JPH03184525A - Ophthalmological apparatus - Google Patents

Ophthalmological apparatus

Info

Publication number
JPH03184525A
JPH03184525A JP1323101A JP32310189A JPH03184525A JP H03184525 A JPH03184525 A JP H03184525A JP 1323101 A JP1323101 A JP 1323101A JP 32310189 A JP32310189 A JP 32310189A JP H03184525 A JPH03184525 A JP H03184525A
Authority
JP
Japan
Prior art keywords
eye
inspected
diopter
lens
working distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1323101A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1323101A priority Critical patent/JPH03184525A/en
Publication of JPH03184525A publication Critical patent/JPH03184525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove measuring errors generated from a change in working distance otherwise caused by a difference in diopter by adjusting a position of an alignment optical member to the diopter of an eye to be inspected beforehand. CONSTITUTION:A luminous flux is projected to an eye E to be inspected through a ens 8 from a light source 7 and the luminous flux reflected from a cornea Ec is received with a photoelectric sensor 10 through a lens 9 to measure an eye pressure by detecting a deformation of the cornea Ec caused by a jet of a current. Light from the cornea Ec becomes parallel with a lens 3 to be reflected on a convex mirror 4 and is made parallel again with the lens 3 to form an image on an eye ground Er. Prior to the measurement, a person to be inspected has a position of an optical member 5 for alignment set to an own diopter using a scale plate 6 beforehand. At the measurement, the person to be inspected has the eye E to be inspected moved forward and backward slightly and when the eye E to be inspected reaches a fixed position from a nozzle 2, the person to be inspected is allowed to recognize an image of his own eye clearly with eyes. But as the image blurs besides this position, it is possible to adjust the eye E to be inspected to a fixed working distance from the apparatus. This enables the adjusting of the eye to be inspected to a fixed working distance irrelevant to the diopter of the eye to be inspected, thereby reducing measuring errors due to a difference in diopter.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば被検眼に気流を吹き付けて角膜を変形
させ、この変形を光学的に検知して眼圧値を測定するよ
うにした非接触型の眼圧計等の眼+4 器Wiに関する
ちのである。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a non-contact device that deforms the cornea by, for example, blowing an airflow onto the eye to be examined, and optically detects this deformation to measure the intraocular pressure value. This is about eye +4 devices Wi such as contact-type tonometers.

[従来の技術] 最近では、非接触型眼圧計等の眼科器械において、被検
者自身が被検眼を眼科器械の適正位置に合わせて測定を
行うようにした自己眼位置合わせ装置が発表されており
、例えば特開昭61−276533号公報に開示されて
いる。
[Prior Art] Recently, a self-eye alignment device has been announced for ophthalmic instruments such as non-contact tonometers, in which the subject himself/herself aligns the subject's eye to the proper position of the ophthalmic instrument and performs the measurement. This is disclosed, for example, in Japanese Patent Laid-Open No. 61-276533.

この装置は、被検眼の前方に例えばハーフミラ−又は凹
面鏡或いは凸面鏡のような反射光学系を眼科機器の光軸
と一致させて配置し、被検眼が眼科機器の所定の作動距
離つまり被検眼と本体筐体との間の所定の距離に位置し
た時に、被検眼の前眼部から出射した光がばば平行光束
となって被検眼に戻るようにし、被検者は前記反射光学
系に映った自己の被検眼像又は角膜反射像を見て位置合
わせを行うようにするものである。
In this device, a reflective optical system such as a half mirror, a concave mirror, or a convex mirror is placed in front of the eye to be examined, aligned with the optical axis of the ophthalmological equipment, and the eye to be examined is placed within a predetermined working distance of the ophthalmological equipment, that is, the eye to be examined and the main body. When positioned at a predetermined distance from the housing, the light emitted from the anterior segment of the subject's eye becomes a parallel beam of light and returns to the subject's eye. Positioning is performed by looking at the image of the eye to be examined or the corneal reflection image.

