JPH03182234A - Ultrasonic probe and ultrasonic diagnosing device - Google Patents

Ultrasonic probe and ultrasonic diagnosing device

Info

Publication number
JPH03182234A
JPH03182234A JP1321293A JP32129389A JPH03182234A JP H03182234 A JPH03182234 A JP H03182234A JP 1321293 A JP1321293 A JP 1321293A JP 32129389 A JP32129389 A JP 32129389A JP H03182234 A JPH03182234 A JP H03182234A
Authority
JP
Japan
Prior art keywords
frequency
ultrasonic
transducer
frequencies
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1321293A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yomo
浩之 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1321293A priority Critical patent/JPH03182234A/en
Publication of JPH03182234A publication Critical patent/JPH03182234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide clear ultrasonic images with sharp focus from short to long distances with an ultrasonic probe by disposing an oscillator portion having a single frequency in the peripheral portion and arranging an oscillator portion having a plural number of frequencies in the central portion. CONSTITUTION:A probe body 10 comprises a plural number N of arranged oscillators, each of which comprising both peripheral oscillator sections 11A1, 11A2 and a central oscillator section 11B and arranged in the number N in the scanning direction and in the number three in the lens direction, namely in two dimensions as a whole. Each of the N pieces of oscillators is electronically scanned with a receiving and transmitting circuit 12. The reception signals are passed through a first BPS(band pass filter) 13A and a second BPF 13B, and the passed reception signals are detected with a signal processing circuit 14, and synthesized into an image. Assuming f1 as the frequency of the central and peripheral portions and f1, f2 as the frequencies of the central portion, large aperture drive is performed with the frequency f1 and small aperture drive is performed with the frequency f2, providing sharp focusing in the lens direction from short to long distances.

