JPH03186500A - Propellant manufacturing/storing device - Google Patents

Propellant manufacturing/storing device

Info

Publication number
JPH03186500A
JPH03186500A JP1323900A JP32390089A JPH03186500A JP H03186500 A JPH03186500 A JP H03186500A JP 1323900 A JP1323900 A JP 1323900A JP 32390089 A JP32390089 A JP 32390089A JP H03186500 A JPH03186500 A JP H03186500A
Authority
JP
Japan
Prior art keywords
oxygen
water
hydrogen
tank
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1323900A
Other languages
Japanese (ja)
Other versions
JP2634266B2 (en
Inventor
Katsuhide Ohira
勝秀 大平
Hiroo Tomita
浩朗 富田
Nobuhiro Karatsu
唐津 信弘
Kenji Kishimoto
岸本 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1323900A priority Critical patent/JP2634266B2/en
Publication of JPH03186500A publication Critical patent/JPH03186500A/en
Application granted granted Critical
Publication of JP2634266B2 publication Critical patent/JP2634266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • B64G1/446Thermal solar power generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/425Power storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To simplify and lighten the structure of the tank of a shuttle by pressure-feeding the water in a water tank to a water electrolysis device excited by a solar heat power generating device, power-recovering and utilizing the pressure energy of the generated hydrogen and oxygen, and liquefying and storing the hydrogen and oxygen. CONSTITUTION:The water in a water tank 1 is pressure-fed to a water electrolysis device 3 by a booster pump 2, and the water electrolysis device 3 is excited by a solar heat power generating device 4 for electrolysis to generate hydrogen GH2 and oxygen GO2. The generated gases GH2, GO2 are sent to expansion turbines 7a, 7b and a propelling device 8. Generators 7c, 7d are driven by the expansion turbines 7a, 7b to recover the power energy. The gases GH2, GO2 expanded by the expansion turbines 7a, 7b are fed to liquefiers 8, 15 respectively and cooled by heat exchangers 12, 18, and they are cooled and liquefied and stored in respective tanks 14, 20. The water tank 1 can be used for the tank of a shaft, the tank structure is simplified, and it can be made lightweight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、宇宙空間にて用いる推進薬製造貯蔵装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a propellant manufacturing and storage device for use in outer space.

〔従来の技術〕[Conventional technology]

現在、宇宙基地の設置が計画されて釦り、本計画の中で
、軌道間輸送機(例えば、地球と高度500 kmの宇
宙基地間を往復飛行、もしくは宇宙基地と高度3600
0 km上空(静止軌道上)の静止衛星間を往復飛行す
る輸送機など)は、液体水素、液体酸素よりなる推進薬
の供給を、宇宙空間に設けられた推進薬貯蔵所から受け
ることが検討されている。
Currently, plans are being made to establish a space base, and this plan includes an interorbital transport vehicle (for example, a round-trip flight between the Earth and a space base at an altitude of 500 km, or a space station and a space base at an altitude of 3,600 km).
Transport aircraft that fly back and forth between geostationary satellites at 0 km altitude (in geostationary orbit) are considering receiving propellants consisting of liquid hydrogen and liquid oxygen from propellant storage facilities located in outer space. has been done.

従来の計画に釦いては、上記水素ガス、酸素ガスは地球
上で液化製造してタンクに充てんし、スペースシャトル
等で宇宙空間上の貯蔵所に運ぶものであった。
The conventional plan was to liquefy the hydrogen and oxygen gases on Earth, fill them in tanks, and transport them to a storage facility in outer space using a space shuttle or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の計画に釦いては、水素ガス、酸素ガスを地上で液
化して宇宙空間の貯蔵所に運ぶ場合、次の技術的課題が
あった。
The conventional plan involved the following technical issues when liquefying hydrogen and oxygen gases on the ground and transporting them to a storage facility in space.