[発明が解決しようとする課題] このような装置は、被検者自身が自分の眼を眼科機器の
所定の作動距離に容易に合わせることができるため、例
えば家庭用の非接触型眼圧計等に適用して極めて有用な
ものであるが、被検眼の視度が違う場合には作動距離が
違ってくるので、測定に誤差を生ずるという問題を有し
ている。
[Problems to be Solved by the Invention] Such a device allows the patient to easily align his/her own eyes with the predetermined working distance of the ophthalmological device, so it can be used, for example, as a non-contact tonometer for home use. However, if the diopter of the eye to be examined is different, the working distance will be different, resulting in an error in measurement.

本発明の目的は、このような問題を改善し、被検者が自
分でアライメントを行う場合において、被検眼の視度に
予めアライメント光学部材の位置を合わせることにより
、視度の違いによる作動距離の変化から生ずる測定誤差
を除去できる眼科器械を提供することにある。
The purpose of the present invention is to improve such problems and, when a subject performs alignment by himself/herself, by adjusting the position of the alignment optical member in advance to the diopter of the subject's eye, the working distance due to the difference in diopter can be reduced. An object of the present invention is to provide an ophthalmological instrument that can eliminate measurement errors caused by changes in

[課題を解決するための手段] 上述の目的を達成するために、本発明に係る眼科器械に
おいては、本体筐体に結合されかつ光軸上に配した鏡面
を含むアライメント用光学部材に自己の被検眼を映して
被検眼と前記本体筐体との間の作動距離を一定値に調整
する眼科器械において、前記アライメント用光学部材は
その少なくとも一部を光軸方向に移動自在とし、前記ア
ライメント用光学部材を被検眼の視度に対応する位置に
設定する手段を備えたことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, in the ophthalmological instrument according to the present invention, an alignment optical member including a mirror surface coupled to the main body housing and arranged on the optical axis has a self-alignment optical member. In an ophthalmological instrument that reflects an eye to be examined and adjusts a working distance between the eye to be examined and the main body housing to a constant value, at least a portion of the optical member for alignment is movable in the optical axis direction; The present invention is characterized in that it includes means for setting the optical member at a position corresponding to the diopter of the eye to be examined.

[作用1 上述の構成を有する眼科器械は、鏡面を含むアライメン
ト用光学部材の少なくとも一部を光軸方向に若干移動さ
せることにより予め被検眼の視度に合わせておき、作動
距離を被検眼の視度に拘らず一定に合わせ、測定時には
被検者はアライメント光学部材上の自己眼の像を明瞭に
見るようにアライメントするが、アライメントが適正の
場合に被検眼と本体筐体との間の作動距離は本来の基準
値が維持される。
[Operation 1] The ophthalmological instrument having the above configuration is adjusted in advance to the diopter of the eye to be examined by slightly moving at least a part of the alignment optical member including the mirror surface in the optical axis direction, and the working distance is adjusted to the diopter of the eye to be examined. Regardless of the diopter, the examinee aligns himself so that he can clearly see the image of his own eye on the alignment optical member during measurement. The working distance remains at its original reference value.

[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Example] The present invention will be explained in detail based on illustrated embodiments.