Description

【発明の詳細な説明】 【発明の目的] (産業上の利用分野) 本発明は、アレイ型超音波プローブ、及び超音波ビーム
を被検体にスキャンしてMモード像(モーション像)、
Bモード像(Tomography) *Dモード像(
血流速像)、DFモード像(CFM像: Co1or 
Flow Mapplng像)等の超音波画像情報を得
て診断のための表示に供する超音波診断装置に関する。 (従来の技術) 超音波診断装置の典型例として、アレイ型超音波プロー
ブを用いて電子走査によりBモード像を得るものがある
。 この種の装置では、浅部から深部まで鮮明な画像を得ら
れれば好ましいが、振動子を一次元配列したアレイ型超
音波プローブを用いるものにあっては、振動子並設方向
に直交する方向(以下「レンズ方向」と称する。)の口
径は一定であり、従ってフォーカス点以外ではレンズ方
向の超音波ビームは絞られない、つまり、フォーカス点
以外での画質は悪いものとなっていた。 これを解決するために従来は、次のような手段を採用し
ている。すなわち、焦点の近い音響レンズを装着した近
距離用超音波プローブと焦点の遠い音響レンズを装着し
た遠距離用超音波プローブとを別々に用意して、浅部診
断のときには近距離用超音波プローブを装置に取付けて
診断し、深部診断のときには遠距離用超音波プローブを
装置に取付けて診断する。 この他、一つのプローブにおいて振動子をレンズ方向に
分割し、浅部診断のときには口径が小さくてフォーカス
点が浅部に形成されるように中央部の振動子のみを送受
信駆動し、深部診断のときには口径が大きくてフォーカ
ス点が深部に形成されるように全幅の振動子を送受信駆
動してそれぞれ超音波画像情報を得る。 (発明が解決しようとする:SS> 前者の方法では、プローブの切替えに手間を要すると共
に同時に浅部、深部の画像を診断できない、という問題
がある。また、後者の方法にあっては、プローブ又は装
置内に、遠距離送受信用の切換スイッチを内蔵する必要
があり、送受信回路の複雑化を招くことになった。また
、使用するスイッチは高電圧スイッチであるので、コス
ト上昇を招くことにもなった。 そこで本発明の目的は、近距離から遠距離までシャープ
なレンズ方向フォーカスが得られ、鮮明な超音波画像を
得ることを可能とした超音波プローブおよび超音波診断
装置を提供することにある。 [発明の目的] (課題を解決するための手段) 本発明は上記課題を解決し且つ目的を達成するために次
のような手段を講じた構成としている。 すなわち、本発明による超音波プローブは、振動子それ
ぞれを、振動子並設方向に直交する方向について、単一
の振動子周波数を有する単一周波数振動子部を縁部に配
置し、この振動子部の振動子周波数を含む複数の振動子
周波数を有する複数周波数振動子部を中央部に配置した
構成としたことを特徴とする。 また、本発明にかかる超音波診断装置は、超音波プロー
ブとして前述のものを用いると共に、送受信系として前
記複数の振動子周波数に対応する周波数を有する励振信
号を発生する励振手段及び前記複数の振動子周波数に対
応する周波数の受信信号を帯域通過させるフィルタ手段
を具備し、該フィルタ手段により得られる前記複数の振
動子周波数に対応する周波数の受信73号に基づき超音
波画像情報を生成することを特徴とする。 (作用〉 以上の構成の超音波プローブおよび超音波診断装置によ
れば、中心部及び縁部は同時に駆動されるが、ここで、
例えば、中心部及び縁部における周波数を【lとし、中
心部における周波数をfl、f2とすると、周波数fl
にて大口径駆動がなされ、同時に周波数f2にて小口径
駆動がなされ、近距離から遠距離までシャープなレンズ
方向フォーカスが得られ、しかもフィルタ手段によりフ
ォーカス深さが異なり且つ周波数の異なる2つ信号が得
れ、これらを合成することにより、近距離から遠距離ま
で鮮明な超音波画像が得られる。 (実施例) 以下本発明にかかる超音波プローブおよび超音波診断装
置の一実施例を図面を参照して説明する。 第1図は本実施例の超音波プローブのケースを取除いた
プローブ本体10を示す斜視図であり、バッキング材1
.圧電素子部2.第1整合層3゜第2整合層4.音響レ
ンズ5.信号フレキシブル基板6.共通フレキシブル基
板7から構成されている。 ここに、圧電素子部2はセラミックス等の圧電材料をそ
の一面側のレンズ方向については断面凹状に形成し、他
面側のレンズ方向については平坦状に形成している。そ
して、圧電素子部2の一面側の印部及びこれの両縁側で
ある両平坦部内にはその形状に沿って振動子配列数(N
)に対応して複数の導電パターンを形成した信号フレキ
シブル基板6が配設され、且つ当該凹部に充填圧電材料
2Aが埋め込まれ、他面側に共通フレキシブル基板7が
配設されている。ここで、圧電素子部2の全厚さが関与
することで共振周波数flであり、凹部による薄厚が関
与することで共振周波数12(f2>fl)であるとす
る。従って、中心部の凹部にて共振周波数fl、f2で
あり、両縁部の平坦部で共振周波数flである。 以上のように構成されたプローブ本体10を用い、第2
図に示すように本実施例の超音波診断装置を構成する。 すなわち、プローブ本体10は、N個の配列振動子を有
し、それぞれは両縁部の振動子部11A1.11A2と
中央部の振動子部11Bとからなり、全体で走査方向に
N個、レンズ方向に3個の2次元振動子配列となってい
る。 このプローブ本体10の振動子部11AI。 11A2.IIBの並列回路である走査方向にN個の振
動子それぞれは送受信回路12により電子走査され、そ
の受信信号は第1のBPF (バンド・バス・フィルタ
)13Aと第2のBPF (バンド・バス・フィルタ)
13Bを透過し、それぞれ透過した受信信号は信号処理
回路14にて検波等の後に合成され、且つ画像化される
。ここで、振動子部11AI、11A2.IIBと、第
1.第2のBPF (バンド・バス・フィルタ)13A
。 13Bの周波数特性は第3図(a)(b)(c)(d)
のようになっている。 この構成にて、プローブ本体10の振動子部11AI、
11A2.IIBの並列回路である走査方向にN個の振
動子それぞれが送受信回路12により送受信駆動される
と、第1図に示すように、共振周波数flの超音波が、
振動子部11AI。 11A2.IIBの全体から大口径にて送受信される。 また、共振周波数fl、f2の超音波が、中央部の振動
子部11Bから小口径にて送受信される。ここで、大口
径送受信にてフォーカス点F】であり、また小口径送受
信にてフォーカス点F2  (Fl>F2)であり、従
って、大口径送受信にてはフォーカス点Flを中心とす
るエコー信号ESIが得られ、また、小口径送受信にて
はフォーカス点F2を中心とするエコー信号ES2が得
られる。 そして、エコー信号ES1.ES2は、第1゜第2のB
PF13A、13Bを透過することにより、大口径送受
信にかかる視野深度の深い中心周波数f1のエコー信号
と、小口径送受信にかかる視野深度の浅い中心周波数1
2のエコー信号とが得られ、これらをそれぞれ検波して
合成することにより、−回の超音波走査にてフォーカス
点Fl〜F2にかけて視野深度の広いBモード像を得る
ことができる。 本発明は上記実施例に限定されるものではなく、本発明
の要旨を逸脱しない範囲で種々変形して実施できるもの
である。 [発明の効果] 以上のように本発明では、レンズ方向に同時駆動される
111−周波数の振動子部と複数周波数の振動子部とを
持つ超音波プローブを用い、送受信系として前記複数の
振動子周波数に対応する周波数を有する励振信号を発生
する励振手段及び前記複数の振動子周波数に対応する周
波数の受信信号を帯域通過させるフィルタ手段を具備し
た超音波診断装置を構成することにより、中心部及び縁
部は同時に駆動されるが、ここで、例えば、中心部及び
縁部における周波数をflとし、中心部における周波数
をfl、f2とすると、周波数flにて大口径駆動がな
され、同時に周波数f2にて小口径駆動がなされ、近距
離から遠距離までシャープなレンズ方向フォーカスが得
られ、しかもフィルタ手段によりフォーカス深さが異な
り且つ周波数の異な−る2つ信号が得れ、これらを合成
することにより、近距離から遠距離まで鮮明な超音波画
像が得られる。 よって本発明によれば、近距離から遠距離までシャープ
なレンズ方向フォーカスが得られ、鮮明な超音波画像を
得ることを可能とした超音波ブロ−ブおよび超音波診断
装置を提供することができる。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention provides an array type ultrasound probe and an ultrasound beam scanned onto a subject to obtain an M-mode image (motion image),
B mode image (Tomography) *D mode image (
Blood flow velocity image), DF mode image (CFM image: Co1or
