JPH03183944A - Ultrasonic flaw detecting device for tube - Google Patents

Ultrasonic flaw detecting device for tube

Info

Publication number
JPH03183944A
JPH03183944A JP1323038A JP32303889A JPH03183944A JP H03183944 A JPH03183944 A JP H03183944A JP 1323038 A JP1323038 A JP 1323038A JP 32303889 A JP32303889 A JP 32303889A JP H03183944 A JPH03183944 A JP H03183944A
Authority
JP
Japan
Prior art keywords
ultrasonic
tube
ultrasonic wave
reflecting
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1323038A
Other languages
Japanese (ja)
Inventor
Tetsuya Kisanuki
木佐貫 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1323038A priority Critical patent/JPH03183944A/en
Publication of JPH03183944A publication Critical patent/JPH03183944A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To shorten the inspection time and to easily perform flaw detection at the bent part of a U-shaped tube by reflecting ultrasonic waves which are generated by plural ultrasonic wave generating elements by the conic surface of an ultrasonic wave reflecting mirror in mutually different directions. CONSTITUTION:An element support body 21 where plural ring-shaped ultrasonic wave generating elements 20a - 20c are arrayed concentrically with the axis of the tube 10 is mounted on the front surface of a rear sealed body, and a front sealed body 8 where an ultrasonic wave reflecting body 22 is stuck is fixed on its front surface. On the reflecting body 22, the conic ultrasonic wave reflecting mirrors 23a - 23c which differ in tilt angle are formed opposite corresponding to the respective elements 20a - 20c. Then when high-voltage pulses are applied to the elements 20a - 20c from an ultrasonic wave flaw detector 9 at constant intervals of time, ultrasonic waves are generated and propagated in the reflection body 22 to reach the reflecting mirrors 23a - 23c. They are reflected almost completely by the reflecting mirrors and propagated as an ultrasonic wave f1 perpendicular to the wall surface - a surface ultrasonic wave f3 along the internal surface of the tube. Consequently, plural (3) kinds of flaw detection are performed almost simultaneously.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は熱交換器等に使用される細い管の超音波探傷装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an ultrasonic flaw detection device for thin tubes used in heat exchangers and the like.

(従来の技術) 一般に、火力、原子カプラント等に設置されている熱交
換器の細管等に対しては、製造時および使用期間中にそ
の健全性を確認するため、渦流探傷試験、超音波探傷試
験等の非破壊検査が実施されることがある。
(Prior art) In general, in order to confirm the integrity of heat exchanger thin tubes installed in thermal power plants, nuclear couplants, etc., during manufacturing and during use, eddy current testing, ultrasonic testing, etc. Non-destructive testing such as testing may be conducted.

第4図は、使用期間中に管の肉厚測定を行なうための超
音波探傷装置の一例を示す図であって、駆動装置1によ
って前後動される作動軸2の先端には、シールリング3
aを有する後部密封体3を介して駆動モータ4が連結さ
れている。その駆動モータ4の前方には、垂直探触子5
が組込まれ上記駆動モータ4によって軸線回りに回転駆
動されるセンサ部6がスリップリング7を介して連結さ
れている。そして、上記センサ部6の前方にはシールリ
ング8aを有する前部密封体8が設けられている。また
、前記垂直探触子5は前記作動軸2内等に挿通された送
受信線を介して管外部に設置された超音波探傷器9に電
気的に連結されている。
FIG. 4 is a diagram showing an example of an ultrasonic flaw detection device for measuring the wall thickness of a pipe during use.
A drive motor 4 is connected via a rear sealing body 3 having a shape. In front of the drive motor 4 is a vertical probe 5.
A sensor section 6 in which a sensor section 6 is incorporated and is rotationally driven around an axis by the drive motor 4 is connected via a slip ring 7. A front sealing body 8 having a seal ring 8a is provided in front of the sensor section 6. Further, the vertical probe 5 is electrically connected to an ultrasonic flaw detector 9 installed outside the tube via a transmission/reception line inserted into the operating shaft 2 or the like.

