
JP6061767B2 (en) Method and apparatus for exploring delamination inside concrete
JPH03186731A (en) External pressure strength testing method for centrifugal reinforced concrete pipe
KR101210472B1 (en) Apparatus and method for detecting the micro-scale crack using nonlinear characteristics of ultrasonic resonance
JPS62142258A (en) Non-destructive measuring method for zirconium alloy material
KR101279210B1 (en) Electrochemical fatigue sensor system and methods
RU2204817C1 (en) Procedure establishing technical state of materials of structural members
Saunders et al. Measurement methods for the determination of fracture strain
JP4538928B2 (en) Crystal grain size abnormality judgment device and crystal grain size abnormality judgment method
KR100561065B1 (en) Method for detecting crack position of material with sensor
JPS6382340A (en) Material tester
SU864117A1 (en) Ultrasonic method of flaw detection in polycrystalline materials
CN114002065A (en) Method for detecting loaded rock crack evolution in real time by utilizing ultrasonic waves
Shah et al. Correlating tests of progressively damaged concrete with NLU and AE techniques
CN115855331A (en) Bolt axial force measuring method based on ultrasonic transverse and longitudinal wave absolute sound time ratio
CN115876877A (en) Material hydrogen damage state judgment method based on ultrasonic online monitoring
DUKE JR et al. and KL REIFSNIDER Materials Response Group, Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University
Singh et al. Monitoring fatigue crack initiation and propagation in cruciform joints using resistance-type gages
SU1370538A1 (en) Method of measuring parameters of cracks in ferromagnetic objects in fatigue tests
JPS585629A (en) Method for measuring ductile fracture resistance