JPH03184388A - Tm laser - Google Patents

Tm laser

Info

Publication number
JPH03184388A
JPH03184388A JP32298389A JP32298389A JPH03184388A JP H03184388 A JPH03184388 A JP H03184388A JP 32298389 A JP32298389 A JP 32298389A JP 32298389 A JP32298389 A JP 32298389A JP H03184388 A JPH03184388 A JP H03184388A
Authority
JP
Japan
Prior art keywords
light
region
laser
layer
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32298389A
Other languages
Japanese (ja)
Inventor
Berikuisuto Yoohan
ヨーハン ベリクイスト
Hitoshi Oda
織田 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32298389A priority Critical patent/JPH03184388A/en
Publication of JPH03184388A publication Critical patent/JPH03184388A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/14Semiconductor lasers with special structural design for lasing in a specific polarisation mode
    • H01S2301/145TM polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06236Controlling other output parameters than intensity or frequency controlling the polarisation, e.g. TM/TE polarisation switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a TM laser which is liable in manufacture, less temperature dependency, and high in a response speed, by forming a lasing region and a TE/TM mode conversion region in a monolithic manner and controlling the polarization state of emitted light by the control of a magnetic field applied to the TE/TM mode conversion region. CONSTITUTION:A laser diode is constructed which has a multiple quantum well layer 5 as an active region and a waveguide, and right and left end surfaces 14, 15 of which serve as moirrors of a Fabry-Perrot resonator. A current is injected between electrodes 11, 12 for lasing in the lasing region MQW layer 5. Guided light goes and returns between the end surfaces 14, 15 and interact with a superlattice layer 9 subjected to a magnetic field 16 for mode conversion thereof from a TE to a TM mode by Faraday rotation. Herein, the wavelength is so adjusted that the absorption coefficient of the TE light is greatly larger than that of the TM light.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光通信、光メモリなどの領域で用いられ得る
光機能デバイス、特にTM光を出射することができるT
Mレーザーに関する[従来の技術] 従来、レーザー光の偏光状態を変化させる1つの方法と
して、外部電場によって光学的特性が変わる電気光学結
晶などの物質の電気光学効果を利用するものがある。し
かし、この方法は、一定程度の偏光状態の変化を得る為
には非常に大きな電場が必要であるという欠点を有して
いる。従って、こうした電気光学効果を用いるデバイス
は非常に大きくなって実用的でなくなり、そして光集積
化用には全く不向きとなる。これに加えて、これらはレ
スポンスが遅すぎていくつかの応用分野では使い物にな
らない。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to optical functional devices that can be used in areas such as optical communication and optical memory, and particularly to optical functional devices that can emit TM light.
[Prior art related to M laser] Conventionally, one method of changing the polarization state of laser light is to utilize the electro-optic effect of a substance such as an electro-optic crystal whose optical properties change depending on an external electric field. However, this method has the drawback that a very large electric field is required to obtain a certain degree of change in the polarization state. Therefore, devices using such electro-optic effects become very large and impractical, and are completely unsuitable for optical integration. In addition to this, their response is too slow to be useful in some applications.

TE波の偏光をTM波に変える他の方法は音響光学効果
を用いるものである。ここでは、成る物質の結晶中に音
響波を励起して格子振動を誘導するものであり、そして
この誘導音響波の振動数と振幅の値を適当なものに選択
することで入力光ビームの偏光状態の変化を制御するこ
とができる。しかし、この効果を利用する方法も、レス
ポンスが遅すぎるのが問題となる。
Another method of changing the polarization of TE waves to TM waves is to use the acousto-optic effect. Here, acoustic waves are excited in the crystal of the material to induce lattice vibrations, and by selecting appropriate values of the frequency and amplitude of the induced acoustic waves, the polarization of the input optical beam can be changed. Changes in state can be controlled. However, the problem with methods that utilize this effect is that the response is too slow.

更に、TE光とTM光の間で手軽にスイッチングできる
デバイスに対する需要は大きいので、最近、ダイオード
電流を変えることでこのスイッチングを行なうTE/T
Mモード変換用の変換体レーザーダイオードも提案され
ている(米国特許第4,612,645号参照)。
Furthermore, there is a great demand for devices that can easily switch between TE light and TM light, so recently, TE/T devices that perform this switching by changing the diode current have been developed.
Converter laser diodes for M-mode conversion have also been proposed (see US Pat. No. 4,612,645).