そこで、管]0内の探傷に際しては、その管10内に前
後の密封体3,8等とともに押入されたセンサ部6が、
駆動モータ4により管10の軸線まわりに回転されなが
ら、駆動装置1により作動軸2を介して管10の軸方向
に移動される。しかして、垂直探触子5が管10の内側
で回転方向および軸方向に移動しつつ、管外部に設置さ
れている超音波探傷器9からの信号を受けて超音波の送
受を行ない、第5図に模式的に示すように、管10の肉
厚方向で、管の内面10aおよび外面10bとの間で生
じた多重反射11の信号を受信して、管の肉厚が測定さ
れる。
Therefore, when detecting flaws inside the tube 10, the sensor section 6 inserted into the tube 10 together with the front and rear sealing bodies 3, 8, etc.
While being rotated around the axis of the tube 10 by the drive motor 4, it is moved in the axial direction of the tube 10 by the drive device 1 via the operating shaft 2. As the vertical probe 5 moves in the rotational and axial directions inside the tube 10, it receives signals from the ultrasonic flaw detector 9 installed outside the tube and transmits and receives ultrasonic waves. As schematically shown in FIG. 5, the wall thickness of the tube is measured by receiving signals of multiple reflections 11 generated between the inner surface 10a and the outer surface 10b of the tube in the thickness direction of the tube 10.

第6図は超音波探傷器のブラウン管上での上記多重反射
11の信号の模式図であり、多重反射信号11a、ll
bおよび11Cの各時間間隔から換算して管の肉厚を検
知することができる。
FIG. 6 is a schematic diagram of the signal of the multiple reflection 11 on the cathode ray tube of the ultrasonic flaw detector, and shows the multiple reflection signals 11a, ll.
The wall thickness of the tube can be detected by converting from each time interval b and 11C.

第4図は、垂直探触子5による管の肉厚測定の例である
が、上記垂直探触子を斜角探触子および表面波探触子に
代えることによって管内外部の割れの探傷および管内面
の割れの探傷を行なうことも可能である。
FIG. 4 shows an example of measuring the wall thickness of a pipe using the vertical probe 5. By replacing the vertical probe with an angle probe and a surface wave probe, cracks inside and outside the pipe can be detected. It is also possible to detect cracks on the inner surface of the tube.

また、管の健全性をより高い信頼性をもって調査するに
は、管の肉厚測定、管内外面の割れ、および管内部の割
れの探傷を行なうことが必要であるが、これらの測定お
よび探傷を行なうには、垂直探触子、斜角探触子および
表面波探触子をそれぞれ第4図に示すような装置に組み
込んで、それぞれの探傷を行なうか、または、第7図に
示すように、垂直探触子5、斜角探触子12および表面
波探触子13の全てを管の軸方向に組み込んだ超音波探
傷装置が必要である。
In addition, in order to investigate the integrity of a pipe with higher reliability, it is necessary to measure the wall thickness of the pipe, detect cracks on the inner and outer surfaces of the pipe, and detect cracks inside the pipe. To perform flaw detection, a vertical probe, an oblique probe, and a surface wave probe can be installed in a device as shown in Figure 4, and each flaw detection can be carried out, or as shown in Figure 7. , a vertical probe 5, an oblique probe 12, and a surface wave probe 13 are all required in the axial direction of the tube.

(発明が解決しようとする課題) ところがこのような装置によって管の内外面で発生した
割れの探傷や管の肉厚測定を行なう場合には、第4図の
装置では表面波探触子、斜角探触子および垂直探触子を
順次取り換えつつ探傷を行なうことになるため、全ての
検査に要する検査時間が長くなる等の実用面での不便が
ある。
(Problem to be Solved by the Invention) However, when such a device is used to detect cracks occurring on the inner and outer surfaces of a tube or to measure the wall thickness of a tube, the device shown in FIG. Since flaw detection must be performed while sequentially replacing the angular probe and the vertical probe, there are practical inconveniences such as a longer inspection time required for all inspections.