(1)液体水素は温度−253℃、液体酸素は温度−1
83℃の極低温流体であるため、シャトル等で輸送する
場合、充てんするタンクは液体の蒸発を防止するために
断熱材が必要となる。その結果タンク構造が複雑とな少
、高価となる。また重量も増加するのでシャトルに搭載
する液体水素、液体酸素の量が減少する。
(1) Liquid hydrogen has a temperature of -253℃, liquid oxygen has a temperature of -1
Since it is a cryogenic fluid with a temperature of 83 degrees Celsius, when transporting it by shuttle or the like, the filling tank requires insulation to prevent the liquid from evaporating. As a result, the tank structure becomes complicated and expensive. Also, because the weight increases, the amount of liquid hydrogen and liquid oxygen that can be carried on the shuttle will be reduced.

(2)液体水素、液体酸素の密度は小さいため、同一重
量の水と比較すると体積が犬きくなるため、シャトル搭
載上制限を受ける。
(2) Since the density of liquid hydrogen and liquid oxygen is small, their volume is smaller than that of water of the same weight, so there are restrictions on how they can be carried on the shuttle.

(3)液体水素は可燃性であり、また、液体酸素は燃焼
を助長、加速する働きがあるため、シャトル等に搭載し
て宇宙空間へ運搬する際、危険性が大きい。
(3) Liquid hydrogen is flammable, and liquid oxygen promotes and accelerates combustion, so it is very dangerous to transport it to space on a shuttle or the like.

本発明は、上記の課題を解決しようとするものである。The present invention seeks to solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の推進薬製造貯蔵装置は、液体水素と液体酸素の
原料となる水を貯蔵するタンク、同タンクが接続され水
を加圧して供給する加圧用ポンプ、同ポンプが接続され
供給される水を電気分解する水電解装置、同水電解装置
に接続され電力を供給する太陽熱発電装置、上記水電解
装置が発生した高圧の水素又は酸素が供給されそれぞれ
圧力エネルギーを回収する動力回収装置、同それぞれの
動力回収装置が接続され発生した水素ガスを液化する水
素液化機と酸素ガスを液化する酸素液化機、上記水素液
化機が接続された液体水素タンク、上記酸素液化機が接
続された液体酸素タンク、1よび上記水素液化機と酸素
液化機にそれぞれ接続され不要な熱を放熱する放熱器を
備えたことを特徴としている。
The propellant manufacturing and storage device of the present invention includes a tank for storing water that is a raw material for liquid hydrogen and liquid oxygen, a pressurizing pump to which the tank is connected and which pressurizes and supplies water, and a pressurizing pump to which the pump is connected to supply water. A water electrolysis device that electrolyzes water, a solar power generation device that is connected to the water electrolysis device and supplies electricity, a power recovery device that is supplied with high-pressure hydrogen or oxygen generated by the water electrolysis device and recovers pressure energy, respectively. A hydrogen liquefier that is connected to a power recovery device to liquefy generated hydrogen gas, an oxygen liquefier that liquefies oxygen gas, a liquid hydrogen tank that is connected to the hydrogen liquefier, and a liquid oxygen tank that is connected to the oxygen liquefier. , 1 and the hydrogen liquefaction machine and the oxygen liquefaction machine, respectively, are equipped with radiators for dissipating unnecessary heat.

〔作用〕[Effect]

上記にろI)1、地上から運ばれ水タンクに貯蔵された
水はポンプにより加圧されて水電解装置へ圧送され、同
水電解装置は太陽熱発電装置より供給された電力により
水を電気分解する。上記水電解装置により生成された水
素ガスと酸素ガスはそれぞれの動力回収装置に送られ、
動力が回収される。
Above I) 1. Water carried from the ground and stored in a water tank is pressurized by a pump and sent to a water electrolysis device, which electrolyzes water using electricity supplied from a solar power generation device. do. The hydrogen gas and oxygen gas generated by the water electrolysis device are sent to each power recovery device,
Power is recovered.

上記動力が回収された水素ガスと酸素ガスはそれぞれ水
素液化機と酸素液化機へ送られ、それぞれの液化機に設
けられた放熱器により不要な熱が放熱されて液化され、
液化水素タンクと液化酸素タンクに貯蔵される。同それ
ぞれのタンクに貯蔵された液化水素と液化酸素は、燃料
の補給を要する輸送機等へ供給される。
The hydrogen gas and oxygen gas from which the power has been recovered are sent to a hydrogen liquefaction machine and an oxygen liquefaction machine, respectively, and unnecessary heat is radiated by a radiator installed in each liquefaction machine and liquefied.
It is stored in liquefied hydrogen tanks and liquefied oxygen tanks. The liquefied hydrogen and liquefied oxygen stored in the respective tanks are supplied to transport aircraft and the like that require refueling.