[発明が解決しようとする課題] このデバイスの原理は、成るダイオード電流でTMモー
ドがより大きなゲインを有することに基づいている。こ
の為に、本デバイスでは、活性層と基板との間に内部歪
が存在する。しかし、この歪を作り出さねばならないの
で、こうした歪が無いか、小さな歪しか持たない結晶に
比べて、高品質の結晶を作ることが困難となる。
[Problem to be Solved by the Invention] The principle of this device is based on the fact that the TM mode has a larger gain in the diode current. For this reason, in this device, internal strain exists between the active layer and the substrate. However, the need to create this strain makes it difficult to produce high-quality crystals compared to crystals that have no or only small strains.

また、TMゲインは主として歪の大きさに依存する為、
この歪を変えることでモード操作は制御され、そしてこ
れは注入電流を変えて温度を変化させることで行なわれ
る。すなわち、電流を大きくすれば多くの熱を発生しそ
うして大きな歪を生じさせる。しかし、温度でTMモー
ドのゲインを制御することの問題点は、デバイスが大き
く温度に依存することになるのである。純粋なTEモー
ド操作から純粋なTMモード操作への切換えは1℃の温
度変化に相当し−、こうして換作が大きく温度に依存す
ることになる。
Also, since TM gain mainly depends on the magnitude of distortion,
By varying this strain, mode operation is controlled, and this is done by varying the injection current and varying the temperature. That is, if the current is increased, more heat is likely to be generated, resulting in greater distortion. However, the problem with controlling the TM mode gain with temperature is that the device becomes highly temperature dependent. Switching from a pure TE mode of operation to a pure TM mode of operation corresponds to a temperature change of 1 DEG C., thus making the conversion highly temperature dependent.

従って、TEモードとTMモードに夫々対応する低、高
レベル注入電流のパルス列でデバイスが連続的に駆動さ
れるとき、電流で生じた熱は、TMモードとTEモモ−
間の温度差を確実に維持する為に何らかの冷却手段で除
去されねばならない。
Therefore, when a device is driven continuously with pulse trains of low and high level injection currents corresponding to TE mode and TM mode, respectively, the heat generated by the current is transferred to the TM mode and TE mode.
must be removed by some cooling means to ensure that the temperature difference between them is maintained.

また、デバイスが有限の立ち上がり時間の電流で切換え
られるとき、TEモード中でTMスパイクが発生するこ
ともある。
TM spikes may also occur during TE mode when the device is switched with a finite rise time current.

更に、モード切換が注入電流の大きさに制御されるので
、純粋なTMまたはTEモード操作に対して全注入電流
範囲を用いられない、従って、TMモードの注入電流の
方がTEモードのそれより大きいので、TMモードの出
力がTEモードの出力よりも常に大きいことになる。す
なわち、同じ大きさの注入電流に対応し同じ出力強度を
持つTE光とTM光を発生させることは不可能である。
Furthermore, since mode switching is controlled by the magnitude of the injection current, the full injection current range is not available for pure TM or TE mode operation, and therefore the injection current in TM mode is lower than that in TE mode. This means that the output in TM mode will always be greater than the output in TE mode. That is, it is impossible to generate TE light and TM light that correspond to the same magnitude of injection current and have the same output intensity.

このことから、TEモードとTMモードに対してモード
の形態が異なることになる。
This means that the mode forms differ between the TE mode and the TM mode.

また、このデバイスは熱的効果に基づいているので、熱
伝導に起因してレスポンスが常に制限されたものになる
。すなわち、熱的過程は遅いのでこのデバイスは高速変
調システムとしては期待できないものである。
Also, since this device is based on thermal effects, the response will always be limited due to thermal conduction. That is, the thermal process is slow and this device cannot be used as a high speed modulation system.

従って、本発明の目的は、作製が容易で温度依存性が小
さくレスポンスの速いTMレーザーを提供することにあ
る。
Therefore, an object of the present invention is to provide a TM laser that is easy to manufacture, has low temperature dependence, and has a fast response.

[課題を解決する為の手段] 上記目的を達成する本発明においては、共振器の内部に
、レーザー発振領域とT E/TMモード変換領域がモ
ノリシックに形成され、放出される光の偏光状態が、T
E/TMモード変換領域に加えられる磁界を制御するこ
とで制御される様になっている。
[Means for Solving the Problems] In the present invention that achieves the above object, a laser oscillation region and a TE/TM mode conversion region are monolithically formed inside a resonator, and the polarization state of emitted light is changed. , T
It is controlled by controlling the magnetic field applied to the E/TM mode conversion region.