The present invention relates to an ultrasonic diagnostic apparatus that obtains ultrasonic image information such as flow map images) and displays the obtained ultrasonic image information for diagnosis. (Prior Art) A typical example of an ultrasonic diagnostic apparatus is one that uses an array type ultrasonic probe to obtain a B-mode image by electronic scanning. For this type of device, it is preferable if clear images can be obtained from shallow to deep areas, but for devices that use an array type ultrasonic probe in which transducers are arranged one-dimensionally, the direction perpendicular to the direction in which the transducers are arranged is (hereinafter referred to as the "lens direction") has a constant aperture, so the ultrasonic beam in the lens direction is not narrowed down except at the focus point, that is, the image quality is poor at locations other than the focus point. To solve this problem, the following methods have been conventionally adopted. In other words, a short-distance ultrasound probe equipped with a close-focus acoustic lens and a long-distance ultrasound probe equipped with a far-focus acoustic lens are prepared separately, and the short-range ultrasound probe is used for diagnosis of shallow areas. For deep diagnosis, a long-distance ultrasonic probe is attached to the device for diagnosis. In addition, in one probe, the transducer is divided in the lens direction, and only the central transducer is driven for transmission and reception so that the aperture is small and the focus point is formed in the shallow part for shallow diagnosis. Sometimes, a full-width transducer with a large aperture is driven to transmit and receive so that the focus point is formed deep, thereby obtaining ultrasound image information. (Surfaced by the invention: SS) The former method has problems in that it takes time to switch the probe and it is not possible to diagnose images of shallow and deep areas at the same time. Alternatively, a changeover switch for long-distance transmission and reception must be built into the device, which complicates the transmission and reception circuit.Furthermore, the switch used is a high-voltage switch, which increases costs. Therefore, an object of the present invention is to provide an ultrasonic probe and an ultrasonic diagnostic apparatus that can obtain sharp lens direction focus from short distances to long distances and can obtain clear ultrasonic images. [Object of the Invention] (Means for Solving the Problems) The present invention has a configuration in which the following means are taken to solve the above problems and achieve the objects. In the sonic probe, a single frequency transducer part having a single transducer frequency is arranged at the edge of each transducer in a direction perpendicular to the direction in which the transducers are arranged in parallel, and the transducer frequency of this transducer part is The ultrasonic diagnostic apparatus according to the present invention uses the above-described ultrasonic probe as an ultrasonic probe and , comprising an excitation means for generating an excitation signal having a frequency corresponding to the plurality of transducer frequencies as a transmitting/receiving system, and a filter means for band-passing a received signal having a frequency corresponding to the plurality of transducer frequencies, the filter means The ultrasonic image information is generated based on the reception number 73 of the frequency corresponding to the plurality of transducer frequencies obtained by. (Operation) According to the ultrasonic probe and ultrasonic diagnostic apparatus configured as above. , the center and the edges are driven simultaneously, where:
For example, if the frequencies at the center and edges are [l, and the frequencies at the center are fl and f2, then the frequency fl
A large aperture drive is performed at a frequency f2, and a small aperture drive is simultaneously performed at a frequency f2, and sharp lens direction focus is obtained from short distances to long distances. Moreover, the filter means produces two signals with different focus depths and different frequencies. By combining these images, clear ultrasound images can be obtained from short distances to long distances. (Example) An example of an ultrasonic probe and an ultrasonic diagnostic apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the probe body 10 from which the case of the ultrasonic probe of this embodiment is removed, and the backing material 1
