JPH03183735A - Silver-oxide contact material - Google Patents

Silver-oxide contact material

Info

Publication number
JPH03183735A
JPH03183735A JP32218789A JP32218789A JPH03183735A JP H03183735 A JPH03183735 A JP H03183735A JP 32218789 A JP32218789 A JP 32218789A JP 32218789 A JP32218789 A JP 32218789A JP H03183735 A JPH03183735 A JP H03183735A
Authority
JP
Japan
Prior art keywords
alloy
silver
weight
internal oxidation
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32218789A
Other languages
Japanese (ja)
Inventor
Akira Shibata
昭 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKOU KEIEI KIKAKU KK
Original Assignee
SUMIKOU KEIEI KIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKOU KEIEI KIKAKU KK filed Critical SUMIKOU KEIEI KIKAKU KK
Priority to JP32218789A priority Critical patent/JPH03183735A/en
Publication of JPH03183735A publication Critical patent/JPH03183735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Abstract

PURPOSE:To improve the deposition resistance of the contact material by incorporating specified amounts of Sn, Ca and Bi into an Ag matrix and subjecting the alloy to internal oxidation. CONSTITUTION:The electrical contact material is formed of silver-oxides obtd. by subjecting an Ag alloy contg., by weight, 2 to 12% Sn, 0.5 to 5.0% Ca and 0.1 to 1.4% Bi to internal oxidation. By this compsn., a good alloy having dispersed structure can be obtd. Or, an Ag alloy including a ternary eutectic alloy constituted of each 0.6 to 5% Sn, Ca and Bi is subjected to internal oxidation. Alloy oxides having high diffusing rate at the time of subjecting the ternary alloy to internal oxidation and having a low concn. segregating degree from the surface part to the central part are precipitated. By the effect of adding Ca, excellent arc resistance and capacity advantageous to the application for DC power relays and current breakers can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気中で使用される、直流、交流用開閉機器、
電流遮断器等に、使用される電気接点材料に関するもの
である。従来の銀一酸化物系材料は、焼結法、及び内部
酸化によって作られている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to switching equipment for direct current and alternating current, which is used in the air.
It relates to electrical contact materials used in current breakers and the like. Traditional silver monoxide based materials are made by sintering methods and internal oxidation.

本発明は後者の方法で製作し、軽負荷から大容量負荷の
広い領域で使用され、且つ耐溶着特性を向上する銀−酸
化物電気接点材料である。
The present invention is a silver-oxide electrical contact material produced by the latter method, which is used in a wide range of applications from light loads to large capacity loads, and which has improved anti-welding properties.

[従来の技術] 今日使用されている同系統の材料は、Ag−Cdo、A
g−Zno、Ag−SnO2系に代表され、特にAg−
S4O2系では、Snの重量%が5を超へる時、内部酸
化が進行しないため、In、Bi元素を添加して、内部
酸化を成功せしめる技術を含む材料がある。
[Prior art] Similar materials used today are Ag-Cdo, A
g-Zno, Ag-SnO2 system, especially Ag-
In the S4O2 system, internal oxidation does not proceed when the weight percent of Sn is less than 5. Therefore, there are materials that include a technique to achieve successful internal oxidation by adding In and Bi elements.

此れ等はSnO2の融点、1625℃を、添加元素との
共範酸化物を形成する為に、融点及び高温に於いての、
接点特性を低下する所が夛く認められる。又実用例で直
流囲路用接点として特に、問題となる転移、突超物発生
、溶着、並びに大電流遮断時の消耗、溶着が夛くなる傾
向である。
These are the melting point of SnO2, 1625℃, and the melting point and high temperature, in order to form a common oxide with the additive element.
There are many places where the contact characteristics deteriorate. Furthermore, in practical applications, especially as contacts for DC enclosures, there is a tendency for problems such as transfer, generation of projectiles, welding, and wear and welding when interrupting large currents to occur.