より具体的には、上記変換領域は希薄磁性半導体層を含
み、レーザー発振領域の活性領域と同じ基板上に形成さ
れたり、発振領域と変換領域の少なくとも一方が、レー
ザー光の波長において、TM先の吸収率がTE光の吸収
率よりも小さい多重量子井戸構造導波部を有していたり
する。
More specifically, the conversion region includes a diluted magnetic semiconductor layer and is formed on the same substrate as the active region of the laser oscillation region, or at least one of the oscillation region and the conversion region is located at the TM tip at the wavelength of the laser light. It may have a multi-quantum well structure waveguide whose absorption rate is smaller than that of TE light.

また、前記希薄磁性半導体層は発振領域の活性領域と同
一平面上に形成されても良いし、異なる平面上に形成さ
れても良い。
Further, the diluted magnetic semiconductor layer may be formed on the same plane as the active region of the oscillation region, or may be formed on a different plane.

更に、希薄磁性半導体層に、上記の如き吸収率を持つ多
重量子井戸構造導波部を兼ねさせる構成をとることも出
来る。
Furthermore, it is also possible to adopt a configuration in which the diluted magnetic semiconductor layer also serves as a multi-quantum well structure waveguide having the above absorption rate.

[作用] 上記構成の本発明では、内部歪を用いず磁界によるモー
ド変換を主として行なうので、歪の少ない層構造のデバ
イスにでき、レーザ発振領域に注入する電流をモード変
換のために変化させる必要もない。よって、立ち上がり
時間を有する注入電流パルスをモード変換に用いずに済
み、TM%TEモードで異なる電流を注入することで出
力が両者で異なることもなくなる。
[Function] In the present invention having the above configuration, mode conversion is mainly performed by a magnetic field without using internal strain, so it is possible to create a device with a layered structure with little strain, and it is not necessary to change the current injected into the laser oscillation region for mode conversion. Nor. Therefore, it is not necessary to use an injection current pulse having a rise time for mode conversion, and the outputs do not differ between the two by injecting different currents in the TM%TE mode.

そして、レーザー発振域で発せられたレーザー光は共振
器内を往復するうちに何回もモード変換領域を通るので
、その度にT E/TMモード変換がなされ(例えばフ
ァラデー効果による)、最終的に適当な程度のモード変
換が行なわれた後に射出される。このとき、導波路の吸
収率(レーザー波長に対する)が、TM波よりTE波の
方が大きければ、往復のうちにTE/TMモード変換が
一層効率的に行なわれることになる。
Since the laser light emitted in the laser oscillation region passes through the mode conversion region many times while traveling back and forth within the resonator, TE/TM mode conversion is performed each time (for example, due to the Faraday effect), and the final It is injected after an appropriate degree of mode conversion is performed. At this time, if the absorption rate of the waveguide (with respect to the laser wavelength) is larger for the TE wave than for the TM wave, TE/TM mode conversion will be performed more efficiently during the round trip.

[実施例] 第1図は本発明の第1実施例の側面図である。同図にお
いて、PドープGaAs基板l上に、P0ドープGaA
s層2、PドープAlGaAs下部クラッド層3、非ド
ープAlGaAS下部りラッド層4、G a A s 
/ A ’hGaAs多重量子井戸導波層5.AIGa
AS導波路上部導波路上部クラッド層6AlGa A 
s上部クララド層7%N9ドープGaASキャップ層8
を成長させる。そして、このレーザーダイオードの成長
後、右半分はN11層7まで選択的エツチングにより取
り除かれ、上部クラッド層7上にCd T e / C
dMnTe超格子層9が形成される。
[Embodiment] FIG. 1 is a side view of a first embodiment of the present invention. In the figure, a P0-doped GaAs substrate is placed on a P-doped GaAs substrate l.
s layer 2, P-doped AlGaAs lower cladding layer 3, undoped AlGaAS lower cladding layer 4, Ga As
/A'hGaAs multiple quantum well waveguide layer5. A.I.Ga.
AS waveguide upper waveguide upper cladding layer 6AlGa A
s Upper Clarado layer 7% N9 doped GaAS cap layer 8
grow. After the growth of this laser diode, the right half is removed by selective etching up to the N11 layer 7, and CdTe/C is deposited on the upper cladding layer 7.
A dMnTe superlattice layer 9 is formed.