.. Piezoelectric element part 2. First matching layer 3° Second matching layer 4. Acoustic lens 5. Signal flexible board6. It is composed of a common flexible substrate 7. Here, the piezoelectric element portion 2 is made of a piezoelectric material such as ceramics, and is formed to have a concave cross-section in the direction of the lens on one surface thereof, and to have a flat shape in the direction of the lens on the other surface. The number of vibrator arrays (N
), a signal flexible substrate 6 having a plurality of conductive patterns formed thereon is disposed, a filling piezoelectric material 2A is embedded in the recessed portion, and a common flexible substrate 7 is disposed on the other side. Here, it is assumed that the resonance frequency fl is due to the total thickness of the piezoelectric element portion 2, and the resonance frequency is 12 (f2>fl) due to the thin thickness due to the recess. Therefore, the resonant frequencies fl and f2 are at the concave portion at the center, and the resonant frequency fl is at the flat portions at both edges. Using the probe main body 10 configured as described above, the second
The ultrasonic diagnostic apparatus of this embodiment is configured as shown in the figure. That is, the probe main body 10 has N arranged transducers, each consisting of transducer parts 11A1 and 11A2 on both edges and a transducer part 11B in the center, and a total of N lenses in the scanning direction. It is an array of three two-dimensional vibrators in the direction. A vibrator section 11AI of this probe body 10. 11A2. Each of the N transducers in the scanning direction, which is a parallel circuit of IIB, is electronically scanned by the transmitter/receiver circuit 12, and the received signal is passed through a first BPF (band bus filter) 13A and a second BPF (band bus filter). filter)
The received signals that have passed through the signal processing circuit 13B are subjected to detection, etc. in the signal processing circuit 14, and then synthesized and converted into an image. Here, the vibrator sections 11AI, 11A2. IIB and 1st. 2nd BPF (band pass filter) 13A
. The frequency characteristics of 13B are shown in Figure 3 (a), (b), (c), and (d).
It looks like this. In this configuration, the vibrator section 11AI of the probe body 10,
11A2. When each of the N transducers in the scanning direction, which is a parallel circuit of IIB, is driven to transmit and receive by the transmitting/receiving circuit 12, as shown in FIG.
Vibrator section 11AI. 11A2. It is transmitted and received from the entire IIB with a large aperture. Further, ultrasonic waves having resonance frequencies fl and f2 are transmitted and received from the central transducer section 11B through a small aperture. Here, in large-diameter transmission and reception, the focus point is F], and in small-diameter transmission and reception, the focus point is F2 (Fl>F2), therefore, in large-diameter transmission and reception, the echo signal ESI centered around the focus point Fl is is obtained, and an echo signal ES2 centered on the focus point F2 is obtained in small-diameter transmission/reception. Then, the echo signal ES1. ES2 is the first degree second B
By transmitting through PF13A and 13B, an echo signal with a center frequency f1 with a deep field of view for large-diameter transmission and reception, and a center frequency 1 with a shallow field of view for small-diameter transmission and reception.
2 echo signals are obtained, and by detecting and combining these signals, it is possible to obtain a B-mode image with a wide field of view from focus points Fl to F2 in - times of ultrasonic scanning. The present invention is not limited to the above embodiments, but can be implemented with various modifications without departing from the gist of the present invention. [Effects of the Invention] As described above, in the present invention, an ultrasonic probe having a 111-frequency transducer section and a plurality of frequency transducer sections that are simultaneously driven in the lens direction is used, and the plurality of vibrations are transmitted as a transmitting/receiving system. By configuring an ultrasonic diagnostic apparatus including an excitation means for generating an excitation signal having a frequency corresponding to the transducer frequency and a filter means