反面に於いて、Ag+SnO2(8〜12□)の焼結材
料についての改良研究は、海外の諸々の研究、開発も実
績効果は、除々に進歩の情報もあるが、固相状態での焼
結であるためか、充分な密度及び、凝集力が得られず、
過負荷の繰り返し試験、大電流の遮断試験で満足し得な
いのが現況である [発明が解明しようとする課題] 前述の通り Ag−SnxBiyOz系で内部酸化法に
よる材料は、実用面でも、品質の安定性で高い評価があ
る。一般の耐熱性を有するために、治全上で許せる範囲
で比重の軽い元まで、Ag,Snの両元素に合金し得る
Caを投入し、CaJnO3の如く、融点約2000℃
に到達する酸化物粒子を微細に折出分散し、内部酸化促
進之素のBiの物理的劣性をおぎなった上、SnO2に
優る耐熱性粒子を銀基質中に、折出、分散する事により
、目標とする、直流、交流、従来特殊使用ともされてい
た。耐熱性接点材料を開発しようとすものである。Ca
の比重は軽く、1.54g/ccであり、重量比として
、少い量で、銀中に占る容積は大であり、Sn、Caの
それ等に比し、重量対容積比は約5倍である。金属状態
図的観測からすれば、Caを5.6重量%Ag合金の凝
固点は、653℃まで低下する。そしてAgの融点から
(960℃)冷却されて、653℃に達するまでは、液
相と、CaAg4又は、その法の化合物の混合固体相の
共存状態にある。此れは、内部酸化温度と重大な関係が
ある。又、凝固相のX線解析では、Agと各種の化合物
が混然と存在する。
On the other hand, improvement research on sintered materials of Ag+SnO2 (8 to 12□) has been carried out in various overseas research and development projects, and although there is some information that progress has been made gradually, Perhaps because of this, sufficient density and cohesive force could not be obtained,
The current situation is that repeated overload tests and large current interruption tests are not satisfactory [Problems to be solved by the invention] As mentioned above, the Ag-SnxBiyOz-based material produced by the internal oxidation method has poor quality in practical terms. It is highly rated for its stability. In order to have general heat resistance, Ca, which can be alloyed with both Ag and Sn, is added to a material with a light specific gravity within the allowable range for curing, and has a melting point of approximately 2000°C, such as CaJnO3.
By finely precipitating and dispersing oxide particles that reach 100%, overcoming the physical recessiveness of Bi, which promotes internal oxidation, and precipitating and dispersing heat-resistant particles superior to SnO2 in a silver matrix, The target is direct current, alternating current, and conventionally considered special use. The aim is to develop heat-resistant contact materials. Ca
The specific gravity of silver is light, 1.54 g/cc, and although it is a small amount in terms of weight ratio, it occupies a large volume in silver, and compared to those of Sn and Ca, the weight to volume ratio is about 5. It's double. From a metal phase diagram observation, the solidification point of an Ag alloy containing 5.6% by weight of Ca decreases to 653°C. After being cooled from the melting point of Ag (960° C.) until it reaches 653° C., a liquid phase and a mixed solid phase of CaAg4 or a compound thereof coexist. This has a significant relationship with the internal oxidation temperature. Furthermore, in the X-ray analysis of the coagulation phase, Ag and various compounds are mixedly present.

此の様な合金は、冷却、加熱の工程 で多くの原子欠間を生じ塑性加上性を阻害する一方、酸
素の拡散速度は、内部酸化に当って、上昇する利点もあ
る。そのため、酸化促進剤のBiの添加なしで、高圧酸
素下(10〜50ATM)及び低温(650℃近傍)の
加熱により、ある限度の銀合金の内部酸化に成功する。
Such an alloy produces many atomic gaps during the cooling and heating processes, which inhibits plasticity, but also has the advantage that the oxygen diffusion rate increases during internal oxidation. Therefore, internal oxidation of the silver alloy can be successfully achieved to a certain extent by heating under high pressure oxygen (10 to 50 ATM) and at low temperature (near 650° C.) without adding Bi as an oxidation promoter.

そしてその銀一酸化物接点材料は、CaSnO3等の耐
熱酸化物粒子の分散により、安定した性能が保証出来る
The silver monoxide contact material can ensure stable performance due to the dispersion of heat-resistant oxide particles such as CaSnO3.

小容量で、直流アーク発生率の高くなる使用条件に、C
aXSnYOZ+Ag合金として、少くともSnO2の
融点より高く、分散粒子は微細で、拡散範囲が狭い爲に
、均一な分散がある。
C
As an aXSnYOZ+Ag alloy, the melting point is at least higher than that of SnO2, the dispersed particles are fine, the diffusion range is narrow, and the dispersion is uniform.