基板lの裏面上にはオーム接触電極である陽極としての
Cr/AuJ@11が蒸着され、キャップ層8上には陰
極としてのAuGe/Au層12が蒸着されている。レ
ーザーダイオードの陰極である層13は、この装置が光
ICチップとなるとき共通の接地電極となるこうして形
成された本装置は、活性域及び導波路として多重量子井
戸層5を持つレーザーダイオードを構成し、第1図の左
右の端面14.15はファブリベロー共振器の鏡として
の役目をする。この反射面14.15はへき間されたり
エツチングされて形成されるが、装置が集積化されて使
用されるときは一方又は両方の面がエツチングされる。
On the back surface of the substrate 1, an ohmic contact electrode, Cr/AuJ@11, is deposited as an anode, and on the cap layer 8, an AuGe/Au layer 12 as a cathode is deposited. Layer 13, which is the cathode of the laser diode, becomes a common ground electrode when this device becomes an optical IC chip.The device thus formed constitutes a laser diode with multiple quantum well layer 5 as an active region and a waveguide. However, the left and right end faces 14 and 15 in FIG. 1 serve as mirrors of the Fabry-Bello resonator. The reflective surfaces 14,15 may be spaced or etched, but when the device is used in an integrated manner, one or both surfaces may be etched.

単体として使用するときは、へき関された方がよい。When used alone, it is better to separate it.

本実施例では、ノツチ部20の左側のレーザー領域は3
00gm、ノツチ部20の右側のモード変換域は100
〜200μmであり、全体のデバイスの長さは400〜
500μmである。
In this embodiment, the laser area on the left side of the notch part 20 is 3
00gm, the mode conversion range on the right side of the notch part 20 is 100gm.
~200μm, and the overall device length is ~400μm.
It is 500 μm.

第1図の右側のモード変換領域における後述するファラ
デー回転角の大きさを制御するのに使われる外部磁界1
6は、多重量子井戸導波層(MQW層)5に平行になっ
ている。
External magnetic field 1 used to control the magnitude of the Faraday rotation angle, which will be described later, in the mode conversion region on the right side of Figure 1.
6 is parallel to the multiple quantum well waveguide layer (MQW layer) 5.

上記構成の第1実施例の作用は次の如きものである。The operation of the first embodiment having the above configuration is as follows.

電極11.12間に電流が注入されることで、レーザー
領域のMQW層5でレーザー光が発振され、このレーザ
ー光はMQW層5を伝搬するが、それの一部は第1図に
示すごとく超格子層9内にも滲み出している。
By injecting a current between the electrodes 11 and 12, laser light is oscillated in the MQW layer 5 in the laser region, and this laser light propagates through the MQW layer 5, but a portion of it is as shown in Figure 1. It also seeps into the superlattice layer 9.

従って、導波光は端面14.15を往復するうちに、磁
場16の作用を受けている超格子層9と相互作用し、そ
こでファラデー回転(ファラデー効果による)により導
波光のTE波がTM波へとモード変換される。こうして
、ファブリペロ−共振器内を何回も往復する度に光が超
格子層9を通過して、このTE波からTM波への変換が
起こる。
Therefore, while the guided light travels back and forth between the end faces 14 and 15, it interacts with the superlattice layer 9 which is under the action of the magnetic field 16, and the TE wave of the guided light becomes a TM wave due to Faraday rotation (due to the Faraday effect). and the mode is converted. In this way, each time the light travels back and forth within the Fabry-Perot resonator, it passes through the superlattice layer 9 and the TE wave is converted into a TM wave.

上記ファラデー回転の大きさは外部磁場16の制御によ
り制御されるので、磁界16を制御することによりデバ
イスから出射される光のTE波とTM波間の切換が制御
されることになる。
Since the magnitude of the Faraday rotation is controlled by controlling the external magnetic field 16, controlling the magnetic field 16 controls switching between the TE wave and the TM wave of light emitted from the device.

ところで、A I G aA s/ G aA sMQ
W層5の典型的な吸収スペクトルは第2図に示す様なも
のであり、レーザー発振波長はり。
By the way, A I G aA s/ G aA sMQ
A typical absorption spectrum of the W layer 5 is as shown in FIG. 2, and the laser oscillation wavelength is as follows.

で示す如く吸収端近くにあり、この波長ではTMモード
とTEモードは異なる吸収係数を有する。すなわちTE
モードの方がTMモードより若干吸収係数が大きい。そ
して、TE光について、軽い正孔の励起子によるビーク
22と重い正孔の励起子によるビーク23は略そのまま
であるが、TM光については、重い正孔の励起子ビーク
は崩れて軽い正孔の励起子ピークが高められている。
As shown in , it is near the absorption edge, and the TM mode and TE mode have different absorption coefficients at this wavelength. That is, T.E.
mode has a slightly larger absorption coefficient than TM mode. For TE light, the peak 22 due to excitons of light holes and the peak 23 due to excitons of heavy holes remain almost unchanged, but for TM light, the exciton peak of heavy holes collapses and the peak 23 due to excitons of heavy holes collapses and The exciton peak of is enhanced.