上記により、宇宙基地に訃ける推進薬の製造を可能とじ
鈷り裕、推進薬を原料である水の状態で貯蔵することを
可能としたため、貯蔵タンクの断熱が不要となり、また
一定量の水から製造される液体水素と液体M素の水に対
する体積化は約3倍であるため、上記タンクの構造Vi
簡単なものとなり、重量は軽減する。更に地上からは水
を運鰐するため、運搬時に釦ける危険性が大幅に減少す
る0〔実施例〕 本発明の一実施例を第1図に示す。
As a result of the above, it has become possible to manufacture propellants that can be used at space bases, and because it has become possible to store propellants in the form of water, which is the raw material, there is no need to insulate the storage tank, and a certain amount of water can be stored at the space station. Since the volume of liquid hydrogen and liquid M element produced from water is about three times that of water, the structure of the tank Vi
It becomes simpler and the weight is reduced. Furthermore, since water is transported from the ground, the risk of the button breaking during transportation is greatly reduced. [Embodiment] An embodiment of the present invention is shown in FIG. 1.

第1図に釦いて、1は水タンクで地上から・シャトル等
が運んできた水を貯蔵する。2は上記水貯蔵タンク1に
配管により接続され水を加圧し圧送するためのポンプ、
3は同ポンプ2を介して上記水貯蔵タンク1より水が供
給される水電解装置で固体高分子電解質を利用した固体
高分子水電解法などにより水を電気分解する。4は上記
水電解装置3が電線により接続された太陽熱発電装置で
水電解装置3に電力を供給する装置である。6a。
In Figure 1, button 1 is a water tank that stores water brought from the ground or by shuttles. 2 is a pump connected to the water storage tank 1 by piping for pressurizing and pumping water;
3 is a water electrolysis device to which water is supplied from the water storage tank 1 via the same pump 2, and electrolyzes water by a solid polymer water electrolysis method using a solid polymer electrolyte. Reference numeral 4 denotes a solar power generation device to which the water electrolysis device 3 is connected by an electric wire, and is a device that supplies power to the water electrolysis device 3. 6a.

6bは上記水電解装置3より水素ガスGH,又は酸素ガ
スGO,が供給され、それぞれ水素ガス中から水分を、
酸素ガス中から水分を除去する乾燥器である。7a、7
bはそれぞれ発電機7c、7dが接続され上記乾燥器6
 a + 6 bより高圧の水素ガス又は高圧の酸素ガ
スが供給されそれぞれを断熱膨張させて動力を回収する
ための動力回収装置として機能する膨張タービンである
08は上記乾燥器6a、6bより水素ガス及び酸素ガス
が供給される複数個の推進装置で本実施例の姿勢制御や
推進用に使用される。9は上記膨張タービン7bより酸
素ガスが供給される酸素液化機で、冷媒ガスであるヘリ
ウム又はアルコンガスにより上記酸素ガスを冷却液化す
る熱交換器12を有している。
6b is supplied with hydrogen gas GH or oxygen gas GO from the water electrolyzer 3, and removes moisture from the hydrogen gas, respectively.
This is a dryer that removes moisture from oxygen gas. 7a, 7
b is the dryer 6 to which generators 7c and 7d are connected, respectively.
08 is an expansion turbine that functions as a power recovery device for recovering power by adiabatically expanding each gas to which high-pressure hydrogen gas or high-pressure oxygen gas is supplied from a + 6 b. A plurality of propulsion devices to which oxygen gas is supplied are used for attitude control and propulsion in this embodiment. An oxygen liquefier 9 is supplied with oxygen gas from the expansion turbine 7b, and has a heat exchanger 12 that cools and liquefies the oxygen gas using helium or alcon gas as a refrigerant gas.