前述の通り Ag−SnO2−BiXO3系では、交流
回路では、220Volt,2000Ampの遮断。直
流回路では、24Volt,20Ampの開閉を限度と
するため、Ag,Sn,Biに合金性を有するCaOを
添加する事により、一段の耐久性を有する内部酸化材料
を開発の課題目標とする。
As mentioned above, in the Ag-SnO2-BiXO3 system, 220 Volt and 2000 Amp are cut off in the AC circuit. Since the DC circuit is limited to switching at 24 Volts and 20 Amps, the goal of the development is to add CaO, which has alloying properties, to Ag, Sn, and Bi to create an internally oxidized material with even greater durability.

[課題を解決するための手段] 前段で既でに記載した通り、Ag−Sn合金にCaを添
加し、内部酸化の進行機構を成立するために、特許請求
の通り、3項目について、具体的内容を詳しく述べる事
で、手段方法を明らかにする。
[Means for Solving the Problems] As already described in the previous paragraph, in order to add Ca to the Ag-Sn alloy and establish an internal oxidation progression mechanism, three items are specifically described as claimed in the patent. By describing the content in detail, the means and methods will be clarified.

(1)特許請求の第1項についての内容説明AgにSn
とCaの化合物を、合金し、Snの重量は最少で、少く
とも、2重量%は、酸溶性のため必要であり、最大はA
g中への固溶限として、12重量%とし、Caは0.5
以上で、通常夛用されたSn5重量%に対し、CaSn
3(89.9%dSn)最低の化合物を形成し、最大値
は、Ag−Caの共晶点5.2重量%を最値とした。
(1) Sn in Content Explanation Ag regarding Paragraph 1 of Patent Claim
The minimum weight of Sn is at least 2% by weight, which is necessary for acid solubility, and the maximum is A.
The solid solubility limit in g is 12% by weight, and Ca is 0.5% by weight.
In the above, CaSn
3 (89.9% dSn), and the maximum value was at the eutectic point of Ag-Ca, 5.2% by weight.

Biは、Snに対して最大固溶限の最大。最少値は、S
nの最小値2重量%のAg−Sn合金の内部酸化速度を
高めるに必要である値である。SnとCaの間に形成す
る金属間化合物としては、Ca2Sn(60■%Sn)
、CaSn(74.7■%Sn)、CaSn3(89.
8■%Sn)の三種が知られている。
Bi has the maximum solid solubility limit with respect to Sn. The minimum value is S
This value is necessary to increase the internal oxidation rate of the Ag-Sn alloy where the minimum value of n is 2% by weight. The intermetallic compound formed between Sn and Ca is Ca2Sn (60■%Sn).
, CaSn (74.7% Sn), CaSn3 (89.
Three types are known: 8■%Sn).

最も安定した結合は、CaSnであり、その酸化物の特
性も知られている。CaSnO3の融点は約2000℃
で、CaO(2600℃)とSnO2(1600℃)の
中間に、ありCa成分比が高い程、融点もCaOの融点
に近く、CaSnO3の融点もSnO2、及びAgの沸
点殆んどが近接している。第1項ではAg−CaSn合
金のSnに対して、14重量%以下のBiを添加し、B
i元素が凝固時にAg−Sn固溶相からBiを折した欠
陥部へ、内部酸化の進行につれ、SnBi共晶合金とし
て、Snよりも拡散核へ、集中拡散速度を上昇する結果
、良好な分散組織合金が得られる。
The most stable bond is CaSn, whose oxide properties are also known. The melting point of CaSnO3 is approximately 2000℃
So, it is located between CaO (2600℃) and SnO2 (1600℃), and the higher the Ca component ratio, the closer the melting point is to that of CaO, and the melting point of CaSnO3 is almost the same as the boiling points of SnO2 and Ag. There is. In the first term, 14% by weight or less of Bi is added to the Sn of the Ag-CaSn alloy, and
As the internal oxidation progresses, the i element moves from the Ag-Sn solid solution phase to the defective part where Bi is broken during solidification, and as the SnBi eutectic alloy progresses, it becomes a diffusion nucleus rather than Sn, increasing the concentration diffusion rate, resulting in good dispersion. A textured alloy is obtained.