そこで、レーザー発振光の波長が′LLから、TE光の
軽い正孔の励起子ピーク22に対応する1、45eVに
相当する波長領域に変えられるなら、TE光の吸収係数
がTM先のそれより大幅に大きくなり、装置のT E/
TMモード変換効率が大きく向上することになる。
Therefore, if the wavelength of the laser oscillation light is changed from 'LL to a wavelength region corresponding to 1.45 eV, which corresponds to the exciton peak 22 of the light hole in the TE light, the absorption coefficient of the TE light will be lower than that in the TM region. significantly larger and the device's T E/
TM mode conversion efficiency will be greatly improved.

第1実施例において、MQW層5や超格子層9の多重量
子井戸構造を、レーザー発振波長に対するTE光とTM
先の吸収スペクトルが上記の様になる様に設計すれば、
こうしてモード変換効率が大きく向上する。
In the first embodiment, the multiple quantum well structure of the MQW layer 5 and the superlattice layer 9 is
If the design is made so that the absorption spectrum is as shown above,
In this way, mode conversion efficiency is greatly improved.

第3図は、電磁石25に流す電流を変化させることで、
射出光26のTE又はTMモードの割合を磁気的に制御
するデバイス、すなわち第1図の外部磁界16の大きさ
を制御するものを示す。円筒状の電磁石25に閉じ込め
られた上記第1実施例などのデバイス27は、更にアル
ミニウムシリンダ28に入れられている。電磁石25に
よる磁界の強さはコイル29への電流を変えることによ
り制御され、こうして射出光26は、ケーブル30を介
して流される電気信号31により偏光変調されることに
なる。
FIG. 3 shows that by changing the current flowing through the electromagnet 25,
A device for magnetically controlling the proportion of the TE or TM mode of the emitted light 26, ie, controlling the magnitude of the external magnetic field 16 of FIG. 1, is shown. The device 27, such as the first embodiment described above, confined within the cylindrical electromagnet 25 is further enclosed in an aluminum cylinder 28. The strength of the magnetic field by the electromagnet 25 is controlled by varying the current to the coil 29, so that the emitted light 26 will be polarization modulated by the electrical signal 31 passed through the cable 30.

第4図は第2実施例を示す。第2実施例において、P9
ドープGaAs基板41上に、P′″ドープGaAsバ
ッファ  @42、PドープAlGaAs下部クラッド
143、非ドープA I G5As導波路下部クラッド
層44、非ドープA1GaAs/GaAS多重量子井戸
導波層45、非ドープA I G a A S導波路上
部クラッド層46、及び非ドープCdTe / Cd 
M n T e超格子層47を順に成長させる1次に、
本装置の左部分が下部クラッド層43まで選択的にエツ
チングされ、バッファー層42上に、PドープAI G
aAs下部クラッド層48.非ドープA I G a 
A s導波路下部クララド層49、非ドープAlGaA
s / G a A s多重量子井戸導波層50.非ド
ープAlGaAs導波路上部!51.NドープAlGa
As上部クラッド層52、NゝドープGaAsキャップ
層53が再成長させられる。
FIG. 4 shows a second embodiment. In the second embodiment, P9
On a doped GaAs substrate 41, a P'' doped GaAs buffer @ 42, a P doped AlGaAs lower cladding 143, an undoped AI G5As waveguide lower cladding layer 44, an undoped A1GaAs/GaAS multiple quantum well waveguide layer 45, an undoped A I G a A S waveguide top cladding layer 46 and undoped CdTe/Cd
In the first step, the MnTe superlattice layer 47 is grown in sequence.
The left part of the device is selectively etched down to the lower cladding layer 43, and a P-doped AI G layer is deposited on the buffer layer 42.
aAs lower cladding layer 48. Undoped AI Ga
As waveguide lower clarad layer 49, undoped AlGaA
s/GaAs multiple quantum well waveguide layer 50. Top of undoped AlGaAs waveguide! 51. N-doped AlGa
The As upper cladding layer 52 and the N-doped GaAs cap layer 53 are regrown.

上記構成において、モード変換域のMQW層45のTE
光吸収ピーク(第2図の符号22参照)は、レーザー域
のMQW層50の発振波長に一致する様に設計されてい
る。
In the above configuration, the TE of the MQW layer 45 in the mode conversion region
The optical absorption peak (see reference numeral 22 in FIG. 2) is designed to match the oscillation wavelength of the MQW layer 50 in the laser region.