第1図は第1の実施例を示し、1は既知の圧縮気体発生
器から成る本体筐体、2はその気流を被検眼Eの角膜E
Cニ噴射するノズルであり、このノズル2の周囲にはレ
ンズ3と凸面ミラー4がら成るアライメント用光学部材
5が配置され、被検者はこのアライメント用光学部材5
に自己の被検眼Eを映してアライメントを行うようにな
っている。このアライメント用光学部材5を構成するレ
ンズ3と凸面ミラー4とは共に一体となって、又はその
中の少なくとも一方だけが矢印Aで示すように気流方向
に移動可能になっており、その位置を例えばデイオプタ
値で目盛った目盛板6に合わせて設定することによって
、被検眼Eの視度を調節するようになっている。一方、
光源7がらレンズ8を通して光束を被検Ill Eに投
影し、角膜Ecで反射した光束をレンズ9を通して光電
センサ10に受光させることにより、気流の噴射による
角膜Ecの変形を検知して脳圧を測定することは従来通
りである。
FIG. 1 shows a first embodiment, in which 1 is a main body casing consisting of a known compressed gas generator, 2 is a main body housing that is configured to direct the airflow to the cornea of the eye E to be examined.
An alignment optical member 5 consisting of a lens 3 and a convex mirror 4 is arranged around this nozzle 2, and the subject is allowed to use the alignment optical member 5.
Alignment is performed by projecting the patient's own eye E on the screen. The lens 3 and the convex mirror 4 constituting the alignment optical member 5 are integrally formed, or at least one of them is movable in the airflow direction as shown by arrow A, and its position can be adjusted. For example, the diopter of the eye E to be examined is adjusted by setting it in accordance with a scale plate 6 graduated with diopter values. on the other hand,
By projecting a light beam from the light source 7 onto the subject IllE through a lens 8, and allowing the photoelectric sensor 10 to receive the light beam reflected by the cornea Ec through the lens 9, the deformation of the cornea Ec caused by the jet of airflow is detected and cerebral pressure is measured. Measurement is the same as before.

第2図はアライメント用光学部材5の光学関係を示し、
角膜Ecからの光はレンズ3で平行になり凸面ミラー4
で反射した後に、再びレンズ3で平行になって眼底Er
に像を形成する。なお、Fはレンズ3と凸面ミラー4の
焦点を示している。測定に先立ち、被検者はアライメン
ト用光学部材5の位置を目盛板6を用いて自己の視度に
設定しておく。測定時に、被検者は被検l艮Eを僅かに
前後に動かして、被検眼Eがノズル2から一定の位置に
至ったときに、被検者は自分の眼の像を明確に視認する
ことができる。この位置以外では像がぼけるので、この
ことから、被検眼Eを装置に対して一定の作動距離に合
わせることが可能となる。
FIG. 2 shows the optical relationship of the alignment optical member 5,
The light from the cornea Ec becomes parallel with the lens 3 and then passes through the convex mirror 4
After being reflected by lens 3, it becomes parallel again to the fundus Er.
form an image. Note that F indicates the focal point of the lens 3 and convex mirror 4. Prior to measurement, the subject sets the position of the alignment optical member 5 to his or her diopter using the scale plate 6. During measurement, the subject moves the subject E slightly back and forth, and when the subject's eye E reaches a certain position from the nozzle 2, the subject clearly sees the image of his or her own eye. be able to. Since the image is blurred at positions other than this position, it is possible to align the eye E to be examined with respect to the apparatus at a constant working distance.

第3図は第2の実施例を示し、アライメント用光学部材
として第1図のレンズ3、凸面ミラー4の代りに凹面ミ
ラー11が配置され、被検者はこの凹面ミラー11に自
己の被検眼Eを映してアライメントを行うことができる
。この場合に、凹面ミラー11はグイクロイックミラー
とされ、可視光を遮断し近赤外光を発する光源7からの
光束を透過する特性のものが用いられる。
FIG. 3 shows a second embodiment, in which a concave mirror 11 is arranged as an alignment optical member in place of the lens 3 and convex mirror 4 shown in FIG. Alignment can be performed by showing E. In this case, the concave mirror 11 is a guichroic mirror, which has the characteristics of blocking visible light and transmitting the light beam from the light source 7 that emits near-infrared light.