for band-passing a received signal having a frequency corresponding to the plurality of transducer frequencies, For example, if the frequencies at the center and the edges are fl, and the frequencies at the center are fl and f2, large-diameter driving is performed at the frequency fl, and at the same time the frequency f2 A small aperture drive is performed by the lens, and sharp lens direction focus is obtained from short distances to long distances, and two signals with different focus depths and different frequencies can be obtained by the filter means, and these signals can be synthesized. This allows you to obtain clear ultrasound images from short distances to long distances. Therefore, according to the present invention, it is possible to provide an ultrasonic probe and an ultrasonic diagnostic apparatus that can obtain sharp lens direction focus from short distances to long distances and can obtain clear ultrasonic images. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる超音波プローブの一実施例の要
部を示す斜視図、tJ2図は本発明にかかる超音波診断
装置の一実施例の構成を示すブロック図、第3図は同実
施例の周波数特性図である。 1・・・バッキング材、2・・・圧電素子部、3・・・
第1整合層、4・・・第2整合層、5・・・音響レンズ
、6・・・信号フレキシブル基板、7・・・共通フレキ
シブル基板、10・・・プローブ本体、llA1.11
A2・・・両縁部の振動子部、IIB・・・中央部の振
動子部、12・・・送受信回路、13A・・・第1のB
PF (バンド・パス・フィルタ)、13B・・・第2
のBPF(バンド・パス・フィルタ)、14・・・信号
処理回路。
FIG. 1 is a perspective view showing the essential parts of an embodiment of an ultrasound probe according to the present invention, FIG. tJ2 is a block diagram showing the configuration of an embodiment of an ultrasound diagnostic apparatus according to the present invention, and FIG. It is a frequency characteristic diagram of an example. 1... Backing material, 2... Piezoelectric element part, 3...
First matching layer, 4... Second matching layer, 5... Acoustic lens, 6... Signal flexible substrate, 7... Common flexible substrate, 10... Probe body, llA1.11
A2... Vibrator parts on both edges, IIB... Vibrator part in the center, 12... Transmission/reception circuit, 13A... First B
PF (band pass filter), 13B...second
BPF (band pass filter), 14... signal processing circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)超音波振動子を多数並設してなるアレイ型超音波
プローブにおいて、前記振動子それぞれを、前記並設方
向に直交する方向について、単一の振動子周波数を有す
る単一周波数振動子部を縁部に配置し、この振動子部の
振動子周波数を含む複数の振動子周波数を有する複数周
波数振動子部を中央部に配置した構成としたことを特徴
とする超音波プローブ。
(1) In an array-type ultrasonic probe in which a large number of ultrasonic transducers are arranged in parallel, each of the transducers is a single-frequency transducer having a single transducer frequency in a direction orthogonal to the direction in which the transducers are arranged in parallel. 1. An ultrasonic probe characterized in that a multi-frequency transducer part having a plurality of transducer frequencies including the transducer frequency of this transducer part is arranged in the center part.
(2)超音波プローブから被検体に対して超音波を送受
波することにより得られるエコー信号を受信し、信号処
理して前記被検体の診断情報を得る超音波診断装置にお
いて、前記超音波プローブとして請求項1に記載のもの
を用いると共に、送受信系として前記複数の振動子周波
数に対応する周波数を有する励振信号を発生する励振手
段及び前記複数の振動子周波数に対応する周波数の受信
信号を帯域通過させるフィルタ手段を具備し、該フィル
タ手段により得られる前記複数の振動子周波数に対応す
る周波数の受信信号に基づき超音波画像情報を生成する
ことを特徴とする超音波診断装置。
(2) In an ultrasonic diagnostic apparatus that receives an echo signal obtained by transmitting and receiving ultrasonic waves from an ultrasonic probe to a subject, and processes the signal to obtain diagnostic information about the subject, the ultrasonic probe As a transmission/reception system, an excitation means for generating an excitation signal having a frequency corresponding to the plurality of oscillator frequencies, and a reception signal having a frequency corresponding to the plurality of oscillator frequencies are used as a transmitting/receiving system. An ultrasonic diagnostic apparatus comprising: a filter means for passing through, and generating ultrasonic image information based on received signals of frequencies corresponding to the plurality of transducer frequencies obtained by the filter means.
JP1321293A 1989-12-13 1989-12-13 Ultrasonic probe and ultrasonic diagnosing device Pending JPH03182234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1321293A JPH03182234A (en) 1989-12-13 1989-12-13 Ultrasonic probe and ultrasonic diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1321293A JPH03182234A (en) 1989-12-13 1989-12-13 Ultrasonic probe and ultrasonic diagnosing device