また、レーザー域とモード変換載量のカップリングを促
進させる為に、両載量にはSiO2域54が形成される
。これの形成は、レーザー域とモード変換域の同量部分
をイオンビームエツチングなどにより取り除き、この部
分をS i Ozで満たすことで行なわれる。
Further, in order to promote coupling between the laser region and the mode conversion loading, a SiO2 region 54 is formed in both loadings. This is formed by removing the same amount of the laser region and the mode conversion region by ion beam etching or the like, and filling this region with SiOz.

このSiO,F!!L54の幅はレーザー半波長に等し
い光学的長さを有し、こうして境界面は反射防止面とな
ってレーザー域とモード変換域のカップリングを促進さ
せている。
This SiO,F! ! The width of L54 has an optical length equal to the laser half wavelength, thus making the interface an anti-reflection surface to promote coupling between the laser region and the mode conversion region.

尚、55はキャップ層53上に成膜されたA u G 
e / A uのオーム接解電極であり、56は基板4
1の裏面上に成膜されたC u / AUオーム接解電
極であり、57は外部磁界である。
In addition, 55 is an A u G film formed on the cap layer 53.
e/A u ohmic electrode, 56 is the substrate 4
1 is a Cu/AU ohmic electrolytic electrode deposited on the back surface of 1, and 57 is an external magnetic field.

第2実施例では、レーザー域のMQW層50から発振さ
れたレーザー光は、S i Ow域54を介してカップ
リング良くモード変換域のMQW層4層中5中心る層内
に伝搬し、ここでTE光からTM光へのモード変換(超
格子層47との相互作用による)が行なわれると共にT
E光がより多く吸収されて(MQW層45の発振波長に
対するTE光吸収係数が大きいことによる)、外部磁界
57の強さに応じた偏光変調がなされる。こうして、T
E波とTM波間の変換が行なわれて、適宜なTM波割合
のレーザー光が出射されることになる。
In the second embodiment, the laser beam oscillated from the MQW layer 50 in the laser region propagates through the S i Ow region 54 into the central layer of five of the four MQW layers in the mode conversion region with good coupling. Mode conversion from TE light to TM light (due to interaction with superlattice layer 47) occurs at T
More E light is absorbed (due to the large TE light absorption coefficient for the oscillation wavelength of the MQW layer 45), and polarization modulation is performed according to the strength of the external magnetic field 57. In this way, T
Conversion between E waves and TM waves is performed, and laser light with an appropriate proportion of TM waves is emitted.

第5図は第3実施例を示す。第3実施例では、第2実施
例のAlGaAs/GaAsMQW!45がCd T 
e / Cd M n T e超格子層を兼ねる様な構
成になっている。
FIG. 5 shows a third embodiment. In the third embodiment, AlGaAs/GaAsMQW of the second embodiment! 45 is Cd T
It has a structure that doubles as an e/CdMnTe superlattice layer.

第5図において、P” ドープGaAs基板61に、P
0ドープGaAsバッファー層62、PドープAlGa
As下部クラッド層63、非ドープCd M n T 
eT7部クララ層64、Cd M n T e / C
d T e多重量子井戸導波層(モード変換層)65、
及びCdMnTe導波路上部クラッド層66を成長させ
る。
In FIG. 5, a P'' doped GaAs substrate 61 is
0-doped GaAs buffer layer 62, P-doped AlGa
As lower cladding layer 63, undoped Cd M n T
eT7 section Clara layer 64, Cd M n T e / C
d T e multiple quantum well waveguide layer (mode conversion layer) 65,
Then, a CdMnTe waveguide upper cladding layer 66 is grown.

その後、第5図の左側の部分はエツチングされ、下部ク
ラッド層63上に非ドープAlGaAs下部クラッド層
67、非ドープAlGa A s / G a A s
多重量子井戸層68、非ドープA I G a A s
上部クララド層69、N0ド一プGaAsキヤツプ層7
0が再成長させられる。
Thereafter, the left part of FIG. 5 is etched, and an undoped AlGaAs lower cladding layer 67 is formed on the lower cladding layer 63, and an undoped AlGaAs/GaAs layer is formed on the lower cladding layer 63.
Multiple quantum well layer 68, undoped AIGaAs
Upper Clarad layer 69, N0 doped GaAs cap layer 7
0 is allowed to regrow.

上記構成で、レーザー域での発振波長に対する、モード
変換域のMQWF!t65のTE光の吸収係数がTE光
のそれより大幅に大きくなる様に設定されている。これ
は第2図の如く吸収スペクトルを設定すれば良いが、井
戸とバリアーの厚さやバリアーのMnの割合を適当に設
定して行なわれる。
With the above configuration, MQWF in the mode conversion region for the oscillation wavelength in the laser region! The absorption coefficient of TE light at t65 is set to be significantly larger than that of TE light. This can be done by setting the absorption spectrum as shown in FIG. 2, but it is also done by appropriately setting the thickness of the well and barrier and the Mn ratio in the barrier.