また、第7図に示すような装置では、表面波探触子、斜
角探触子および垂直探触子が管の軸線方向に並べられて
いるため、センサ部が軸方向に長くなり、U字管の屈曲
部ではその屈+lb部の曲率によりセンサ部を管の軸方
向に移動させることが困難であるか、若しくは不可能と
なる等の問題がある。
In addition, in the device shown in Fig. 7, the surface wave probe, the angle probe, and the vertical probe are arranged in the axial direction of the tube, so the sensor section becomes long in the axial direction, and the U At the bent portion of the tube, there is a problem in that it is difficult or impossible to move the sensor portion in the axial direction of the tube due to the curvature of the bent +lb portion.

本発明はこのような点に鑑み、検知時間が少なくて済み
、かつU字管の屈曲部においても容易に探傷できる管の
超音波探傷装置を得ることを目的とする。
In view of these points, it is an object of the present invention to provide an ultrasonic tube flaw detection device that requires less detection time and can easily detect flaws even at bent portions of U-shaped tubes.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、管軸に対して同心円状に設けられた複数のリ
ング状の超音波発生素子の前面に、各超音波発生素子に
対応してそれぞれ傾斜角が異なる円錐形面の超音波反射
鏡を有する超音波反射体を配設した超音波探触子と、そ
の超音波探触子を管の軸線方向に移動させる駆動装置と
、上記超音波発生素子との間に超音波信号を送受信する
超音波探傷器とを有することを特徴とする。
(Means for Solving the Problems) The present invention provides a plurality of ring-shaped ultrasonic generating elements provided concentrically with respect to the tube axis, each having an inclination angle on the front surface corresponding to each ultrasonic generating element. An ultrasonic probe provided with an ultrasonic reflector having ultrasonic reflectors with different conical surfaces, a drive device for moving the ultrasonic probe in the axial direction of a tube, and the ultrasonic generating element. and an ultrasonic flaw detector that transmits and receives ultrasonic signals between the two.

(作 用) 駆動装置によって超音波探触子を管内を軸線方向に移動
させると、各超音波発生素子から発生した超音波が、超
音波反射鏡の対応する円錐形面で反射し、管の内面、外
面の任意の方向に互いに異なる傾きをもった複数の超音
波として伝播され、その傾きに応じて管の内外面の割れ
の探傷および管の肉厚測定が行なわれる。
(Function) When the ultrasonic probe is moved in the axial direction inside the tube by the drive device, the ultrasonic waves generated from each ultrasonic generating element are reflected by the corresponding conical surface of the ultrasonic reflector, and the ultrasonic probe is moved inside the tube in the axial direction. A plurality of ultrasonic waves with different inclinations are propagated in arbitrary directions on the inner and outer surfaces, and crack detection on the inner and outer surfaces of the tube and measurement of the wall thickness of the tube are performed according to the inclinations.

(実施例) 以下、第1図乃至第3図を参照して本発明の一実施例に
ついて説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図において、作動軸2の先端部に設けられたシール
リング3a付後部密封体3の前面には管10の軸線に対
して同心円状にリング状の複数の超音波発生素子20a
、20b、20cを配列した素子支持体21が装着され
ており、その素子支持体21の前面には超音波反射体2
2が貼着され、さらにその超音波反射体22の前面にシ
ールリング8aを有する前部密封体8が固着されている
In FIG. 1, a plurality of ring-shaped ultrasonic generating elements 20a are arranged concentrically with respect to the axis of the tube 10 on the front surface of the rear sealing body 3 with a seal ring 3a provided at the tip of the operating shaft 2.
, 20b, 20c is mounted on the element support 21, and an ultrasonic reflector 2 is mounted on the front surface of the element support 21.
2 is attached to the ultrasonic reflector 22, and a front sealing body 8 having a seal ring 8a is further fixed to the front surface of the ultrasonic reflector 22.