従って、光源7からレンズ8及び凹面ミラ11を通して
光束を被検眼Eに投影し、角膜Ecで反射した光束を凹
面ミラー11及びレンズ9を介して光電センサ10に受
光させることにより、角膜Ecの変形を検知して眼圧値
を求めることができる。この場合も、凹面ミラー11を
目盛板6を用いて視度に合わせ、矢印A方向に動がして
その位置を設定しておくことにより、被検眼Eが装置か
ら一定の位置に至ったとき、被検眼Eの像が凹面ミラー
11に明確に映って見え、それ以外の位置では像がぼけ
るので被検眼Eを一定の作動距離に合わせることができ
る。
Therefore, by projecting a light beam from the light source 7 onto the eye E through the lens 8 and the concave mirror 11, and allowing the photoelectric sensor 10 to receive the light beam reflected by the cornea Ec via the concave mirror 11 and the lens 9, the cornea Ec is deformed. can be detected to determine the intraocular pressure value. In this case as well, by adjusting the concave mirror 11 to the diopter using the scale plate 6 and setting the position by moving it in the direction of the arrow A, when the eye E to be examined reaches a certain position from the device. Since the image of the eye E to be examined is clearly reflected on the concave mirror 11, and the image is blurred at other positions, the eye E to be examined can be adjusted to a certain working distance.

第4図は第3の実施例であり、眼屈折計に応用した場合
を示している。測定系12の前部には、制御系の出力に
より自動的に光軸に沿って矢印B方向に移動する凹面ミ
ラー13が取り付けられている。この凹面ミラー13は
近赤外光を透過し可視光を反射するものが好ましいが、
凹面のハーフミラ−でもよい。
FIG. 4 shows a third embodiment, which is applied to an eye refractometer. A concave mirror 13 is attached to the front of the measurement system 12 and is automatically moved along the optical axis in the direction of arrow B by the output of the control system. This concave mirror 13 preferably transmits near-infrared light and reflects visible light;
A concave half mirror may also be used.

測定時には、被検眼Eは凹面ミラー13に向き合い、そ
のまま測定系12により眼屈折測定を行う。この測定に
より被検眼Eの視度が判明し、この視度に合わせて凹面
ミラー13を制御系を介して光軸方向に移動調整する。
At the time of measurement, the eye E to be examined faces the concave mirror 13, and the measurement system 12 directly measures the eye refraction. Through this measurement, the diopter of the eye E to be examined is determined, and the concave mirror 13 is moved and adjusted in the optical axis direction via the control system in accordance with this diopter.

この状態で、被検者は凹面ミラー13に自己の被検眼E
を映して、明瞭に見えた位置を適正な作動距離として、
再度の眼屈折測定を行う。
In this state, the subject places his/her own eye E on the concave mirror 13.
The position that can be clearly seen is set as the appropriate working distance.
Perform eye refraction measurement again.

このように、先に概略の屈折力の測定を行ってから、そ
の視度に合わせて凹面ミラー13の位置/ を調整することにより、被検者は作動距離を正確に合わ
せることができるようになり、再度の測定によって眼屈
折値を高精度に測定できることになる。
In this way, by first measuring the approximate refractive power and then adjusting the position of the concave mirror 13 according to the diopter, the subject can accurately adjust the working distance. Therefore, the eye refraction value can be measured with high precision by repeating the measurement.

なお、アライメント用光学部材は鏡面を含むことが必要
条件であるが、その具体的構成は実施例以外にも種々の
変形があり得ることはいうまでもない。そして、アライ
メント用光学部材が鏡面とレンズ系から成るとき、鏡面
を光軸方向に移動して視度調整する代りにこのレンズ系
の少なくとも一部を光軸方向に移動してもよい。
Although it is a necessary condition for the alignment optical member to include a mirror surface, it goes without saying that its specific configuration may be modified in various ways other than the embodiments. When the alignment optical member is composed of a mirror surface and a lens system, at least a part of this lens system may be moved in the optical axis direction instead of moving the mirror surface in the optical axis direction to adjust the diopter.