10は上記熱交換器12が接続されモータ10aを有し
上記ヘリウム又はアルゴンガスな圧縮しブレイトンサイ
クルを形成する圧縮機、11は上記プレイトンサイクル
中に設けられヘリウムガス又はアルゴンガスの圧縮時に
発生する熱を除去するための放熱器で、冷媒としてフレ
オン等が使用される。13は上記プレイトンサイクル中
に設けられ発電機13aが接続され高圧ヘリウムガス又
はアルゴンガスな断熱膨張させ酸素が液化するために必
要な低温ヘリウムガス又はアルゴンガス(酸素の液化温
度以下、即ち一183℃以下)を発生する膨張タービン
であり、膨張時に発生する動力は発電機13aにより回
収される。14は上記酸素液化機9に配管により接続さ
れ液化した酸素又はスラッシュ状(固液共存状態)の酸
素を貯蔵するための液化酸素タンクで、侵入熱を小さく
するため外部に断熱材が施工しである。15は上記膨張
タービン7aより水素ガスが供給される水素液化機で、
冷媒ガスであるヘリウムガスにより上記水素ガスを冷却
液化する熱交換器18を有している。
10 is a compressor to which the heat exchanger 12 is connected and has a motor 10a and compresses the helium or argon gas to form a Brayton cycle; 11 is provided in the Brayton cycle to compress the helium gas or argon gas generated when compressing the helium gas or argon gas; This is a radiator that removes the heat generated by heat, and Freon or the like is used as a refrigerant. Reference numeral 13 is provided in the above-mentioned Preyton cycle and connected to the generator 13a, which is a high-pressure helium gas or argon gas that is adiabatically expanded to liquefy oxygen at a low temperature helium gas or argon gas (below the liquefaction temperature of oxygen, i.e. -183 ℃ or less), and the power generated during expansion is recovered by the generator 13a. 14 is a liquefied oxygen tank connected to the oxygen liquefier 9 by piping to store liquefied oxygen or slush-like (solid-liquid coexistence state) oxygen, and is provided with a heat insulating material on the outside to reduce intrusion heat. be. 15 is a hydrogen liquefier to which hydrogen gas is supplied from the expansion turbine 7a;
It has a heat exchanger 18 that cools and liquefies the hydrogen gas using helium gas, which is a refrigerant gas.

16は上記熱交換器18が接続されモータ16aを有し
上記ヘリウムガスを圧縮しプレイトンサイクルを形成す
る圧縮機、17は上記プレイトンサイクル中に設けられ
ヘリウムガスの圧縮時□発生する熱を除去するための放
熱器で、冷媒としてフレオン等が使用される。19は上
記プレイトンサイクル中に設けられ発電機19aが接続
され高圧ヘリウムガスを断熱膨張させ水素が液化するた
めに必要な低温ヘリウムガス(水素の液化温度以下即ち
一253℃以下)を発生する膨張タービンであり、膨張
時に発生する動力は発電機19aにより回収される。2
0は上記水素液化機15に配管により接続され液化した
水素又はスラッシュ状の水素を貯蔵するための液化水素
タンクで、侵入熱を小さくするため外部に断熱材が施工
しである。
16 is a compressor to which the heat exchanger 18 is connected and has a motor 16a and compresses the helium gas to form a Preyton cycle; 17 is a compressor provided in the Preyton cycle to collect the heat generated when compressing the helium gas; This is a heat radiator for removing heat, and Freon or the like is used as a refrigerant. Reference numeral 19 is an expansion unit provided in the Preyton cycle and connected to a generator 19a, which adiabatically expands high-pressure helium gas and generates low-temperature helium gas (below the liquefaction temperature of hydrogen, i.e., below -253°C) necessary for liquefying hydrogen. It is a turbine, and the power generated during expansion is recovered by a generator 19a. 2
Reference numeral 0 denotes a liquefied hydrogen tank connected to the hydrogen liquefier 15 by piping to store liquefied hydrogen or slush hydrogen, and is provided with a heat insulating material on the outside to reduce intrusion heat.