Publications (1)

Publication Number Publication Date
JPH03182234A true JPH03182234A (en) 1991-08-08

Family

ID=18130954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1321293A Pending JPH03182234A (en) 1989-12-13 1989-12-13 Ultrasonic probe and ultrasonic diagnosing device

Country Status (1)

Country Link
JP (1) JPH03182234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057518A (en) * 2011-09-07 2013-03-28 Port & Airport Research Institute Supersonic grating three-dimensional electronic imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057518A (en) * 2011-09-07 2013-03-28 Port & Airport Research Institute Supersonic grating three-dimensional electronic imaging apparatus

Similar Documents

Publication Publication Date Title
EP0451984B1 (en) Ultrasonic probe system
JP4879430B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
JPH0230313U (en)
CN102405653A (en) Ultrasonic probe and ultrasonic imaging apparatus
JP2002336248A (en) Ultrasonic probe
JP2000358299A (en) Wave transmitting and receiving element for ultrasonic probe, its production method and ultrasonic probe using the same element
JP2003009288A (en) Piezoelectric device, ultrasonic wave probe and ultrasonic wave image pickup device
WO2001056474A1 (en) Ultrasonic probe and ultrasonic diagnostic device comprising the same
JPWO2019208767A1 (en) Ultrasonic system and control method of ultrasonic system
JPH03182234A (en) Ultrasonic probe and ultrasonic diagnosing device
JP4030644B2 (en) Ultrasonic imaging device
JPS6340974Y2 (en)
JP2004024464A (en) Ultrasonic search unit and ultrasonic diagnostic equipment
JP2778153B2 (en) Ultrasonic probe
JPS5824785Y2 (en) Array-shaped ultrasonic probe
JPH03151948A (en) Ultrasonic probe
JPH06121390A (en) Ultrasonic search unit
JP2004008642A (en) Medical diagnostic apparatus of three-dimensional display by wavefront coding method
JP2007236820A (en) Ultrasonic probe and ultrasonic diagnostic equipment
JPH04273699A (en) Ultrasonic wave checking device
JPH0292344A (en) Ultrasonic probe and ultrasonic diagnostic apparatus equipped with same probe
JPS6193951A (en) Ultrasonic probe and its production
KR20220067700A (en) A transducer for shear mode using Y cut LiNbO3
JPH07222286A (en) Ultrasonic vibrator
JPH11146492A (en) Ultrasonic probe