[発明の効果] 以上説明したように本発明に係る眼科器械は、自己の被
検眼の視度に関係なく被検眼を一定の作動距離に合わせ
ることができるため、視度の差による測定誤差を小さく
することができる。
[Effects of the Invention] As explained above, the ophthalmological instrument according to the present invention can adjust the subject's eye to a constant working distance regardless of the diopter of the subject's eye, thereby eliminating measurement errors due to diopter differences. Can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る眼科器械の実施例を示し、第1図は
第1の実施例の光学的配置図、第2図はアライメント用
光学部材の光学関係図、第3図は第2の実施例の光学的
配置図、第4図は第3の実施例の光学的配置図である。 脊骨1は本体筐体、2はノズル、3はレンズ、4は凸面
ミラー 5はアライメント用光学部材、6は目盛、7は
光源、8,9はレンズ、10は光電センサ、11.13
は凹面ミラー 12は測定系である。
The drawings show embodiments of the ophthalmological instrument according to the present invention, FIG. 1 is an optical layout diagram of the first embodiment, FIG. 2 is an optical relationship diagram of alignment optical members, and FIG. 3 is a diagram of the second embodiment. FIG. 4 is an optical layout diagram of the third embodiment. Vertebrae 1 is a main body housing, 2 is a nozzle, 3 is a lens, 4 is a convex mirror, 5 is an optical member for alignment, 6 is a scale, 7 is a light source, 8 and 9 are lenses, 10 is a photoelectric sensor, 11.13
is a concave mirror; 12 is a measurement system;

Claims (1)

【特許請求の範囲】[Claims] 1、本体筐体に結合されかつ光軸上に配した鏡面を含む
アライメント用光学部材に自己の被検眼を映して被検眼
と前記本体筺体との間の作動距離を一定値に調整する眼
科器械において、前記アライメント用光学部材はその少
なくとも一部を光軸方向に移動自在とし、前記アライメ
ント用光学部材を被検眼の視度に対応する位置に設定す
る手段を備えたことを特徴とする眼科器械。
1. An ophthalmological instrument that adjusts the working distance between the eye to be examined and the main body casing to a constant value by reflecting the patient's eye on an alignment optical member that includes a mirror surface that is coupled to the main body casing and arranged on the optical axis. An ophthalmological instrument, wherein at least a portion of the alignment optical member is movable in the optical axis direction, and includes means for setting the alignment optical member at a position corresponding to the diopter of the eye to be examined. .
JP1323101A 1989-12-13 1989-12-13 Ophthalmological apparatus Pending JPH03184525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323101A JPH03184525A (en) 1989-12-13 1989-12-13 Ophthalmological apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323101A JPH03184525A (en) 1989-12-13 1989-12-13 Ophthalmological apparatus

Publications (1)

Publication Number Publication Date
JPH03184525A true JPH03184525A (en) 1991-08-12

Family

ID=18151088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323101A Pending JPH03184525A (en) 1989-12-13 1989-12-13 Ophthalmological apparatus

Country Status (1)

Country Link
JP (1) JPH03184525A (en)

Similar Documents

Publication Publication Date Title
US9504381B2 (en) System and method for the non-contacting measurements of the eye
CN1794945B (en) Apparatus for eye alignment
US9357914B2 (en) Ophthalmologic apparatus, method for controlling ophthalmologic apparatus, and storage medium
US7887185B2 (en) Method and arrangement for the measurement of the anterior segment of the eye
US11191431B2 (en) Ophthalmic apparatus
US20130271727A1 (en) Ophthalmic apparatus
JP3916482B2 (en) Ophthalmic equipment
JPH04200436A (en) Ophthamologic apparatus
JPH08103413A (en) Ophthalmological measuring instrument
JPH01265937A (en) Ophthalmologic instrument
JPH03184525A (en) Ophthalmological apparatus
JPH07231875A (en) Optometrical device
JP3015042B2 (en) Hand-held eye refractometer
CN111419170A (en) Binocular vision screening instrument and control method thereof
JPH0654807A (en) Ophthalmic device
JPH0430291B2 (en)
JP3452388B2 (en) Ophthalmic instruments
JP2568586B2 (en) Air puff tonometer
JPH04269937A (en) Ophthalmologic apparatus
JPH0473038A (en) Refractometer
JPH0231731A (en) Ophthalmic diagnostic apparatus
JP3340827B2 (en) Ophthalmic equipment
JPH0439332B2 (en)
JP3046600B2 (en) Ophthalmic equipment
KR20230095463A (en) Non-contact tonometer