21は上記タンク14.20が配管により接続され軌道
間輸送機へ液体水素、液体酸素を供給するための供給部
である。22は上記タンク14゜20が配管により接続
されシステムが太陽光の恩恵を受けない場合(地球の陰
となって太陽光が届かない場合)即ち、電力補給が不可
能な場合に一時的に電力を供給するための燃料電池であ
る。
Reference numeral 21 denotes a supply section to which the tanks 14 and 20 are connected via piping to supply liquid hydrogen and liquid oxygen to the interorbital transport vehicle. 22 is a temporary power supply when the tank 14゜20 is connected by piping and the system does not receive the benefit of sunlight (when sunlight cannot reach due to the shadow of the earth), that is, when power supply is impossible. This is a fuel cell for supplying

上記燃料電池22は、排ガスとして水蒸気又は水が発生
し、発生した水蒸気、水は水タンク1に回収される。
The fuel cell 22 generates steam or water as exhaust gas, and the generated steam and water are collected in the water tank 1.

上記にふ−いて、地上からシャトル等で運ばれ水タンク
1に貯蔵された水は、ポンプ2により加圧され、水X%
装置3へ圧送される。同水電解装置3は、太陽熱発電製
置4より電力が供給され、上記水を電気分解する0上記
水電解装#3により生成された水素ガスGH2及び酸素
ガスGO2はそれぞれ乾燥器6a、6bにより水分が除
去され膨張タービン7a、7b及び推進装置8へ送られ
る。同膨張タービン7 a T 7 bへ送られた高圧
の水素ガス又は高圧の酸素ガスは断熱膨張され発電機7
c。
Based on the above, the water transported from the ground by shuttle etc. and stored in the water tank 1 is pressurized by the pump 2, and the water
It is pumped to device 3. The water electrolyzer 3 is supplied with electric power from a solar thermal power generator 4 and electrolyzes the water.Hydrogen gas GH2 and oxygen gas GO2 generated by the water electrolyzer #3 are supplied to dryers 6a and 6b, respectively. Moisture is removed and sent to expansion turbines 7a, 7b and propulsion device 8. The high pressure hydrogen gas or high pressure oxygen gas sent to the expansion turbine 7 a T 7 b is adiabatically expanded and sent to the generator 7
c.

7dにより動力が回収されるoまた、上記推進装#8は
、水素ガス及び酸素ガスが供給され、基地の姿勢制御や
推進用に使用される。
Power is recovered by 7d. Additionally, the propulsion device #8 is supplied with hydrogen gas and oxygen gas, and is used for attitude control and propulsion of the base.

上記膨張タービン7a、7bより排出された水素ガス又
は酸素ガスは、それぞれ水素液化機15又は酸素液化機
9へ供給される。上記液化機9゜15にはそれぞれ圧縮
機10.16と放熱器11゜17と膨張タービン13.
19とによりプレイトンサイクルを形成する熱交換器1
2.18が設けられて訃り、上記水素ガス又は酸素ガス
は熱交換器12.18にてプレイトンサイクル中の低温
ヘリウム又はアルコンガスにより冷却され液化する。
The hydrogen gas or oxygen gas discharged from the expansion turbines 7a, 7b is supplied to the hydrogen liquefier 15 or the oxygen liquefier 9, respectively. The liquefier 9.15 has a compressor 10.16, a radiator 11.17, and an expansion turbine 13.15, respectively.
Heat exchanger 1 forming a Preyton cycle with 19
2.18 is provided, and the hydrogen gas or oxygen gas is cooled and liquefied in the heat exchanger 12.18 by low temperature helium or Alcon gas in the Preyton cycle.

な釦上記膨張タービン13,19の動力はそれぞれ発電
機13 a * 19 aにより回収される。
The power of the expansion turbines 13 and 19 is recovered by generators 13a*19a, respectively.