第5図において、71はA u G e / A u電
極であり、72はワイヤーであり、73はCu / A
 u電極であり、74はSiO□域である。
In FIG. 5, 71 is an A u G e / A u electrode, 72 is a wire, and 73 is a Cu / A u electrode.
It is a u electrode, and 74 is a SiO□ region.

第3実施例では、レーザー域のMQW層68からのレー
ザー光の大部分が、希薄磁性半導体であるモード変換域
のMQW層6層上5互作用するので、モード変換がより
効果的に行なわれる。
In the third embodiment, most of the laser light from the MQW layer 68 in the laser region interacts with the MQW layer 6 in the mode conversion region, which is a diluted magnetic semiconductor, so that mode conversion is performed more effectively. .

他の点については、第2実施例の作用と実質的に同じで
ある。
In other respects, the operation is substantially the same as that of the second embodiment.

ところで、上記実施例において、レーザー域の活性層の
構成、モード変換域の先導波層やモード変換層の構成は
あくまで例示であり他のものも用いられつる6例えば、
MQW層はバルク層などであっても良い。
Incidentally, in the above embodiments, the configuration of the active layer in the laser region and the configuration of the leading wave layer and mode conversion layer in the mode conversion region are merely examples, and other configurations may be used.
The MQW layer may be a bulk layer or the like.

[発明の効果] 上記に説明した如く、本発明によれば、磁界による制御
なので、放射されるレーザー光のTMモードの割合を連
続的に制御することができ、TEモードとTMモモ−間
の高速変調をすることも可能である。しかも、互いに格
子定数の近い格子整合された層を積層すれば良いので、
高品質の結晶構造を持ったデバイスを簡単に作製するこ
とができる。
[Effects of the Invention] As explained above, according to the present invention, since the control is based on a magnetic field, the ratio of the TM mode of the emitted laser light can be continuously controlled, and the ratio between the TE mode and the TM mode can be controlled continuously. It is also possible to perform high-speed modulation. Moreover, since it is sufficient to stack lattice-matched layers with similar lattice constants,
Devices with high-quality crystal structures can be easily manufactured.

また、磁界を制御して変調を行ない注入電流は一定にで
きるので、冷却手段の必要がなくなり、変調は、TM、
TEモードの出力が異なることなく行なうことができる
In addition, since the injection current can be kept constant by controlling the magnetic field and modulating it, there is no need for cooling means, and the modulation can be performed using TM,
This can be done without any difference in output in TE mode.

更に、TMモード操作レーザーを光学的チップ上にモノ
リシックに集積化することもできる。
Furthermore, TM mode operated lasers can also be monolithically integrated on optical chips.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の概略構成側面図、第2図
は多重量子井戸構造の典型的な吸収スペクトルを示すグ
ラフ、第3図は外部磁界を制御する装置の概略構成断面
図、第4図は本発明の第2実施例の概略構成側面図、第
5図は本発明の第3実施例の概略構成斜視図である。
Fig. 1 is a schematic side view of the configuration of the first embodiment of the present invention, Fig. 2 is a graph showing a typical absorption spectrum of a multiple quantum well structure, and Fig. 3 is a schematic cross-sectional view of the configuration of a device for controlling an external magnetic field. , FIG. 4 is a schematic side view of a second embodiment of the present invention, and FIG. 5 is a schematic perspective view of a third embodiment of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 1.共振器の内部に、レーザー発振領域とTE/TMモ
ード変換領域がモノリシックに形成され、放出される光
の偏光状態が、該TE/TMモード変換領域に加えられ
る磁界を制御して制御されることを特徴とするTMレー
ザー。
1. A laser oscillation region and a TE/TM mode conversion region are monolithically formed inside the resonator, and the polarization state of emitted light is controlled by controlling the magnetic field applied to the TE/TM mode conversion region. TM laser featuring.
2.前記TE/TMモード変換領域は希薄磁性半導体層
を含み、前記レーザー発振領域の活性領域と同じ基板上
に形成されている請求項1記載のTMレーザー。
2. 2. The TM laser according to claim 1, wherein said TE/TM mode conversion region includes a diluted magnetic semiconductor layer and is formed on the same substrate as an active region of said laser oscillation region.
3.前記レーザー発振領域は、レーザー光の波長におい
て、TM光の吸収率がTE光の吸収率よりも小さい多重
量子井戸構造部を有する請求項1又は2記載のTMレー
ザー。
3. 3. The TM laser according to claim 1, wherein the laser oscillation region has a multi-quantum well structure in which the absorption rate of TM light is lower than the absorption rate of TE light at the wavelength of the laser light.
4.前記TE/TMモード変換領域は、レーザー光の波
長において、TM光の吸収率がTE光の吸収率よりも小
さい多重量子井戸構造部を有する請求項1、2又は3記
載のTMレーザー。
4. 4. The TM laser according to claim 1, wherein the TE/TM mode conversion region has a multi-quantum well structure having a lower absorption rate of TM light than that of TE light at the wavelength of the laser light.
5.前記希薄磁性半導体層は前記活性領域と同一平面上
に形成されている請求項2記載のTMレーザー。
5. 3. The TM laser according to claim 2, wherein said diluted magnetic semiconductor layer is formed on the same plane as said active region.
6.前記希薄磁性半導体層は、前記TE/TMモード変
換領域の、TM光の吸収率がTE光の吸収率よりも小さ
い多重量子井戸構造部を兼ねる請求項5記載のTMレー
ザー。
6. 6. The TM laser according to claim 5, wherein the diluted magnetic semiconductor layer also serves as a multi-quantum well structure in the TE/TM mode conversion region in which the absorption rate of TM light is lower than the absorption rate of TE light.
JP32298389A 1989-12-13 1989-12-13 Tm laser Pending JPH03184388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32298389A JPH03184388A (en) 1989-12-13 1989-12-13 Tm laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32298389A JPH03184388A (en) 1989-12-13 1989-12-13 Tm laser