(2)特許請求の第2項の内容説明 Agに合金する所の、Sn,Bi,Caの三元共晶合金
の成分比にする事により、Ag−合金の凝固点は低下し
、且つ、成分比が一定となり、三元素の内部酸化時の拡
散速度は速く、表面部より中心部に到る濃度■析度が最
も低い合金酸化物を折出する。以上の利点を活す、3元
素の合金濃度は、共晶点で三等比近傍である。Bi−C
aの共晶点は、Biが41.5重量%で融点は786℃
、Sn−Biの共晶点はBiが57重量%で融点は13
5℃、Sn−Caの共晶点、Ca−Ca2Sn間で40
.6重量%のSn(E1).CaSn−CaSn3の共
晶点はSn86重量%で(E2)が存在するが、E1共
晶点が三元合金量の少い時有利である。平均分配比より
、Sn量を少し増して成分比率で3等分となる、Agへ
の固溶限度に近い5.0重量%のBiは脆性を増し、消
耗量は多く粘着性は少い材料となる。耐溶着性特性を活
かした用途に向く。
(2) Explanation of content of item 2 of the patent claim By adjusting the composition ratio of the ternary eutectic alloy of Sn, Bi, and Ca to be alloyed with Ag, the solidification point of the Ag-alloy is lowered, and the composition The ratio is constant, the diffusion rate during internal oxidation of the three elements is fast, and the alloy oxide with the lowest concentration and precipitation is precipitated from the surface to the center. The alloy concentration of the three elements, which takes advantage of the above advantages, is near the cubic ratio at the eutectic point. Bi-C
The eutectic point of a is 41.5% by weight of Bi and the melting point is 786°C.
, the eutectic point of Sn-Bi is 57% by weight of Bi and the melting point is 13
5℃, Sn-Ca eutectic point, 40 between Ca-Ca2Sn
.. 6% by weight of Sn(E1). The eutectic point of CaSn-CaSn3 is Sn86% by weight and (E2) exists, but the E1 eutectic point is advantageous when the amount of the ternary alloy is small. The amount of Sn is increased slightly from the average distribution ratio, and the component ratio is divided into three parts. Bi, which is 5.0% by weight, which is close to the solid solubility limit in Ag, increases brittleness and has a large amount of wear and tear, resulting in a material with little adhesiveness. becomes. Suitable for applications that take advantage of its welding resistance properties.

(3)特許請求の第3項の内容説明 前項記述の共晶点E1、E2のSn−Ca合金について
、Ag−Ca共晶合金として、Ca量が3容量%で融は
800℃まで低下する、又Snが5重量%を超へず、内
部酸化が可能であるSnを4.5重量%以下で配合され
た、Ag−Sn−Ca合金の成分が、その範中にあるE
1,E2のSn−Caの共晶点、又は適量のCaSn化
合物を含む銀合金の鍜造効果により合金中に内部酸化核
となる欠間を形成し、酸素圧力を40ATM位まで高く
、再結晶、結晶成長を少くするため、凝固点より可なり
下方に酸化の低温を接定する。或は、溶融合金粉末を假
焼結し、再成型右に内部酸化する工程が有利である。S
nは少量であるが、Caの比重は小く、銀中に占める酸
化物粒子の表面積は大きくなる。又Biの様な低融点元
素を含まないので、Caの脆性と耐熱性が、SnO2に
加算され、直流回路の開閉等で効果的な特性を有する。
(3) Explanation of content of claim 3 Regarding the Sn-Ca alloy with eutectic points E1 and E2 described in the previous paragraph, as an Ag-Ca eutectic alloy, the melting temperature decreases to 800°C when the Ca amount is 3% by volume. , and the composition of the Ag-Sn-Ca alloy, in which Sn does not exceed 5% by weight and internally oxidizable Sn is blended with 4.5% by weight or less, falls within this range.
1. Due to the eutectic point of Sn-Ca in E2 or the forging effect of a silver alloy containing an appropriate amount of CaSn compound, gaps that become internal oxidation nuclei are formed in the alloy, and the oxygen pressure is increased to about 40 ATM to recrystallize. In order to reduce crystal growth, the oxidation temperature is set well below the freezing point. Alternatively, it is advantageous to sinter the molten alloy powder, reshape it, and then internally oxidize it. S
Although n is a small amount, the specific gravity of Ca is small, and the surface area of the oxide particles in silver becomes large. Furthermore, since it does not contain low-melting-point elements such as Bi, the brittleness and heat resistance of Ca are added to SnO2, and it has effective characteristics in opening and closing DC circuits, etc.