上記液化された水素又は酸素はそれぞれタンク14.2
0に貯蔵され、必要に応じて供給部21を介して輸送機
へ供給する。また、太陽光が受光することができず、−
時的に電力の供給を要する場合には、燃料電池22ヘタ
ンク14,20より液体水素及び液体酸素を供給し、電
力を発生させる。上記燃料電池22が排出する水蒸気又
は水は水タンク1に回収される。なふ・、上記燃料電池
22にて一時的に電力を供給する理由は、この種の極低
温機器、宇宙機器にふへいては一時的に運転を停止する
と定常運転状態に復帰するの紙長時間を要するため、水
より生威し液化した水素と酸素を消費してでも液化運転
を継続した方がメリフトが太きいためである。
The liquefied hydrogen or oxygen is stored in a tank 14.2, respectively.
0, and is supplied to the transport machine via the supply section 21 as necessary. Also, sunlight cannot be received, and -
When it is necessary to temporarily supply electric power, liquid hydrogen and liquid oxygen are supplied from the tanks 14 and 20 to the fuel cell 22 to generate electric power. Steam or water discharged from the fuel cell 22 is collected in the water tank 1. The reason why the fuel cell 22 temporarily supplies power is that this kind of cryogenic equipment and space equipment will return to a steady operating state if they temporarily stop operating. This is because it takes time to continue the liquefaction operation even if it consumes liquefied hydrogen and oxygen, which is more viable than water, because the merift will be larger.

上記により、宇宙基地にふ・ける推進薬の製造を可能と
し、推進薬を原料である水の状態で貯蔵することを可能
としたため、貯蔵タンクの断熱が不要となり、また一定
量の水から製造される液体水素と液体酸素の水に対する
体積比は約3倍であるため、上記タンクの構造は簡単な
ものとなり、重量は軽減する。更に地上からは水を運搬
するため、運搬時に釦ける危険性が大幅に減少する。
As a result of the above, it has become possible to manufacture propellants for space bases, and it has become possible to store propellants in the form of water, which is the raw material, eliminating the need for insulation in storage tanks, and manufacturing from a fixed amount of water. Since the volume ratio of liquid hydrogen and liquid oxygen to water is about three times that of water, the structure of the tank is simple and its weight is reduced. Furthermore, since water is transported from the ground, the risk of the button breaking during transport is greatly reduced.

な釦、本実施例の装置については、上記以外に次の長所
を有している。
In addition to the above, the device of this embodiment has the following advantages.

(1)太陽光が当らない場合のように太陽熱発電装置か
ら電力の供給が受けられない場合にも、貯蔵した液体水
素、液体酸素を使用して燃料電池により電力を発生して
、運転を継続することができる。(この種の極低温の宇
宙機器では一時運転を停止すると定常運転状態に復帰す
るのに長時間を要するので継続して運転できることが重
要である。) (2)  水素液化機、酸素液化機にヘリウムガスもし
くはアルゴンガス(酸素液化機の場合)を冷媒とするプ
レイトンサイクルを利用した液化機を採用しているので
、液化温度を大気圧沸点以下とすることができ、液化ガ
スを過冷却状態もしくはスラッシュ状(固・液混合状態
、スラッシュ水素、スラッシュ酸素)にて貯蔵すること
ができ、長期間貯蔵に適する。(タンク侵入熱により発
生する蒸発ガスがない) (3)本実施例は、水素、酸素を燃料とする複数個の推
進袋f(スラスタ)を保有しているが、宇宙空間での本
実施例の位置制御等に本実施例により製造した水素ガス
、酸素ガスを利用することができ、池の燃料を保有する
必要がない。
(1) Even when electricity cannot be supplied from the solar thermal power generation device, such as when there is no sunlight, the stored liquid hydrogen and liquid oxygen can be used to generate electricity with a fuel cell to continue operation. can do. (With this type of cryogenic space equipment, it takes a long time to return to normal operation if the operation is stopped temporarily, so it is important that it can be operated continuously.) (2) For hydrogen liquefaction equipment and oxygen liquefaction equipment. The liquefier uses a Preyton cycle that uses helium gas or argon gas (in the case of an oxygen liquefier) as a refrigerant, so the liquefaction temperature can be lowered to below the atmospheric pressure boiling point, and the liquefied gas is kept in a supercooled state. Alternatively, it can be stored in slush form (solid/liquid mixed state, slush hydrogen, slush oxygen), and is suitable for long-term storage. (There is no evaporative gas generated due to heat penetrating the tank.) (3) This example has multiple propulsion bags f (thrusters) that use hydrogen and oxygen as fuel, but this example was implemented in outer space. Hydrogen gas and oxygen gas produced according to this embodiment can be used for position control, etc., and there is no need to keep fuel in the pond.