Publications (1)

Publication Number Publication Date
JPH03184388A true JPH03184388A (en) 1991-08-12

Family

ID=18149832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32298389A Pending JPH03184388A (en) 1989-12-13 1989-12-13 Tm laser

Country Status (1)

Country Link
JP (1) JPH03184388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0615323A2 (en) * 1993-03-09 1994-09-14 Canon Kabushiki Kaisha A semiconductor optical amplifier which functions independently of polarization and an optical communication system using the same
EP0631354A1 (en) * 1993-06-28 1994-12-28 Canon Kabushiki Kaisha Single-wavelength semiconductor laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0615323A2 (en) * 1993-03-09 1994-09-14 Canon Kabushiki Kaisha A semiconductor optical amplifier which functions independently of polarization and an optical communication system using the same
EP0615323A3 (en) * 1993-03-09 1994-11-09 Canon Kk A semiconductor optical amplifier which functions independently of polarization and an optical communication system using the same.
US5526176A (en) * 1993-03-09 1996-06-11 Canon Kabushiki Kaisha Semiconductor optical amplifier which functions independently of polarization and an optical communication system using the same
EP0631354A1 (en) * 1993-06-28 1994-12-28 Canon Kabushiki Kaisha Single-wavelength semiconductor laser
US5444730A (en) * 1993-06-28 1995-08-22 Canon Kabushiki Kaisha Single-wavelength semiconductor laser

Similar Documents

Publication Publication Date Title
US6603783B1 (en) Surface emitting type semiconductor laser
Williams et al. Extremely low threshold current strained InGaAs/AlGaAs lasers by molecular beam epitaxy
US6040590A (en) Semiconductor device with electrostatic control
US5384797A (en) Monolithic multi-wavelength laser diode array
US5675601A (en) Semiconductor laser device
US4930132A (en) Second harmonic wave generating device having active layer and second harmonic wave generating layer on same substrate
US5191630A (en) Nonlinear optical device for controlling a signal light by a control light
JPS6412114B2 (en)
US4905246A (en) Semiconductor laser device
US5644587A (en) Semiconductor laser device
JPH11186657A (en) Vertical resonance laser having photonic band structure
JPH0211027B2 (en)
US4887274A (en) Deterioration-resistant superlattice semiconductor laser device
JPH03184388A (en) Tm laser
JP2002141611A (en) Semiconductor light emitting element and its fabricating method
JPS6258557B2 (en)
JPH0621578A (en) Semiconductor integrated modulation light source device
US5309472A (en) Semiconductor device and a method for producing the same
Bouadma et al. GaAs: GaAlAs ridge waveguide lasers and their monolithic integration using the ion beam etching process
JP2518255B2 (en) Multiple quantum well type optical bistable semiconductor laser
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
JP3255111B2 (en) Semiconductor laser and manufacturing method thereof
JP3784483B2 (en) Semiconductor laser and its TE / TM polarization mode switching method
JP4024319B2 (en) Semiconductor light emitting device
JP2001144379A (en) Semiconductor laser device and optical communication device using the same