上記超音波反射体22には、各超音波発生素子20a、
20b、20cに対向するとともに、各超音波発生素子
20a、20b、20cに対応してそれぞれ傾斜角が異
なる円錐形状の超音波反射!23a、23b、23cが
形成されテイル。また、上記超音波反射体22はアクリ
ル樹脂によって形成されており、超音波反射鏡23a、
23b。
The ultrasonic reflector 22 includes each ultrasonic generating element 20a,
20b, 20c, and a conical ultrasonic reflection with a different angle of inclination corresponding to each ultrasonic wave generating element 20a, 20b, 20c! 23a, 23b, and 23c form a tail. The ultrasonic reflector 22 is made of acrylic resin, and includes an ultrasonic reflector 23a,
23b.

23cの超音波発生素子20a、20b、20cと反対
側には反射鏡面によって区画された空隙部24が形成さ
れており、その空隙部24には空気が充填されている。
A void 24 defined by a reflective mirror surface is formed on the side opposite to the ultrasonic generating elements 20a, 20b, and 20c of 23c, and the void 24 is filled with air.

そしてこの空隙部24は前部密封体8によって密封され
ている。
This cavity 24 is sealed by the front sealing body 8.

超音波反射体22および空隙部24に充填する物質とし
ては音響インピーダンスが大きく異なり、その境界面で
超音波の反射を起すものであれば他の物質を用いてもよ
い。
Other materials may be used to fill the ultrasonic reflector 22 and the void 24 as long as they have significantly different acoustic impedances and reflect ultrasonic waves at the interface between them.

また、後部密封体3には、前後のシールリング3a、8
a間で囲まれた管内空所に超音波伝播液を供給する供給
管25が接続されている。
In addition, the rear sealing body 3 includes front and rear seal rings 3a, 8.
A supply pipe 25 for supplying an ultrasonic propagating liquid is connected to the space within the pipe surrounded by spaces a.

さらに、前記作動軸2は管外部の駆動装置1に連結され
るとともに、各超音波発生索子20a。
Further, the actuation shaft 2 is connected to a drive device 1 outside the tube, and each ultrasound generating cord 20a.

20b、20cは超音波探傷器9に電気的に結合されて
いる。
20b and 20c are electrically coupled to the ultrasonic flaw detector 9.

しかして、本装置によって管10の探傷を行なう場合に
は、超音波発生素子20a、20b。
Therefore, when performing flaw detection on the tube 10 with this apparatus, the ultrasonic generating elements 20a and 20b are used.

20C1素子支持体21、超音波反射体22等からなる
超音波探触子を管10内に押入し、駆動装置1により作
動軸2を介して上記超音波探触子を一定速度で管10の
軸方向に移動させる。
An ultrasonic probe consisting of a 20C1 element support 21, an ultrasonic reflector 22, etc. is pushed into the tube 10, and the drive device 1 moves the ultrasonic probe through the operating shaft 2 at a constant speed into the tube 10. Move in the axial direction.

この場合、両シールリング3a、8aによって密封され
た超音波反射体22と管10の内面との環状間隙内には
、供給管25を介して超音波伝播液が供給充填されてお
り、また上記両シールリング3a、8aによって超音波
探触子の軸心が管10の軸心と一致され、上記超音波探
触子の移動が安定化される。
In this case, the annular gap between the ultrasonic reflector 22 and the inner surface of the tube 10, which is sealed by both seal rings 3a and 8a, is filled with an ultrasonic propagation liquid via the supply tube 25, and the above-mentioned Both seal rings 3a and 8a align the axis of the ultrasonic probe with the axis of the tube 10, thereby stabilizing the movement of the ultrasonic probe.

そこで、超音波発生素子20a、20b。Therefore, the ultrasonic wave generating elements 20a and 20b.

20cには超音波探傷器9から一定時間間隔でそれぞれ
順番に高圧パルスが印加され、超音波発生素子20a、
20b、20cはその高圧パルスを受けて超音波を発生
し、発生した超音波が超音波反射体22中を伝播し、超
音波反射鏡23a。
High-voltage pulses are sequentially applied to the ultrasonic flaw detector 9 at fixed time intervals to the ultrasonic generating elements 20a and 20c, respectively.
20b and 20c generate ultrasonic waves in response to the high-pressure pulses, and the generated ultrasonic waves propagate through the ultrasonic reflector 22 to the ultrasonic reflector 23a.

23b、23cに達する。23b and 23c are reached.

超音波反射体22の伺質は、前述のように本実施例にお
いてはアクリル樹脂が使用され、超音波反射鏡の裏面側
の空隙部には空気が充填されており、一般にアクリル樹
脂と空気の音響インピーダンスがそれぞれ3.2X10
6および (4×1010−4)X106/m” sと
著しく異なるため、上記アクリル樹脂中を伝播した超音
波がアクリル樹脂と空気との境界面からなる超音波反射
鏡23 a、  23 b、  23 cでほぼ完全に
反射される。
As for the material of the ultrasonic reflector 22, as mentioned above, acrylic resin is used in this embodiment, and the gap on the back side of the ultrasonic reflector is filled with air. Acoustic impedance is 3.2X10 each
6 and (4×1010−4) It is almost completely reflected at c.

第2図は、超音波探触子中央部の拡大図であり、管10
の最も中央の超音波発生素子20aから発生され超音波
は、超音波反射鏡23aで管の半径方向に反射され、管
壁面に垂直な超音波f1となり伝播される。また、中間
に配設された超音波発生素子20bで発生された超音波
は、中間部の超音波反射鏡23bで反射され管内部に屈
曲角45°の超音波f2として伝播される。さらに、最
も外側に設けられた超音波発生素子20cで発生した超
音波は、最も外側に配設された超音波反射鏡23cで反
射された後、管内面に沿う表面超音波f3となり伝播す
る。
FIG. 2 is an enlarged view of the central part of the ultrasound probe, and shows the tube 10.
The ultrasonic waves generated from the central ultrasonic generating element 20a are reflected in the radial direction of the tube by the ultrasonic reflecting mirror 23a, and are propagated as ultrasonic waves f1 perpendicular to the tube wall surface. Further, the ultrasonic waves generated by the ultrasonic generating element 20b disposed in the middle are reflected by the ultrasonic reflecting mirror 23b in the middle part and propagated inside the tube as ultrasonic waves f2 with a bending angle of 45 degrees. Further, the ultrasonic waves generated by the outermost ultrasonic generating element 20c are reflected by the outermost ultrasonic reflecting mirror 23c, and then become surface ultrasonic waves f3 along the inner surface of the tube and propagate.

ここで、各超音波f2.f3の管10への入射角αl、
α2は、下記のスネルの法則から得られる。
Here, each ultrasonic wave f2. Incident angle αl of f3 into the tube 10,
α2 is obtained from Snell's law below.

ここで、αm二人射波の音速 θm二人射角 αF:屈曲角 θF:屈曲波の音速 (1)式から屈曲角45°の超音波f2、表面超音波f
 のそれぞれの入射角α1.α2は、α =10’、 
 α2−14°となる。
Here, αm sound velocity of two-person radiation θm two-person radiation angle αF: bending angle θF: sound speed of bending wave From equation (1), ultrasonic wave f2 with bending angle of 45°, surface ultrasonic wave f
The respective incident angles α1. α2 is α = 10',
α2-14°.

また、超音波反射鏡23a、23b、23cの管の軸に
対する傾き角μm、μ2.μ3はそれぞれ μm−45゜ μ2−(90°−10°)÷2=40゜μ3−(90°
−14°)÷2=38゜に設定されている。
Also, the inclination angle μm, μ2. μ3 is μm-45°μ2-(90°-10°)÷2=40°μ3-(90°
−14°)÷2=38°.

0 そこで、最も中央の超音波発生素子20aと超音波反射
鏡23aとの組み合わせによって発生、伝播された超音
波は、管の肉厚の断面方向に伝播し、管の内面と外面と
で多重反射を生じ、多重反対の超音波が超音波発生素子
20aに受信され、受信信号が超音波探傷器9のブラウ
ン管9a上に表示される。
0 Therefore, the ultrasonic waves generated and propagated by the combination of the central ultrasonic generating element 20a and the ultrasonic reflecting mirror 23a propagate in the cross-sectional direction of the wall thickness of the tube, and undergo multiple reflections on the inner and outer surfaces of the tube. , multiplexed and opposite ultrasonic waves are received by the ultrasonic generating element 20a, and the received signal is displayed on the cathode ray tube 9a of the ultrasonic flaw detector 9.

また、中間に配設された超音波発生素子20bおよび超
音波反射鏡23bの組の合わせによっては、屈曲角45
°の斜角の超音波が発生伝播され、第2図に示すような
管10の外面の割れ25若しくは管肉厚内部の欠陥から
反射され、同様に超音波探傷器9のブラウン管9aに表
示される。
Also, depending on the combination of the ultrasonic generating element 20b and the ultrasonic reflecting mirror 23b arranged in the middle, the bending angle 45
Ultrasonic waves at an oblique angle of ° are generated and propagated, reflected from a crack 25 on the outer surface of the tube 10 or a defect inside the tube wall thickness as shown in FIG. Ru.

さらに、最も外側に配設された超音波発生素子20cお
よび超音波反射鏡23cの組み合わせで得られる超音波
は管の内表面を伝播し、管の内表面に割れ26等の欠陥
があれば、その部分で反射され、反射された超音波が最
も外側に配設された超音波反射鏡23cを介して超音波
発生素子20cに反射され、そこで電気信号として受信
信1 号が超音波探傷器9のブラウン管9aに表示される。
Further, the ultrasonic waves obtained by the combination of the ultrasonic generating element 20c and the ultrasonic reflecting mirror 23c disposed on the outermost side propagate on the inner surface of the tube, and if there is a defect such as a crack 26 on the inner surface of the tube, The reflected ultrasonic wave is reflected by the ultrasonic wave generator 20c via the outermost ultrasonic reflector 23c, and the received signal 1 is transmitted as an electric signal to the ultrasonic flaw detector 9. is displayed on the cathode ray tube 9a.

第3図は、上記超音波探傷器のブラウン管9aに受信さ
れた管の内面の割れの受信信号27、管外面の割れの受
信信号28および管の肉厚方向の多重反射信号2つの一
例を示す図である。
FIG. 3 shows an example of a received signal 27 of a crack on the inner surface of the tube, a received signal 28 of a crack on the outer surface of the tube, and two multiple reflection signals in the thickness direction of the tube, which are received by the cathode ray tube 9a of the ultrasonic flaw detector. It is a diagram.

なお、上記実施例においては、管の表面探傷、管の内部
および外表面の探傷、並びに管の肉厚測定を同時に行な
うものを示したが、これを任意の2種類の測定等を行な
わせるようにしてもよい。
In the above embodiment, the surface flaw detection of the tube, the inner and outer surface flaw detection of the tube, and the wall thickness measurement of the tube are performed simultaneously. You can also do this.

すなわち、例えば、斜角と垂直の超音波を組み合わせる
ため、第1図の最も内側と中間の超音波発生装置20a
、20bとそれに対応する超音波反射鏡23a、23b
だけを用いるようにしてもよい。
That is, for example, to combine oblique and vertical ultrasound waves, the innermost and middle ultrasound generators 20a in FIG.
, 20b and the corresponding ultrasonic reflecting mirrors 23a, 23b
You may also use only

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように構成したので、複数種類の超音波
探傷を同時に行なうことができ、探傷の種類に応じて超
音波発生素子をその都度取換える必要がなく検査時間を
短縮することができる。し 2 かも上記構成によって超音波探触子の軸方向の長さを比
較的短くすることができて、U字管の屈曲部の探傷にも
容易に使用することができる。
Since the present invention is configured as described above, multiple types of ultrasonic flaw detection can be performed simultaneously, and there is no need to replace the ultrasonic generating element each time depending on the type of flaw detection, thereby shortening the inspection time. . (2) With the above configuration, the length of the ultrasonic probe in the axial direction can be made relatively short, and it can be easily used for flaw detection at the bent portion of a U-shaped tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超音波探傷装置の概略構成を示す図、
第2図は第1図の超音波発生素子、超音波反射鏡部分の
拡大説明図、第3図は第1図の超音波探傷器のブラウン
管上の受信信号の表示例を示す図、第4図は従来の超音
波探傷装置の概略構成図、第5図は管の肉厚測定時の作
用説明図、第6図は肉厚測定II!jの多重反射信号の
ブラウン管上の波形模式図、第7図は従来の超音波探傷
装置の他の実施例を示す図である。 1・・・駆動装置、2・・・作動軸、9・・・超音波探
傷器、10−・・管、20 a 、 20 b 、  
20 c ・・−超音波発生素子、21・・・素子支持
体、22・・・超音波反射体、23 a 、  23 
b 、  23 c −・−超音波反射鏡、25・・・
管の外面の割れ、26・・・管の内表面の割れ。
FIG. 1 is a diagram showing a schematic configuration of an ultrasonic flaw detection device of the present invention,
Fig. 2 is an enlarged explanatory view of the ultrasonic generating element and ultrasonic reflector shown in Fig. 1, Fig. 3 is a diagram showing an example of display of the received signal on the cathode ray tube of the ultrasonic flaw detector shown in Fig. 1, and Fig. 4 The figure is a schematic configuration diagram of a conventional ultrasonic flaw detection device, Figure 5 is an explanatory diagram of the operation when measuring the wall thickness of a pipe, and Figure 6 is a wall thickness measurement II! FIG. 7 is a schematic diagram of the waveform of the multiple reflection signal of j on the cathode ray tube, and is a diagram showing another embodiment of the conventional ultrasonic flaw detection device. DESCRIPTION OF SYMBOLS 1... Drive device, 2... Operating shaft, 9... Ultrasonic flaw detector, 10... Pipe, 20a, 20b,
20 c...-Ultrasonic generating element, 21... Element support, 22... Ultrasonic reflector, 23 a, 23
b, 23c ---Ultrasonic reflector, 25...
Cracks on the outer surface of the tube, 26...Cracks on the inner surface of the tube.

Claims (1)

【特許請求の範囲】[Claims] 管軸に対して同心円状に設けられた複数のリング状の超
音波発生素子の前面に、各超音波発生素子に対応してそ
れぞれ傾斜角が異なる円錐形面の超音波反射鏡を有する
超音波反射体を配設した超音波探触子と、その超音波探
触子を管の軸線方向に移動させる駆動装置と、上記超音
波発生素子との間に超音波信号を送受信する超音波探傷
器とを有することを特徴とする、管の超音波探傷装置。
An ultrasonic wave generator that has a plurality of ring-shaped ultrasonic generating elements arranged concentrically with respect to the tube axis, and an ultrasonic reflecting mirror with a conical surface having a different angle of inclination corresponding to each ultrasonic generating element on the front surface of the ring-shaped ultrasonic generating elements. An ultrasonic flaw detector that transmits and receives ultrasonic signals between an ultrasonic probe provided with a reflector, a drive device that moves the ultrasonic probe in the axial direction of a tube, and the ultrasonic generating element. An ultrasonic flaw detection device for pipes, comprising:
JP1323038A 1989-12-13 1989-12-13 Ultrasonic flaw detecting device for tube Pending JPH03183944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323038A JPH03183944A (en) 1989-12-13 1989-12-13 Ultrasonic flaw detecting device for tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323038A JPH03183944A (en) 1989-12-13 1989-12-13 Ultrasonic flaw detecting device for tube

Publications (1)

Publication Number Publication Date
JPH03183944A true JPH03183944A (en) 1991-08-09

Family

ID=18150418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323038A Pending JPH03183944A (en) 1989-12-13 1989-12-13 Ultrasonic flaw detecting device for tube

Country Status (1)

Country Link
JP (1) JPH03183944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113651A1 (en) * 2009-03-31 2010-10-07 住友金属工業株式会社 Method for evaluating connection state of pipe thread coupling, method for pipe thread coupling connection, and device for evaluating connection state of pipe thread coupling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113651A1 (en) * 2009-03-31 2010-10-07 住友金属工業株式会社 Method for evaluating connection state of pipe thread coupling, method for pipe thread coupling connection, and device for evaluating connection state of pipe thread coupling
JP2010237084A (en) * 2009-03-31 2010-10-21 Sumitomo Metal Ind Ltd Method for evaluating connection state of pipe screw joint, method for connecting pipe screw joint, and device for evaluating connection state of pipe screw joint
CN102449471A (en) * 2009-03-31 2012-05-09 住友金属工业株式会社 Method for evaluating connection state of pipe thread coupling, method for pipe thread coupling connection, and device for evaluating connection state of pipe thread coupling
US8438926B2 (en) 2009-03-31 2013-05-14 Nippon Steel & Sumitomo Metal Corporation Method of evaluating fastening state of threaded joint of pipes or tubes, method for fastening threaded joint of pipes or tubes, and apparatus for evaluating fastening state of threaded joint of pipes or tubes
AU2010231934B2 (en) * 2009-03-31 2013-08-15 Nippon Steel Corporation Method for evaluating fastening state of threaded joint of pipes or tubes, method for fastening threaded joint of pipes or tubes, and apparatus for evaluating fastening state of threaded joint of pipes or tubes.

Similar Documents

Publication Publication Date Title
US4089227A (en) Apparatus for measuring the radial dimensions of a cylindrical tube by ultrasonics
US4361044A (en) Scanning ultrasonic probe
JP2727298B2 (en) Method for detecting corrosion fatigue cracks in boiler tubes with membrane
US4807476A (en) Variable angle transducer system and apparatus for pulse echo inspection of laminated parts through a full radial arc
US5767410A (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing
US5377237A (en) Method of inspecting repaired stub tubes in boiling water nuclear reactors
US3922907A (en) In-bore turbine inspection device
JPH0352825B2 (en)
JPH11512183A (en) Ultrasonic non-destructive inspection equipment for slender components
JPH07333202A (en) Flaw detector of piping
JPH03183944A (en) Ultrasonic flaw detecting device for tube
GB2280507A (en) SCAN - Method and apparatus for ultrasonic testing of tubular products.
JPH11183445A (en) Flaw detector
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
RU2655048C1 (en) Device for ultrasonic examination of round stock and pipes
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JPS59151057A (en) Ultrasonic flaw detector
JPS59155709A (en) Ultrasonic wave measuring equipment
JPH0232249A (en) Ultrasonic flaw detection probe
JPH1164300A (en) Ultrasonic probe and ultrasonic flaw detecting apparatus
JPH11258214A (en) Ultrasonic sensor
JP2002090352A (en) Axial flaw detecting ultrasonic flaw detector
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
JP3297348B2 (en) Ultrasonic probe
JP3796349B2 (en) Automatic detection device for tube crack