(4)燃料電池および推進装置から排出されるガスは水
蒸気(または水)であるため水の再利用ができ、腐食性
等の有害なガスも発生しない。
(4) Since the gas discharged from the fuel cell and propulsion device is water vapor (or water), water can be reused and no harmful gases such as corrosive gases are generated.

〔発明の効果〕〔Effect of the invention〕

本発明の推進薬製造貯蔵装置は、加圧用ポンプ、水電解
装置、水素液化機、酸素液化機等を備えたことによって
、宇宙基地における推進薬の製造な可能とし、推進薬を
原料である水の状態で貯蔵することを可能としたため、
貯蔵タンクの断熱が不要となり、筐た一定量の水から製
造される液体水素と液体酸素の水に対する体積比は約3
倍であるため、上記タンクの構造は簡単なものとなか、
重量は軽減する。更に地上からは水を運搬するため、運
搬時にふ・ける危険性が大幅に減少する0
The propellant production and storage device of the present invention is equipped with a pressurizing pump, a water electrolysis device, a hydrogen liquefaction machine, an oxygen liquefaction machine, etc., thereby making it possible to produce propellant at a space base. Because it was possible to store it in the state of
There is no need to insulate the storage tank, and the volume ratio of liquid hydrogen and liquid oxygen produced from a certain amount of water in the casing to water is approximately 3.
Because it is double the size, the structure of the above tank is simple.
Weight is reduced. Furthermore, since water is transported from the ground, the risk of indulging during transport is greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

2・・・加圧用中≠≠、 4・・・太陽熱発電装置、 7a、7b・・・膨張タービン、 8・・・推進装置、 10・・・圧縮機、 11・・・放熱器、 13・・・膨張タービン、 14・・・液化酸素タンク、 16・・・圧縮機、 17・・・放熱器、 19・・・膨張タービン、 1・・・水タンク、 3・・・水電解装置、 6a、6b・・・乾燥器、 7c、7d・・・発を機、 9・・・酸素液化機、 10a・・・モータ、 12・・・熱交換器、 13a・・・発電機、 15・・・水素液化機、 16a・・・モータ、 18・・・熱交換器、 a・・・発電機、 O・・・液化酸素タンク、 ・・・供給部、 2・・・燃料電池。 2...For pressurization≠≠, 4...Solar thermal power generation device, 7a, 7b... expansion turbine, 8...propulsion device, 10... Compressor, 11... radiator, 13... expansion turbine, 14...Liquid oxygen tank, 16... Compressor, 17... radiator, 19... expansion turbine, 1... water tank, 3... water electrolysis device, 6a, 6b... dryer, 7c, 7d... taking the opportunity of departure, 9...Oxygen liquefaction machine, 10a... motor, 12... heat exchanger, 13a... Generator, 15...Hydrogen liquefaction machine, 16a... motor, 18... heat exchanger, a... Generator, O...Liquid oxygen tank, ...supply department, 2...Fuel cell.

Claims (1)

【特許請求の範囲】[Claims] 液体水素と液体酸素の原料となる水を貯蔵するタンク、
同タンクが接続され水を加圧して供給する加圧用ポンプ
、同ポンプが接続され供給される水を電気分解する水電
解装置、同水電解装置に接続され電力を供給する太陽熱
発電装置、上記水電解装置が発生した高圧の水素又は酸
素が供給されそれぞれ圧力エネルギーを回収する動力回
収装置、同それぞれの動力回収装置が接続され発生した
水素ガスを液化する水素液化機と酸素ガスを液化する酸
素液化機、上記水素液化機が接続された液体水素タンク
、上記酸素液化機が接続された液体酸素タンク、および
上記水素液化機と酸素液化機にそれぞれ接続され不要な
熱を放熱する放熱器を備えたことを特徴とする推進薬製
造貯蔵装置。
A tank that stores water, which is the raw material for liquid hydrogen and liquid oxygen,
A pressurizing pump to which the tank is connected and supplies water under pressure; a water electrolysis device to which the pump is connected and which electrolyzes the supplied water; a solar thermal power generation device connected to the water electrolysis device to supply electricity; A power recovery device that is supplied with high-pressure hydrogen or oxygen generated by the electrolyzer and recovers pressure energy, a hydrogen liquefaction machine that liquefies the generated hydrogen gas to which the power recovery devices are connected, and an oxygen liquefaction device that liquefies oxygen gas. A liquid hydrogen tank connected to the hydrogen liquefaction machine, a liquid oxygen tank connected to the oxygen liquefaction machine, and a radiator connected to the hydrogen liquefaction machine and the oxygen liquefaction machine to radiate unnecessary heat. A propellant manufacturing and storage device characterized by:
JP1323900A 1989-12-15 1989-12-15 Propellant production storage device Expired - Fee Related JP2634266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323900A JP2634266B2 (en) 1989-12-15 1989-12-15 Propellant production storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323900A JP2634266B2 (en) 1989-12-15 1989-12-15 Propellant production storage device