又、Ag−Sn4%は、内部酸化条件で、重要な高い酸
素圧力でも進行速度は、AG−Sn−Bi系合金に比し
、おそく、折出粒子が鮮明でない。本発明で述ベた、C
a元素を熱間鍜造可能を有する重量は、AG−Sn(4
□%)に対し、0.4重量%限度とする実験結果である ので、■銀で表面を覆う、又は熱間押出し等による、加
工率を高くしながら、最終的に、良組織と接点特性が得
られる。
Furthermore, under internal oxidation conditions, the progress rate of Ag-Sn 4% is slower than that of the AG-Sn-Bi alloy even at important high oxygen pressures, and the precipitated particles are not clear. As mentioned in the present invention, C
The weight that can be hot-formed with a element is AG-Sn (4
□%), the experimental result is a limit of 0.4% by weight, so we finally achieved a good structure and contact properties while increasing the processing rate by covering the surface with silver or hot extrusion, etc. is obtained.

以上、各特許請求の項目の内容説明とする。The above is an explanation of the contents of each patent claim.

[発明の効果] Ag−Sn系合金の内部酸化法で製作し得る成分範囲で
、従来のAg−Sn−Bi、系合金の様な,Bi添加の
効果と,反面のマイナル作用を除去する爲,耐熱性の高
い酸化物を形成するCaとSn結合で耐熱性合金酸化物
(CaXSnYOZ)を折出粒子として銀地合に分散す
る事により,SnO2より安定した超微粒子の効果作用
を発明の目的とする。勿論.Ag−Sn(45%)につ
いても,内部酸化時に,単独合金より.酸素との親和力
の高く,且つ比重の軽いCa元素の添加は、内部酸化を
促進し、折出粒子の微細化,耐熱効果を向上する効果作
用がある。補足として、Caの比重の少さい事は、銀中
にSn,Ca等の如く.含有重量を多くしなくとも,大
容量回路での開閉に,交直流をとわず対応し得る電気接
点材料である。
[Effects of the invention] Within the range of ingredients that can be produced by the internal oxidation method of Ag-Sn alloys, the effect of Bi addition as in conventional Ag-Sn-Bi and alloys, as well as the negative effect on the contrary, can be eliminated. The purpose of the invention is to obtain the effect of ultrafine particles that are more stable than SnO2 by dispersing a heat-resistant alloy oxide (CaXSnYOZ) in the silver matrix as precipitated particles through Ca and Sn bonds that form a highly heat-resistant oxide. shall be. Of course. Regarding Ag-Sn (45%), it was also found that during internal oxidation, the rate was higher than that of the single alloy. Addition of Ca element, which has a high affinity for oxygen and has a light specific gravity, has the effect of promoting internal oxidation, making the precipitated particles finer, and improving the heat resistance effect. As a supplement, the low specific gravity of Ca is similar to Sn, Ca, etc. in silver. It is an electrical contact material that can be used for switching in large-capacity circuits, regardless of AC or DC, without increasing the weight content.

[実施例] 表−1に於いて.配合銀合金の成分と酸化後の物理接性
の測定値を示す。
[Example] In Table-1. The components of the blended silver alloy and the measured values of physical adhesion after oxidation are shown.

(1)銀合金成分と酸化後の物理特性 以上の試料中.NO−1〜NO5は,本発明の範中に含
まれる合金であり.可塑性が少い爲に、アルゴン雰囲気
中で、溶解し、4.5m/mφ×1m/m深さの形の穴
を有する炭素製鋳型板上に、鋳造し.凝固前に、冷却用
■金型で押圧し、冷却成型した。NO−6,NO−7は
30m/mφ×100m/mLの鋳造物を,10m/m
φ×1m/mXのテープ状に,750℃が予備加熱し、
200□の圧力で押し出し.そのテープにより、4.5
m/mφ中1m/mTのデスク状に、打ちぬいた。NO
−8〜9は現行品で、0.1m/MTのAg裏張りした
1m/mTの板より4.5m/mφにプレスした試料で
ある。NO−1〜NO−7,は低温(670℃)で40
ATMの酸素圧力下で約50時間,加熱し、内部酸化を
完了したNO−8〜NO−9は通常の通り720℃.1
0ATM(O2)で内部酸化したものである。
(1) Silver alloy components and physical properties after oxidation in the sample. NO-1 to NO5 are alloys included in the scope of the present invention. Due to its low plasticity, it was melted in an argon atmosphere and cast onto a carbon mold plate having a hole in the form of 4.5 m/mφ x 1 m/m deep. Before solidification, it was pressed with a cooling mold and cooled and molded. NO-6 and NO-7 are 30m/mφ×100m/mL castings, 10m/m
Preheated to 750°C in the form of a tape of φ x 1 m/m
Extrude with a pressure of 200□. With that tape, 4.5
It was punched out into a disk shape of 1 m/mT in m/mφ. NO
-8 to 9 are current products, which are samples pressed to 4.5 m/mφ from a 1 m/mT plate lined with 0.1 m/MT Ag. NO-1 to NO-7, 40 at low temperature (670℃)
NO-8 to NO-9 were heated under ATM oxygen pressure for about 50 hours to complete internal oxidation at 720°C. 1
It is internally oxidized at 0ATM (O2).

電導はシグマテスターによる測定値であり、硬度は,一
般のロックウエル硬度測定器Fスケールよる数値である
。組織的には、NO−1,NO−7,NO−8が良好で
あり、他は一般的である。又NO−1〜NO−6試料は
,中心部の酸化物稀薄層の少い事が認められた。Ag−
Sn合金にCaを添加とする時、合金脆性は、増し、結
晶欠陥を発するのは,Ag−Ca共晶合金で、Agと様
々な分子構造を有する化合物の混合態であり、加工、再
加熱により.分子構造が変化する時,生じる結晶空間,
欠陥等であると推定され内部酸化時に、その欠陥は、酸
素の拡散ルート,及が折出核を代行すると考へられ、S
n量4重量%でCaを含む銀−合金の内部酸化組織が鮮
明な粒子折出が確認された。
The electrical conductivity is a value measured by a sigma tester, and the hardness is a value determined by a general Rockwell hardness meter F scale. In terms of structure, NO-1, NO-7, and NO-8 are good, and the others are normal. In addition, it was observed that samples NO-1 to NO-6 had a small oxide diluted layer in the center. Ag-
When Ca is added to the Sn alloy, the alloy brittleness increases and crystal defects occur in the Ag-Ca eutectic alloy, which is a mixture of Ag and compounds with various molecular structures, and is difficult to process and reheat. By. The crystal space created when the molecular structure changes,
It is assumed that the defect is a defect, etc., and during internal oxidation, the defect is thought to act as a diffusion route for oxygen and as a precipitated nucleus, and S
When the n content was 4% by weight, clear grain precipitation of the internal oxidation structure of the silver-alloy containing Ca was confirmed.

(2)電気的特性 表−1に示す試料の内,NO−1〜NO−7は,Agの
裏張りがないので,Ag−Sn10%In15%のロー
材を用いて、試験用台金(銅)に,ロー付し、NO−8
NO−9は一般のロー材を用いた。
(2) Electrical Properties Among the samples shown in Table 1, NO-1 to NO-7 do not have an Ag lining, so a test base ( Copper), brazed, NO-8
For NO-9, a general brazing material was used.

試験の条件 (イ)ASTM試験器による接点消耗量交流220Vo
lt 電流50Amp 力率0.回閉頻度60回/毎分
 接点圧400g関離力600g 関閉数3万回 中間で溶着、異常消耗を発生時点で試験は中止する。
Test conditions (a) Contact wear amount AC 220Vo by ASTM tester
lt Current 50Amp Power factor 0. Closing frequency: 60 times/minute Contact pressure: 400g Separation force: 600g Closing frequency: 30,000 times The test will be discontinued if welding or abnormal wear occurs in the middle.

(ロ)溶着試験 接点圧力400g 充電式コンデンサー放電にピーク電
流値(A)に於いて、1kg以上の関離力を必要とする
時を溶着とする。1試科について、同電流で3回テスト
を行い、500A段階で上昇する。
(b) Welding test contact pressure 400g Welding is when a separation force of 1kg or more is required at the peak current value (A) for discharge of a rechargeable capacitor. For each subject, tests are conducted three times with the same current, increasing in steps of 500A.

ASTMの結果NO.2及びNO.6が平滑な消耗面で
あり、NO.1,NO.2が溶着テスト時のアーク発生
量は少く、遮断器内接点として有利に観察された。
ASTM result NO. 2 and NO. 6 is a smooth wear surface, and NO. 1, NO. No. 2 produced a small amount of arc during the welding test, and was observed to be advantageous as a contact in the circuit breaker.

[発明の効果] 実施例で記載の通り、Caの添加効果は、耐弧性にすぐ
れ、共通して関離時のアークの発生が少い。そのため直
流用パワーリレー用、電流遮器用に対し、電流発生量の
少い事が有利な性能である。
[Effects of the Invention] As described in the Examples, the effect of adding Ca is excellent in arc resistance, and in common, less arcing occurs during separation. Therefore, a small amount of current generation is an advantageous performance for DC power relays and current circuit breakers.

そして従来の銀−酸化物接点材料よりも、その方面の用
途で効果的である事を確認した。
It was also confirmed that this material is more effective than conventional silver-oxide contact materials for this purpose.

Claims (3)

【特許請求の範囲】[Claims] (1)金属成分で、2、〜12、重量%のSnと、0.
5〜5.0重量%のCaと、0.1〜1.4重量%の各
元素を含む銀合金を、内部酸化 した銀−酸化物電気接点材料。
(1) Metal components: 2 to 12% by weight of Sn;
A silver-oxide electrical contact material obtained by internally oxidizing a silver alloy containing 5 to 5.0% by weight of Ca and 0.1 to 1.4% by weight of each element.
(2)金属成分で、それぞれ0.6〜5重量%からなる
、Sn,Ca,Biの三元共晶合金を含む銀合金を内部
酸化した、銀−酸化した 銀−酸化物電気接点材料。
(2) A silver-oxidized silver-oxide electrical contact material obtained by internally oxidizing a silver alloy containing a ternary eutectic alloy of Sn, Ca, and Bi, each of which has a metal component of 0.6 to 5% by weight.
(3)金属成分で、1.0〜4.5重量%のSnと0.
01〜3.0重量%のCaを含む銀合金を内部酸化した
、銀−酸化物電気接点材料。
(3) Metal components: 1.0 to 4.5% by weight of Sn and 0.0% by weight.
A silver-oxide electrical contact material obtained by internally oxidizing a silver alloy containing 01 to 3.0% by weight of Ca.
JP32218789A 1989-12-12 1989-12-12 Silver-oxide contact material Pending JPH03183735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32218789A JPH03183735A (en) 1989-12-12 1989-12-12 Silver-oxide contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32218789A JPH03183735A (en) 1989-12-12 1989-12-12 Silver-oxide contact material

Publications (1)

Publication Number Publication Date
JPH03183735A true JPH03183735A (en) 1991-08-09

Family

ID=18140915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32218789A Pending JPH03183735A (en) 1989-12-12 1989-12-12 Silver-oxide contact material

Country Status (1)

Country Link
JP (1) JPH03183735A (en)

Similar Documents

Publication Publication Date Title
US5160366A (en) Silver-metal oxide composite material and process for producing the same
US5286441A (en) Silver-metal oxide composite material and process for producing the same
JPH03183735A (en) Silver-oxide contact material
JPS6128733B2 (en)
JPH0480100B2 (en)
JPH0463137B2 (en)
JPH0813065A (en) Sintered material for electrical contact and production thereof
JPH01320712A (en) Silver-oxide electric contact material
JPH0153337B2 (en)
JPS5914218A (en) Contact material for vacuum breaker
JPS61246337A (en) Contact material
JPH116022A (en) Electrical contact material and its production
JPS5896836A (en) Electric contact material
JPS61288032A (en) Silver-nickel electrical contact point material
JPS6036636A (en) Electrical contact point material consisting of silver-tin oxide alloy
JPH01312046A (en) Silver-oxide electrical contact material
JPH03183736A (en) Silver-oxide electrical contact material
JPS5877541A (en) Contact material
JPH101730A (en) Manufacture of silver-oxide sintered electrical contact material
JPH0366378B2 (en)
JPH0364425A (en) Electric contact material
JPS58746B2 (en) electrical contact materials
JPS6355822A (en) Contact material
JPS6127455B2 (en)
JPS61246336A (en) Contact material