Publications (2)

Publication Number Publication Date
JPH03186500A true JPH03186500A (en) 1991-08-14
JP2634266B2 JP2634266B2 (en) 1997-07-23

Family

ID=18159868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323900A Expired - Fee Related JP2634266B2 (en) 1989-12-15 1989-12-15 Propellant production storage device

Country Status (1)

Country Link
JP (1) JP2634266B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205667A (en) * 2006-02-03 2007-08-16 Mitsubishi Heavy Ind Ltd Liquefied hydrogen production device
JP2011148489A (en) * 2010-01-22 2011-08-04 Hamilton Sundstrand Corp Electromechanical actuator system for spacecraft, and method for operating the same
JP2023113125A (en) * 2022-02-02 2023-08-15 克弥 西沢 Energy transport method for space solar power generation system, and energy transport method from aero-space to earth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205667A (en) * 2006-02-03 2007-08-16 Mitsubishi Heavy Ind Ltd Liquefied hydrogen production device
JP2011148489A (en) * 2010-01-22 2011-08-04 Hamilton Sundstrand Corp Electromechanical actuator system for spacecraft, and method for operating the same
US8727284B2 (en) 2010-01-22 2014-05-20 Hamilton Sundstrand Corporation Turbine powered electromechanical actuation system
JP2023113125A (en) * 2022-02-02 2023-08-15 克弥 西沢 Energy transport method for space solar power generation system, and energy transport method from aero-space to earth

Also Published As

Publication number Publication date
JP2634266B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
EP2753861B2 (en) Method and apparatus for power storage
US4873828A (en) Energy storage for off peak electricity
EP2663757B1 (en) Electricity generation device and method
KR20220114881A (en) Hydrogen Supply System and Method
US4227374A (en) Methods and means for storing energy
WO2012047572A2 (en) Method and system to produce electric power
GB2567821A (en) Compressed air energy storage system with thermal management system
JPH04127850A (en) Liquid air storage power generating system
CN117377612A (en) Ship
Notardonato Active control of cryogenic propellants in space
JPH03186500A (en) Propellant manufacturing/storing device
JP2005090636A (en) Transportation system for liquefied hydrogen
KR101864935B1 (en) Cryogenic energy storage system using LNG gasification process
JPH06307257A (en) Power generating device
KR101922274B1 (en) A Treatment System of Liquefied Gas
US20020178724A1 (en) Cyrogen production via a cryogenic vapor driven power piston for use in a cryogenic vapor powered vehicle with rotary vane motors attached to the axles of the vehicle next to the vehicle's four wheels, using a heat source such as solar heat, heat of compression (heat pump or air compressor, etc.) or heat of friction (as formed by an electric generator), or chemical heat, or heat formed by electrical resistance, heat of combustion, etc. to generate high-pressure, high-kinetic energy cryogenic vapor
WO1990008295A1 (en) Method and apparatus for the production of liquid oxygen and liquid hydrogen
KR101922273B1 (en) A Treatment System of Liquefied Gas
JP7453717B1 (en) energy storage plant
RU2591129C1 (en) Method for production of liquid rocket fuel in space
RU2591131C1 (en) Method for production of rocket fuel in conditions of space flight
EP4166455A1 (en) Method and system for transmitting energy
Tsujikawa et al. Utilization of cryogenic exergy of LNG by MGT (Mirror Gas Turbine)
KR101922276B1 (en) A Treatment System of Liquefied Gas
JPH05340266A (en) Power generating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees